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Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains
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We show that guiding of optical signals in chains of metal nanoparticles is subject to a surprisingly complex
dispersion relation. Retardation causes the dispersion relation for transverse modes to split in two anticrossing
branches, as is common for polaritons. While huge radiation losses occur above the light line, just below the
light line the micron-sized loss lengths are much longer than expected. The anticrossing allows one to create
highly localized energy distributions in finite arrays that can be tuned via the illumination wavelength. Our

results apply to all linear chains of coupled resonant scatterers.
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Ordered arrays of optically driven metal nanospheres may
be used to transport optical signals in structures that are
much smaller than the wavelength of light.!> Coherent
transport occurs for frequencies close to the plasmon reso-
nance of a single nanosphere, and is mediated by dipole-
dipole coupling between resonant particles on a chain. The
transverse width of the guiding structure is only limited by
the particle diameter, which is an order of magnitude smaller
than the optical wavelength. Metal nanoparticle arrays may
therefore allow one to overcome current limitations in the
miniaturization of integrated optical devices. Although sev-
eral experimental and theoretical studies'~® confirm that cou-
pling effects occur in metal nanosphere arrays, no complete
picture for the dispersion relation and propagation loss has
emerged.

Recent studies indicate that radiation damping, retardation
effects and long-range coupling, dramatically affect the loss
and dispersion.”? This necessitates a substantial revision of
the original theoretical studies.”* In this paper we calculate
the dispersion and loss including all these effects for finite
and infinite arrays. Remarkably, retardation causes the dis-
persion to split into two anticrossing branches for transverse
modes. Modes with wave vectors slightly larger than those in
the embedding medium have the lowest loss, and allow
transport over micrometer distances, well in excess of previ-
ous estimates.’> We further show that the anticrossing gives
rise to a strongly localized optical response in finite arrays
that is very sensitive to the incident wavelength around the
anticrossing range. As our calculations are not specific to
metallic nanoparticles, our results apply in general to peri-
odic arrays of coupled resonant dipoles, in nano-optics as
well as in, e.g., atomic arrays interacting with radiation.’'?

We consider finite and infinite arrays of equally spaced
metal nanospheres of radius a, spaced by a center-to-center
distance d. A coupled point-dipole approximation is well
suited to describe the electromagnetic response of such
chains.®®13 We use the electric field generated by a single
dipole pe~'", oscillating with frequency
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where T is the unit vector pointing from the dipole to the
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field point at distance r, e=n’¢, is the permittivity of the

homogeneous medium in which the dipole is embedded, and
v=c/n is the corresponding speed of light. This form of the
electric field fully takes into account retardation effects. The
induced dipole moment on a nanosphere equals its polariz-
ability a(w) times the local electric field, which is composed
of the driving field E®*Y¢~"’ and the fields of all the other
nanospheres. For the n' nanosphere in a linear chain point-
ing along T we find
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For N dipoles, Eq. (2) represents N inhomogeneous coupled
linear equations for the dipole moments p,. The resonant
material response of the metal nanospheres is captured in the
frequency dependence of the polarizability a(w). Within the
Drude model, the polarizability of a nanosphere is Lorentz-
ian (Ref. 9)

2
w
aDrude(w) = 476+a3' (3)
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Throughout this work, we use values y=8.25-10"*s7!, and
wgp=4.64-10" rad/s appropriate for silver particles in glass
(n=1.5), as derived from tabulated optical constants in Ref.
14. To maintain the energy balance between extinction, scat-
tering, and absorption it is essential to include radiation
damping in the polarizability of each nanosphere by setting
the polarizability to (Refs. 7-9, 13, and 15-17)
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The importance of retardation effects in the optical behav-
ior of metal nanoparticle chains is evident from Fig. 1(a),
where we consider the optical response of a chain of ten
nanoparticles of radius 30 nm and spacing 75 nm illuminated
by a plane wave incident along the array. We plot the ohmic
dissipated power (c|p,|*) for the first and last sphere in the
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FIG. 1. Excitation by a plane wave along the array causes a
localized optical response in finite plasmon arrays (10 Ag particles
in glass, radius 30 nm, d=75 nm). Depending on driving frequency,
the ohmic dissipated power (at 1 V/m incident field) is either con-
centrated on the first (solid curve), or last sphere (dashed) encoun-
tered by the incident beam. Vertical dashes indicate the single par-
ticle resonance frequency.

array as a function of the driving optical frequency. In agree-
ment with results reported by Hernandez et al.,'> we find a
large asymmetry in the response of the array, which can be
tuned via the driving optical frequency. For frequencies be-
low 4.3-10' rad/s the backmost nanosphere is preferentially
excited (dashed line in Fig. 1), i.e., the sphere that is encoun-
tered last by the excitation beam. In contrast, this sphere is
hardly excited for higher frequencies, for which the front-
most sphere is strongly excited (solid curve).

