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We study the origin of the strain energy minimum in a single-walled aluminosilicate nanotube via a har-
monic force-constant model and molecular dynamics simulations. The model is based on a circular cross-
section geometry of the nanotube composed of semirigid AlO6 octahedra and SiO4 tetrahedra. The monodis-
persity in the nanotube diameter is explained in terms of a minimum in the strain energy due to differences in
bond energies on the inner and outer surfaces. The model also reproduces the diameter dependence of the radial
breathing mode �RBM� frequency and is in accord with midinfrared spectroscopic characterization.
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The synthesis, characterization, and applications of
carbon-based and inorganic nanotube materials have been
pursued extensively over the last decade.1–3 Carbon nano-
tubes and their inorganic counterparts �e.g., BN, WS2, MoS2�
are produced by electric arc discharge, laser ablation, or
chemical vapor deposition processes.1,3 On the other hand,
the synthesis of inorganic oxide nanotubes is pursued mostly
by a variety of low-temperature liquid phase chemical
processes.2 In general, control over nanotube diameter and
monodispersity has remained a challenging task, partly be-
cause there has not appeared any obvious aspect of the for-
mation mechanism1,4,5 that allows facile control over nano-
tube curvature. Indeed, several theoretical and computational
studies have shown that the strain energy of bending a gra-
phitic sheet into a nanotube decreases monotonically with
increasing nanotube diameter.6,7 Thus, there is no inherent
and tunable energy minimum that could be employed to pro-
duce nanotubes of desired diameter.

An exception to the above considerations is the unique
single-walled aluminosilicate nanotube, imogolite.8,9 The
wall is a layer of aluminum hydroxide �gibbsite�, with iso-
lated silanol ��Si-OH� groups bound to the inner surface.
Imogolite nanotubes are synthesized from mildly acidic
aqueous aluminosilicate precursor solutions between
25–100 °C. Based on several types of experimental evi-
dence �nitrogen adsorption, x-ray diffraction, TEM, and dy-
namic light scattering�,10 it is accepted that synthetic imog-
olite nanotubes are highly monodisperse in diameter,
irrespective of a substantially diverse range of synthesis con-
ditions reported in the literature. The outer diameter of the
nanotube is �2.2 nm and its inner diameter is �1 nm. The
wall is composed of hexagonally arranged aluminum atoms
connected by double oxygen bridges. On the outer surface,
each oxygen is coordinated to two aluminum atoms and a
hydrogen atom. On the inner surface the hydrogen atoms are
replaced by silicon, with every three oxygens coordinated by
one silicon. Figure 1�a� shows the hexagonal building unit
with the pendant silanol group. The octahedrally coordinated
aluminum atoms are well ordered and the axial unit cell di-
mension �Fig. 1�b�� of the nanotube is 0.85 nm. The number
of aluminum atoms in the circumference �N� is necessarily
an even number. No chiral properties have been observed,
and the symmetry of the nanotube is that of the zigzag �n ,0�
configuration of carbon nanotubes.11 The chemical formula
of the unit cell is �Al2SiO7H4�N.

In this Brief Report, we present the simplest quantitative
model that can describe the physics governing control over
the imogolite nanotube diameter. It was suggested early9 that
the curvature of the nanotube could be due to the differing
energies of the Al-O and Si-O bonds. More recently, a mini-
mum in the diameter-dependence of the energy of the imog-
olite nanotubes was observed in molecular dynamics �MD�
simulations.12 This minimum was observed at N=32,
whereas synthesized imogolite samples have N=24. If the
monodispersity of the nanotubes can be explained on the
basis of a simplified strain energy model that takes into ac-
count the geometry of the Al-O and Si-O bonds, there exists
the potential to produce guidelines for the synthesis of nano-
tube materials with tunable diameters based on the above
criteria. Here we re-examine the energy minimum of the
imogolite nanotube and the application of a simple strain
energy model. We also show that such a model can be used
to predict vibrational properties, in particular the radial
breathing mode �RBM� frequency which is sensitive to the
nanotube diameter and which has been studied extensively in
carbon nanotubes.13

