
Focusing hard x rays to nanometer dimensions using Fresnel zone plates

Christian G. Schroer*
HASYLAB at DESY, Notkestrasse 85, D-22607 Hamburg, Germany

�Received 7 January 2006; revised manuscript received 27 April 2006; published 14 July 2006�

The question is addressed of what is the smallest spot size that hard x rays can be focused to using Fresnel
zone plates. A thick tilted zone plate optic with large numerical aperture is considered in numerical simulations
and is shown to efficiently focus hard x rays down to below 1 nm, well below the theoretical limit for reflective
optics such as waveguides and that of refractive optics. The focal spot size is ultimately limited by the atomic
structure of matter. The practical realization of these optics will require a significant technological effort, but
would enable hard x-ray nanoprobe studies with close to atomic resolution at current and future x-ray sources,
such as x-ray free electron lasers and energy recovery linacs.
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Since the advent of highly brilliant synchrotron radiation
sources, there have been great advances in focusing hard x
rays to ever smaller dimensions. Besides the highly brilliant
source, sophisticated x-ray optics are required to generate the
smallest foci. In the soft x-ray range, Fresnel zone plates
with a diffraction limit below 15 nm were recently made.1 In
the hard x-ray range, total reflection mirrors,2 multilayer
mirrors,3 Fresnel zone plates,4 multilayer Laue lenses,5

waveguides,6 and refractive lenses7 have all been shown to
generate beams with a lateral size well below 100 nm. In all
these cases, the focusing underlies technological limits.

Recently, the question of the physical limits to the focus-
ing of x rays arose, in particular whether focusing to atomic
dimensions is possible with x rays. This is of particular in-
terest for the construction of hard x-ray nanoprobes at third-
generation synchrotron radiation sources8 and future fourth-
generation sources, such as x-ray free electron lasers9 and
energy recovery linacs.10 While the hard x-ray wavelength �
is typically on atomic scales and smaller �e.g., E=20 keV
corresponds to �=0.62 Å�, the diffraction limit of the best
optics is currently one to two orders of magnitude larger.

Bergemann et al.11 have shown that for optics based on
external total reflection, such as waveguides, the numerical
aperture is fundamentally limited by the critical angle of ex-
ternal total reflection, �c=�2�, resulting in a diffraction limit
slightly smaller than 10 nm. In this expression, � is the dec-
rement of the index of refraction �n=1−�+ i�� that is limited
by the electron density in the reflecting material. Further-
more, they conjectured that this limit holds for all x-ray
optics.11 While it holds also for thin refractive optics,12 this
limit can in principle be overcome with thick refractive
lenses, so-called adiabatically focusing lenses.13 For these
optics foci down to about 2 nm are predicted. In this case,
mainly attenuation inside the lens material limits the numeri-
cal aperture. Similarly small foci are expected for reflection
zone plates.14

For diffractive optics such as Fresnel zone plates, the dif-
fraction limit in first order is approximately limited by the
width of the outermost zone15 that efficiently contributes to
image formation.16 For hard x rays �e.g., E=20 keV�, effi-
cient focusing with transmission zone plates requires the op-
tic to be several micrometers thick. To achieve efficient na-
nometer focusing, aspect ratios of several thousand are

needed. One way to realize these structures may be to extract
a thin slice out of a laterally and depth-graded multilayer
structure, similar to the multilayer-Laue-lens approach de-
scribed by Kang et al.5 Such a structure would focus in one
dimension and two such devices would have to be crossed to
obtain a point focus. With today’s technology, x-ray
multilayer optics with layer thicknesses down to 1 nm can be
made.17 Using coupled-wave theory efficient focusing with
large numerical apertures was shown to require tilted zones
that act locally as a diffracting multilayer in Laue
geometry.16 Since hard x rays can be diffracted by ordinary
matter to large angles, the effect allows one in principle to
generate large numerical apertures.