Naively, one expects such strong coupling between the
incident wave and the plasmon chain to occur when the plas-
mon dispersion relation intersects that of the embedding me-
dium (“light line,” w=vk ), i.e., when the incident field is
phase matched to the mode in the array. For metal nanopar-
ticle chains a quasistatic model is often used,>* that is found
from Eq. (2) for an infinite number of dipoles, in the limit
y=0, c— > and in absence of an external driving field. For
the transverse modes that the incident plane wave considered
in Fig. 1 can couple to (p,,-£=0), the quasistatic dispersion
relation reads

@< 2 cos jkd
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where k is the wave vector. This dispersion relation is plotted
in Fig. 2(a) (red solid line). Evidently, the light line (dashed)
intersects the quasistatic dispersion relation at a frequency of
4.6-10" rad/s that does not correspond at all to the frequen-
cies around 4.3-10" rad/s for which the complex response
in Fig. 1 occurs. Furthermore, our exact calculations show
that the asymmetric response in Fig. 1 of arrays under plane
wave illumination shifts further to the red away from the
plasmon resonance as the spacing between particles is in-
creased (data not shown). This shift is in sharp contrast to the
rapid d~3 decrease of the bandwidth of the quasistatic disper-
sion relation with increasing particle spacing, that is caused
by the strongly reduced overlap of particles with the fields of
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FIG. 2. (Color online) (a) The quasistatic dispersion (solid red
curve) for transverse modes intersects the light line (w=vk, dashed)
slightly below the single particle resonance (horizontal dashes).
Blue solid circles show the ten normal mode frequencies for an
array of ten particles, according to Ref. 7, which agree neither with
the quasistatic dispersion, nor with the perturbative result of Ref. 8
(dotted curve).(b) Red open circles (green open squares): real part
of the frequency for roots of the exact infinite chain dispersion for
transverse (longitudinal) modes. For transverse modes two branches
appear that anticross at the light line (dashed). The result agrees
well with the finite array dispersion [blue solid circles taken from
(a)], but not with the quasistatic approximation (thin curves, dotted
green for longitudinal mode). (c) Imaginary part of the frequency
for the modes in (b). The damping rate diverges near the light line
for transverse modes. Inset in (c): Propagation lengths (amplitude
1/e lengths) versus frequency for transverse (red open circles) and
longitudinal modes (green open squares). The horizontal dashed
line indicates the interparticle spacing d.

their neighbors. We conclude that the asymmetric response in
Fig. 1 points at the strong effect of retardation on the array
dispersion. Retardation affects the phases of individual nano-
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spheres, and thereby the constructive or destructive interfer-
ence along the chain.

Damping and radiation losses preclude the existence of a
dispersion relation which gives solutions of the form p,,
o ¢!k for real frequencies. However, complex frequency so-
lutions exist, corresponding to the dispersion of damped
modes. Recently, several authors have attempted to deter-
mine the complex dispersion relation of plasmon chains. We-
ber and Ford’ calculated the complex eigenfrequencies for
finite chains of N dipoles, which are frequencies for which
the matrix coupling the dipoles in Eq. (2) is singular. A
unique wave vector can be assigned to these N modes based
on their mode profile.'® The resulting set of solutions is ex-
pected to be an accurate but discrete approximation to the
infinite chain dispersion relation, that includes effects of re-
tardation, and ohmic and radiation damping. Reference 7 and
the open symbols in Fig. 2(a) show that the resulting disper-
sion, defined via the real part of the complex frequencies, is
dramatically different from the quasistatic result, especially
near the light line. Unfortunately, the discrete sampling that
is inherent in this approach does not allow one to distinguish
between the two distinct scenarios, in which the dispersion
relation either has a polariton form with two branches that
anticross at the light line, or is a single continuous dispersion
relation.

To resolve this ambiguity, we calculate the infinite chain
dispersion by inserting p,,*¢"* in Eq. (2), and setting the
driving field to zero. Citrin® recently reported that the sums,
which exhibit poor convergence for frequencies with nega-
tive imaginary parts, can be evaluated in terms of poly-
logarithms'® Li,, resulting in an implicit dispersion relation
for transverse modes of the form

a(w)
Arred’

0=1+ S(w,k) (5)

with
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In Ref. 8 this solution was used to approximate the infinite
chain dispersion perturbatively by evaluating 2 (w,k) at the
resonance frequency wgp. The result, plotted as the dotted
line in Fig. 2(a), shows that this approximation differs sig-
nificantly from the quasistatic result and has a deep mini-
mum where the light line crosses the quasistatic dispersion.
This minimum is due to the 1/r term in the dipole field,
which contributes the term [Li,(e"“v~P9) 4L, (e/(@v+4)]
with a logarithmic singularity at the light line. As w is far
from wgp the validity of this perturbative approach is limited.
Therefore we have numerically solved the full dispersion re-
lation to find the complex frequencies w corresponding to
real wave vectors.