FIG. 1. �Color online� �a� Building unit of aluminosilicate nano-
tube showing hexagonal arrangement of aluminum atoms, bridging
oxygens, and pendant silanol. �b� Perspective view of the unit cell
of a nanotube with 24 aluminum atoms in the circumference. Green
�dark gray�; Al, Gold �light gray�; Si, Red �black�; O, Gray: H.
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Aluminosilicate nanotube models with N ranging from 18
to 48 were built. The outer diameters of these nanotubes
range between 1.5–4.5 nm. All simulations were performed
on isolated nanotubes, since they are formed as isolated en-
tities during the synthesis. With the c direction along the
nanotube axis, the a and b dimensions of the unit cell are
maintained at least 7 nm, to avoid any effects of intertube
interactions. The individual nanotubes are also electrically
neutral. The nanotube structures were first subjected to en-
ergy minimizations with a conjugate gradient algorithm, and
the normal-mode vibrational frequencies were calculated.
The RBM is clearly identified via the normal mode eigen-
vectors. The optimized structures were then subjected to
NVT MD at 298 K with a 0.9 fs integration time step, a 5 ps
equilibration stage, and a 100 ps data collection stage. The
energy and temperature typically equilibrated within 1–2 ps.
A Nosé-Hoover thermostat was used to control the tempera-
ture. The ensemble-average energy of the aluminosilicate
nanotube was calculated as a function of its diameter from
the MD trajectory, using five 20-ps blocks of data. The five
values obtained were used to calculate an average energy and
error bar, as shown in Fig. 2�a�. We employed the recently
developed CLAYFF force field,14 since it has been shown to
reproduce accurately the properties of a range of aluminosili-
cate minerals including gibbsite.15 The force field is based on
the Born ionic model, with fractional charges assigned to
each atom and Lennard-Jones �12-6� potentials for Al-O,
Si-O, and O-O interactions. The O-H bonds are described by
a harmonic bond-stretching term. Nanotubes with N�16
were unstable and disintegrated into amorphous structures.
All MD calculations were carried out using the Discover
�Accelrys Software, Inc.� module.

Figure 2�a� shows the total internal energy �potential and
kinetic� per atom of the nanotube, as a function of the num-
ber of aluminum atoms �N� in the circumference of the nano-
tube. There is clearly a minimum in the internal energy per
atom, a phenomenon that is not observed in carbon nano-
tubes or related inorganic nanotube materials. The depth of
the energy minimum is substantial �about 0.4 kJ/mol/atom
or 4.2 meV/atom� over the range of values of N studied here.
On a per-atom basis, this well depth appears small compared
to the thermal fluctuations �kT�25 meV�. However, such a
comparison is misleading since the energy differences of
complete nanotube units �for example, one unit cell which
contains 336 atoms for N=24� are much larger than the ther-
mal fluctuations. For instance, the low-temperature ��� form
of quartz differs in internal energy from the high-temperature
��� form by only 0.63 meV/atom,16 but a temperature of
850 K is required for the phase transition to occur. The en-
ergies are expressed here on a per-atom basis only to allow
direct comparison of the strain energies of nanotubes of dif-
ferent diameters.

The inset of Fig. 2�a� shows the radius �R� of the nano-
tube as a function of N. For convenience, the radius is based
on the average distance of the aluminum atoms from the
nanotube axis, since they form the planar hexagonal sublat-
tice of the nanotube wall. The radius follows a linear depen-
dence on N. Figure 2�b� shows the RBM frequency �fRBM� of
the nanotube as a function of the radius. A power law depen-

dence of the RBM is observed: fRBM=40.93R−1.13. This ap-
proximate inverse dependence of the RBM frequency on the
nanotube radius has also been predicted and observed in car-
bon nanotubes. It allows a characterization of nanotube
diameters in carbon nanotube samples by Raman
spectroscopy.13 In the present system the synthesized nano-
tube samples are always monodisperse, obviating the need
for RBM measurements. However, the RBM calculation of-
fers an important test of the model presented below for ex-
plaining the radius dependence of the nanotube energy.