In this article, x-ray wave propagation inside an appropri-
ately tilted thick one-dimensional Fresnel zone plate is con-
sidered, simulating the whole optic with the parabolic wave
equation in paraxial approximation. Matter is treated as a
homogeneous continuum. Within these approximations, the
numerical aperture of a thick tilted zone plate is shown to
exceed the �2� limit11 by an order of magnitude, allowing
for efficient focusing to below 1 nm. Wave propagation ef-
fects inside an ideal optic do not limit the numerical aperture,
as opposed to that in waveguides.11 Deviations from the ideal
shape may introduce aberrations and lead to reduced
efficiency.18,19 Eventually, the main fundamental limitation
will arise from the atomic structure of matter that will pro-
hibit one from making zone plates with multilayer structures
much smaller than 1 nm.17

Figure 1 shows the optic considered in this article. This
zone plate lens is made of two materials with different re-
fractive indices n1,2=1−�1,2+ i�1,2, alternating from one
Fresnel zone to the next. At the entrance of the optic, the
radius of each zone is given by the zone plate formula
rm�0�=�m�f + �m� /2�2, where m=0, . . . ,M is the zone in-
dex, � the x-ray wavelength, and f the focal length. Over its
thickness d, the whole lens shrinks homogeneously by a
z-dependent factor a�z�, such that rm�z�=rm�0�a�z� for all
m=1, . . . ,M. In principle, for ideal focusing of a plane wave
or from point to point, a parabolic or elliptical dependence of
a is required, respectively. In practice, however, it turns out
that the gain with respect to a linear tilt is marginal if the
thickness d is small against the focal length f . This is the
case even for the small zone plate with its small focal length
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considered in this numerical study. To be exact, however, in
the following, we consider the focusing of a plane wave with
a parabolically tilted zone plate.

For hard x rays—e.g., with an energy E=20 keV
��=0.62 Å�—focusing to nanometer dimensions involves
small angular deviations from the optical axis, allowing one
to use scalar wave equations in paraxial approximation. Free-
space propagation of the x rays is modeled by the Fresnel-
Kirchhoff equation that is the paraxial solution to the free-
space Helmholtz equation.20 Inside the zone plate,
propagation along the optical �z� axis is approximated by the
parabolic wave equation18,21

2ik
�u

�z
+

�2u

�x2 +
�2u

�y2 + k2�n2�x,y,z� − 1�u = 0, �1�

where k=2� /� is the wave vector of the x rays and
n�x ,y ,z�=1−��x ,y ,z�+ i��x ,y ,z� is the refractive index in-
side the optical element. Equation �1� is formally equivalent
to the Schrödinger equation, when the z coordinate is
interpreted as time. Attenuation inside the material of the
optical component is modeled by the imaginary part i�
of the refractive index and makes the optical potential com-
plex, generating a sink for the amplitude u along the propa-
gation direction. With attenuation included, the operator

Ĥ= �2

�x2 + �2

�y2 +k2�n2�x ,y ,z�−1� is non-Hermitian.
The solution to this equation can be easily constructed for

optical structures that are invariant along the optical axis—
i.e., �n /�z=0—such as the regular Fresnel zone plate with-
out tilted zones. In that case, Eq. �1� does not explicitly de-
pend on z. The incident wave field �0�x ,y� can be expressed
in a complete set of transverse �forward� eigenmodes
��0�=�nCn��n�, where Cn= 	�n ��0�. Propagation through the
optic is given by multiplication of each eigenmode ��n� with
an appropriate phase factor exp
−ik�nd�, where �n is the

complex eigenvalue of ��n� with respect to Ĥ. The wave field
exiting the optic is given by ��d�=�nCn exp
−ik�nd���n�. In
case the structures of the optic are not invariant along the
optical axis—e.g., the tilted zone plate in Fig. 1—the eigen-
system changes as a function of z. In that case, the wave field
at a position z can be expressed as