Figure 2(b) (solid red dots) shows the dispersion of the
real part of the frequency for an infinite chain of a=30 nm
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radius silver particles spaced by d=75 nm, embedded in
glass (n=1.5). First of all, our result confirms that the devia-
tions of the discrete finite chain result in Fig. 2(a) from the
quasistatic result for infinite chains are not due to chain
length effects, but to retardation, radiation damping, and
ohmic damping. More surprisingly, we find that the disper-
sion relation for transverse excitations has two branches that
anticross at the light line, indicating polariton behavior of the
coupled photon-plasmon chain system. Regarding the upper
dispersion branch, we note that this branch does extend up-
wards along the light line, though our numerical algorithm
does not identify any clear roots as loss rates become com-
parable to and exceed the optical frequency. Indeed, the dis-
persion branch above the light line (w>uvk) is accompanied
by huge damping, as gauged by the imaginary part of the
frequency plotted in Fig. 2(c). Damping times for this branch
are shorter than about one optical cycle, and radiative losses
diverge as the light line is approached. The polariton splitting
and the different loss regimes for the distinct branches are
generic for resonant nanoparticle arrays, and occur for plas-
mon resonant particles of silver as well as gold over a wide
range of particle spacings (d=50-200 nm) and radii, and in
dielectric hosts ranging from vacuum to high index semicon-
ductors (n=1-3.5).

The existence of two dispersion branches that display an
avoided crossing is consistent with, but could not be sur-
mised from the finite chain result obtained by Weber and
Ford,” and is not represented by the perturbative treatment by
Citrin® [dotted line in Fig. 2(a)]. That two disconnected
branches appear seems surprising in view of textbook treat-
ments of, e.g., the dispersion of surface plasmon polaritons.
Damping causes separate branches to merge when real fre-
quencies but complex k vectors are considered.”” The disper-
sion of complex frequencies for solutions with real wave
vectors, however, displays an avoided crossing, also in the
presence of damping. It is important to realize that both types
of dispersion relation, i.e., with either frequency or wave
vector complex, are relevant, depending on the type of exci-
tation geometry that is used to probe the dispersion.?! A treat-
ment in terms of complex frequencies, i.e., normal modes
that decay in time, is the natural extension of the normal
mode analysis for finite arrays in Ref. 7.

We now turn to the relevance of the exact dispersion re-
lation derived here for proposed applications of metal nano-
particle chains as ultrasmall optical waveguides. Both the
group velocities and the damping times in the present calcu-
lation are profoundly different from those found in the qua-
sistatic approximation.>*° In Fig. 2(c) (inset) we consider
the propagation length, defined as the product of the damp-
ing time in Fig. 2(c) and the group velocity that we derive
from Fig. 2(b). Based on the quasistatic model, the longest
propagation lengths are expected near the center of the Bril-
louin zone.*>* Such predictions as well as extrapolations from
k=0 measurements* need to be completely revised due to the
polariton splitting found here. For transverse excitations, Fig.
2(c) shows that modes above the light line are strongly
damped, with damping times comparable to the optical pe-
riod, and propagation lengths less than the interparticle spac-
ing (open red dots). For modes below the light line (w
<vk), however, no radiative losses occur. Damping rates of
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around 10" s~ and group velocities around 0.3c provide a
frequency window for which propagation lengths above
5 um are possible.

Applications that require guiding can benefit from longi-
tudinal modes, for which the induced dipoles point along the
array. As was also found for finite arrays by Weber and Ford,
retardation effects cause the exact dispersion relation [open
squares in Fig. 2(b)] to have a doubled bandwidth compared
to the quasistatic result (dotted curve). As longitudinal modes
do not couple to plane waves that propagate along the array,
the intersection with the light line is not associated with di-
verging loss [Fig. 2(c), open squares] and no splitting of the
dispersion relation occurs. In general, guiding benefits from
the fact that the group velocity is large over a much wider
bandwidth. Below the light line a large frequency window
occurs for which the propagation length exceeds 1 wm.

In conclusion, we have presented the dispersion relation
of infinite metal nanoparticle chains, fully taking into ac-
count the effects of ohmic damping, radiation damping, and
retardation. For transverse modes strong coupling to plane
waves propagating along the array causes an unexpected
splitting of the dispersion into two branches, as is common
for polaritons. Propagation lengths just above 1 um for
modes below the light line may allow plasmon chains to be
used as very small guiding structures for nanoscale energy
transport. With respect to the asymmetric optical response in
Fig. 1, it appears that the local excitation intensity set up by
an incident plane wave, as gauged by the ohmic dissipation
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per sphere, can be used as a sensitive fingerprint of the plas-
mon chain polariton anticrossing. The sharply defined fre-
quency at which the front-backward asymmetry changes di-
rection, and the peak absorption frequencies for the front and
back sphere provide a measure for the location and magni-
tude of the splitting in the dispersion relation. Such steep
frequency edges are sensitive to the refractive index of the
medium surrounding the array, and can be useful for, e.g.,
nanoscale sensing applications. Furthermore, the arrays al-
low one to create strongly localized energy distributions, that
can be varied by tuning the incident plane wave around the
anticrossing in the dispersion relation. Such tunable localized
energy distributions are useful for, e.g., locally enhancing
nonlinear interactions, and nanoscale photolithography with
visible wavelengths. Finally we note that these phenomena
are general for resonant linear dipole arrays where retarda-
tion effects are relevant, and should occur for any chain of
coupled resonant dipoles, which also includes systems like
quantum dot arrays, or atomic chains that are currently pur-
sued for, e.g., quantum information and computation.'!-122?
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