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Tight-binding electrons on the honeycomb lattice are studied where nearest-neighbor hoppings in the
three directions are ta, tb, and tc, respectively. For the isotropic case—namely, for ta= tb= tc—two zero
modes exist where the energy dispersions at the vanishing points are linear in momentum k. Positions of
zero modes move in the momentum space as ta, tb, and tc are varied. It is shown that zero modes exist if
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The integer quantum Hall effect has been observed in
graphene1,2 when the carriers are changed by the gate volt-
age. The quantization of the Hall effect is observed as
�xy =2n e2

h with n= ±1, ±3, . . ., where the factor of 2 comes
from the spin degrees of freedom. These quantum numbers
are unusual, since in a usual case n=0, ±1, ±2, . . .. This un-
usual quantum Hall effect was discussed in terms of relativ-
istic Dirac theory.3 However, it is more natural to be ex-
plained by the realization of the quantum Hall effect in
periodic systems4 in the presence of zero modes.5,6 We will
use zero modes instead of massless Dirac excitations in this
paper because we do not consider relativistic particles. The
energy spectrum and the density of states of the honeycomb
lattice near half filling and in zero or small magnetic field are
similar to these in the square lattice near half filling in a very
strong magnetic field, about half flux quantum per each unit
cell.5

At zero carrier concentration �i.e., half-filled electrons�,
the resistivity �xx is close to the quantum value h / �4e2�
=6.45k� independent of temperature,1 which has been also
attributed to the zero modes.1,2,7

The existence of zero modes has also been proposed
for the quasi-two-dimensional organic conductor
�-�BEDT-TTF�2I3. The conductivity under pressure is al-
most constant in a wide range of temperature.8 Pertinent
numerical computations performed by Kobayashi et al.9

found that, for a certain range of parameters, the Fermi
surfaces become points and the density of states is
proportional to the energy at 3 /4 filling of electrons. The
existence of zero modes was also confirmed by a band struc-
ture calculation.10,11 The unit cell for the model of
�-�BEDT-TTF�2I3 has four nonequivalent sites. Katayama
et al.12 studied a simpler model with two sites in the unit cell,
and they obtained a condition for zero modes.

In this paper we study a tight-binding model on the hon-
eycomb lattice and obtain the condition of ta, tb, and tc for
the existence of zero modes.

The unit cell of the honeycomb lattice contains two sub-
lattices as shown in Fig. 1�a�. The Bravais lattice is a trian-
gular lattice with
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where a is the lattice constant of graphene. We consider only
nearest-neighbor hoppings. There are three nearest neighbors
for each site, ta, tb, and tc, as shown in Fig. 1. We study the
generalized honeycomb lattice model where ta, tb, and tc are
not necessarily equal. Under uniaxial pressure, ta, tb, and tc
have different values for each other. For example, ta� tb= tc
is expected, if the uniaxial pressure along the x direction is
applied. The Hamiltonian for the generalized honeycomb lat-
tice is given by

H = �
rm

�− ta�arm

† brm
+ H.c.� − tb�arm+v1

† brm
+ H.c.�

− tc�arm+v2

† brm
+ H.c.�	 . �3�

Using the Fourier transform

arm
= �

k
e−ik·rmak, �4�

brm
= �

k
e−ik·�rm+x�bk, �5�

where x= � �3
3 a ,0�, we obtain

FIG. 1. �Color online� �a� Honeycomb lattice. Unit vectors
are v1= �

�3
2 a ,− 1

2a� and v2= �
�3
2 a , 1

2a�. Three nearest-neighbor
hoppings are ta, tb, and tc. �b� The red hexagon is a Brillouin zone
for the honeycomb lattice. The reciprocal lattice vectors are G1

= � 2��3
3a ,− 2�

a � and G2= � 2��3
3a , 2�

a �. White circles are 	 points. The
Brillouin zone can also be taken by the green diamond.
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The energy is given by
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If we perform a translation in momentum space,