��z� = �
n

Cn�z�exp�− ik
 �n�z�dz���n�z�� . �2�

The evolution of the coefficients Cn�z� can be determined by
inserting Eq. �2� into Eq. �1�, leading to the system of ordi-
nary differential equations

�

�z
Ck = − �

n

Cn��k� �

�z
�n�exp�− ik
 ��n − �k�dz� ,

�3�

which can be solved numerically, if the transition matrix
	�k � �

�z�n
� and the eigenvalues and eigenfunctions are

known as a function of z. In the case of a tilted zone plate
�cf. Fig. 1�, the eigenvalues and functions can be calculated
numerically for different positions along the optic. These cal-
culations show that the eigenvalues follow a scaling law and
the eigenfunctions are nearly unchanged �for a small range of
a�z�� with respect to coordinates rescaled by a�z�. In this
way, the eigensystem can be interpolated during the integra-
tion of Eq. �3�.

Consider now a tilted one-dimensional zone plate made of
Ni �separated by vacuum� as shown in Fig. 1 with N=400
zones �r1�0�=40 nm�. In this geometry, the outermost zone
has a width of 	rM�0�=1.00 nm. The aperture of this optic is
1.60 
m. This very small zone plate was chosen to be able to
perform a full parabolic wave equation calculation for one
transverse dimension �one-dimensional focusing� at 2 Å
resolution.22 The material Ni was chosen to make d small
enough with respect to f . In a more practical situation, a zone
plate with the same numerical aperture would be made of an
appropriate multilayer system and have many more zones, a
much larger aperture, and a larger focal distance.5

The transmission of a hard x-ray plane wave
�E=20 keV� through the tilted zone plate with a thickness of
d=8 
m was calculated by numerically integrating Eq. �3�
using a Runge-Kutta method.23 Behind the optic, the result-
ing wave field was propagated to the focal plane using the
Fresnel-Kirchhoff equation. Figure 2 shows the transverse
beam profile in the focus for a tilted thick zone plate tuned to

FIG. 1. Focusing geometry for a thick Fresnel zone plate with
tilted zones.

FIG. 2. First-order focus of a parabolically tilted zone plate
�solid line�, an equivalent ideal thin zone plate �dotted line�, and a
straight �not tilted� zone plate �dash-dotted line�. The inset shows
the beam intensity distribution around the focus along the optical
axis for the parabolically tilted zone plate.
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the optimal first-order Bragg condition of the outermost
zones.24 As a result of refraction inside the optic, the focus is
found at f =25.73 
m from the entrance of the optic, slightly
closer than for the thin case �f thin=25.8 
m�. The diffraction
limited full width at half maximum �FWHM� beam size is
dt=0.87 nm and the Rayleigh criterion yields dR=0.93 nm,
being slightly smaller than that expected for an ideal thin
zone plate �dR�thin�=1.00 nm, dotted curve in Fig. 2�.25 The
thickness of the zone plate �d=8 
m� was chosen such that
the diffracted mode is optimally excited and multiple scatter-
ing inside the lens is negligible. If the lens is made thicker,
the efficiency and focus quality decrease as multiple scatter-
ing becomes relevant. In the given example, 63.1% of the
radiation that enters the lens aperture is focused in one di-
mension, showing that efficient focusing at large numerical
apertures is possible. As opposed to a thin zone plate, only
the diffraction order fulfilling the Bragg condition is effi-
ciently excited, resulting in the increased efficiency as com-
pared to the ideal thin zone plate �dotted line in Fig. 2�. The
dash-dotted curve in Fig. 2 shows the intensity distribution
for a straight �not tilted� zone plate, illustrating that indeed
propagation effects inside this optic dramatically reduce the
diffraction efficiency of the outermost zones.

The sensitivity of efficient focusing to angular and energy
deviations depends on the Darwin width of the diffraction
peak of the outermost zones. In the given case, monochro-
matic radiation from an interval of about 100 eV or angular
deviations up to 50 
rad are accepted by the optic. While
this limited field of view is sufficient to focus a third-
generation undulator source onto a sample without loss of
efficiency and resolution, the optic is not suited to image
extended objects in full field microscopy.

The small focus size suggests that the outermost zones
contribute to the focus. This can be examined in more detail
by investigating the wave field inside the optic. Figure 3
shows the field intensity inside the zone plate structure. As a
superposition of the transmitted and focused beam a standing
wave is formed along the zone boundaries �cf. Fig. 3�. This
standing wave is created in analogy to that by Laue diffrac-
tion inside a crystal and persists up to the aperture of the
zone plate �Fig. 3�c��. As a measure for the local efficiency
of the zone plate the flux density in the �transverse� x direc-
tion,

Jx�x,z� =
1

2ik
�	���x�� − 	�x����� , �4�

can be examined. It is a measure for the flow of photons
perpendicular to the optical axis. Figure 4 shows Jx�x ,d� at
the exit of the zone plate compared to that of an ideal con-
verging spherical wave with the same focused intensity and
bounded by the numerical aperture given by the gray shaded
cone in Fig. 1. The flux density oscillates with the zone
structure and grows on average linearly with distance from
the optical axis, similarly to that of the converging spherical
wave. Toward the edge of the optic, the diffraction efficiency
drops. The drop in efficiency is a result of the finiteness of
the grating both perpendicular to and along the grating lines.
The smooth drop-off takes place on the extinction length of

the grating.26 The dip in both the wave intensity �Fig. 3�c��
and flux �Fig. 4� at slightly below 600 nm from the center of
the lens is due to the abrupt limits of the zone plate and the
resulting lack of diffracted amplitude from beyond the aper-
ture. These finite optic effects define the diffraction limit and
exact shape of the focus and cannot be obtained from
coupled wave theory that assumes infinitely extended grat-
ings.

The reduction in diffraction efficiency toward the edge of
the optic explains why it does not have the maximal numeri-
cal aperture given by its geometry �cone delimited by the
dashed line in Fig. 1�. It turns out that effectively the numeri-
cal aperture is close to that of an ideal thin optic correspond-
ing to the gray shaded cone in Fig. 1.

FIG. 3. �Color online� �a� X-ray intensity �green-light gray� in-
side a tilted zone plate focusing in first order. The Ni zones are
shown in red �dark gray�. Slightly more than half of the zone plate
is depicted in �a�. �b� Enlargement of the rectangular region in �a�
showing the formation of the standing wave along the zone bound-
aries. �c� Intensity along the dashed line in �a�. In the inset in �c� the
intensity along the dashed line in �b� is shown together with the
zone plate structure �red-gray solid bars�.

FIG. 4. Transverse flux at the exit of the optic �z=d� compared
to that of a spherical wave with numerical aperture rM�0� / f . The
aperture between the dashed vertical lines corresponds to the �2�
limit.
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The first-order diffraction requires the fabrication of struc-
tures on the order of the spatial resolution to be achieved. To
relax the requirements on the fabrication while keeping the
spatial resolution constant or to increase the spatial resolu-
tion, higher-order reflections can be excited. To demonstrate
this scheme, a parabolically tilted Ni zone plate with
N=120 zones �r1�0�=60 nm� and an outermost zone width
of rM�0�=2.74 nm is investigated. The tilt is set to excite the
third-order reflection. For this optic, a FWHM beam size of
about 0.7 nm is obtained. The Rayleigh criterion yields
0.75 nm resolution, being slightly better than that for the

idealized thin zone plate. However, compared to the first
order, the third-order diffraction is significantly less efficient
�by about one order of magnitude� and will be more sensitive
to imperfections. The reduction in efficiency can to some
extent be compensated for by adapting the line-to-space ratio
of the optic,27 requiring in turn the generation of smaller
structures. For optimal focusing in this case, an appropriate
trade-off between minimal feature size and diffraction effi-
ciency has to be found.
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