�kx,ky� → �kx +
2�

�3
,ky� , �8�

and a replacement ta→−ta simultaneously, we get the same

k. Therefore we can take ta�0 without loss of generality. In
a similar way one can take tb�0 and tc�0 without loss of
generality by taking a translation in momentum space,

�kx,ky� → �kx +
�3

3
�,ky ± �� . �9�

The reciprocal lattice vectors are
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as shown in Fig. 1�b�. Let us write
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where
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The energy is
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2 + 2tatb cos�2�k1� + 2tatc cos�2�k2�

+ 2tbtc cos�2��− k1 + k2�	 . �15�

The minimum of �
k� is obtained as follows. Consider the
quadrangle ABCD in Fig. 2�a�. Then we have

�DA� �2 = �AB� + BC� + CD� �2 = ta
2 + tb

2 + tc
2 − 2tatb cos �

− 2tbtc cos  − 2tatc cos�� − � − � � 0. �16�

Put

� = � − 2�k1, �17�

 = � + 2��k1 − k2� , �18�

then
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The equality is satisfied when ta, tb, and tc form a triangle
which can be seen in Fig. 2�b�—i.e.,
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The triangle can be formed when

� �tb�
�ta�

− 1� �
�tc�
�ta�

� � �tb�
�ta�

+ 1� �23�

is satisfied. See Fig. 3.
In the isotropic case where ta= tb= tc, zero modes

are at �k1 ,k2�= ± � 1
3 , 2

3
�, �k1 ,k2�= ± � 2

3 , 1
3

�, and �k1 ,k2�
= ± �− 1

3 , 1
3

�—i.e., the corners of the first Brillouin zone,
�kx ,ky�= ± � 2�

�3a
, 2�

3a
�, �kx ,ky�= ± � 2�

�3a
,− 2�

3a
�, and �kx ,ky�
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�. See Fig. 4. The density of states is written in

FIG. 2. Graphical explanation for appearance of zero modes. �a�
If ta, tb, and tc do not form a triangle, there are no zero modes and
gaps at E=0 are open. �b� Zero modes exist when ta, tb, and tc form
a triangle. Angles k1 and k2 are shown.
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terms of the complete elliptic integral13 and it is plotted in
Fig. 5�a�.14

If the parameters are in the boundary as seen in Fig. 3,
two zero modes merge into a confluent point. For example,

k=0 at confluent point �kx

* ,ky
*�= � 2�

�3a
,0� for ta=2, tb=1, and

tc=1 �Fig. 6�. Near this point 
k is written as


k
2 = 6 − 8 cos��3

2
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*��cos�1

2
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*��
+ 2 cos a�ky − ky

*� � 3a2�kx − kx
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1

8
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16
a4�ky − ky

*�4. �24�

In this case the density of states near E=0 becomes

FIG. 3. Zero modes exist in the filled region.

FIG. 4. �Color online� Energy dispersion for the isotropic case
�ta= tb= tc=1�. �a� Three-dimensional plot and �b� contour plot.

FIG. 5. Density of states of the electrons on a generalized hon-
eycomb lattice.

FIG. 6. �Color online� Three-dimensional plot �a� and the con-
tour plot �b� of the energy of the generalized honeycomb lattice
with ta=2, tb= tc=1.
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N�E� =
��

4�2

	�1

4
�

	�3

4
���E� . �25�

�see Fig. 5�b�	, while N�E�� �E� in the case of two zero
modes �Fig. 5�a�	. When the inequality �23� is not satisfied, a
finite gap opens at E=0 as shown in Fig. 5�c�.

In conclusion, we have studied the energy of tight-binding

electrons in the generalized honeycomb lattice and found the
condition for the existence of zero modes. The zero modes
exist at the corners of the hexagonal first Brillouin zone for
the usual honeycomb lattice. Two zero modes moved to be-
come a confluent point at the critical values of parameters ta,
tb, and tc, where ta, tb, and tc stop to form a triangle.
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