To model the strain energy of the nanotube, we assume
that it has a circular cross section and is composed of “semi-
rigid” aluminum octahedra and silicon tetrahedra, connected
by oxygen atoms �Fig. 1�. The octahedra and tetrahedra are
assumed to maintain their ideal O-Al-O and O-Si-O bond
angles �90° and 109.5°, respectively� but allow stretching of
their Al-O and Si-O bonds. This model is thus in the spirit of

FIG. 2. �a� Total energy per atom at 298 K of the nanotube vs
the number of aluminum atoms in the circumference. �Inset� Nano-
tube radius and distance dAl-Al vs the number of aluminums in the
circumference. �b� Radial breathing mode frequency vs nanotube
radius. Symbols denote results of atomistic calculations and solid
lines are model fits.
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the “central force” models that have been developed for
studying the properties of oxide materials.17,18 In the simplest
approximation, we model the bonds with harmonic bond
stretching potentials

VAl–O = K1�d1 − d1e�2 and VSi–O = K2�d2 − d2e�2. �1�

Here K1 and K2 are the force constants, d1 and d2 are the
bond lengths in a nanotube of given radius, and d1e and d2e
are the “equilibrium” bond lengths of the two types of bonds.
The peripheral O-H bonds would make no contribution to the
strain energy, and are not considered. For a nanotube with N
aluminum atoms in the circumference, there are 4N Al-O
bonds, 3N Si-O bonds and 14N atoms in the unit cell. Then
the internal energy is given by a sum of strain-independent
and strain-dependent terms

E�N� = E0 + 4NK1�d1 − d1e�2 + 3NK2�d2 − d2e�2. �2�

The strain-independent term contains the kinetic energy and
the interatomic potential energies �e.g., O-H� that do not de-
pend on the nanotube radius. This term is also directly pro-
portional to the number of atoms in the nanotube. Hence, the
energy per atom can be written as

Ē�N� = E�N�/14N = Ē0 + �2/7�K1�d1 − d1e�2

+ �3/14�K2�d2 − d2e�2. �3�

Here, Ē0 is a constant. As the nanotube radius changes, the
bond lengths obey well-defined geometric relationships dic-
tated by the semirigidity of the tetrahedra and octahedra, and
the assumption of a circular geometry. Using the geometry of
Fig. 1, it can be easily shown that d1= �2R /�6�sin�2� /N�
and d2=d1 /�2. Also, N and R have the linear relationship
obtained from the MD simulations, shown in the inset of Fig.
2�a�. As a result, an important geometrical aspect of the
model is the prediction that the distances between the alumi-
num atoms in the circumference decrease as N �and hence
the radius R� increases. The inset of Fig. 2�a� compares the
predicted distance dAl-Al �see Fig. 1� to the simulation results,
showing very good agreement.

Next, we derive an expression for the RBM frequency
from E�N�. We consider a nanotube with a fixed N and in-
stantaneous radius R, with all atoms undergoing a collective
radial breathing vibration. In this case, the Lagrangian can be
written as

L = 1
2 MṘ2 − 4NK1�d1 − d1e�2 − 3NK2�d2 − d2e�2. �4�

Here the constant terms are not included, and the radius is
employed as the generalized position coordinate. The unit
cell mass is M =N�2mAl+mSi+7mO+4mH�. The two bond
lengths are functions of the instantaneous radius as given
above. The harmonic RBM frequency is then calculated from

the Lagrangian equation d��L /�Ṙ� /dt=�L /�R, yielding the
result,

�RBM = 2�fRBM = �4N�4K1 + 1.5K2�/3M sin�2�/N� . �5�

The two expressions �Eqs. �3� and �5�� for Ē and fRBM are
then fitted simultaneously by nonlinear least squares to the
data obtained from the MD simulations. The fitting param-

eters are d1e, d2e, K1, K2, and Ē0. The best fits for the
equilibrium bond lengths are d1e=0.200±0.005 nm
and d2e=0.162±0.005 nm. These are in accord with the
nominal octahedral Al-O and tetrahedral Si-O bond lengths
observed in oxide materials ��0.2 nm and �0.16 nm�. The
fitted values of the two harmonic constants are K1
= �2.43±0.02��104 kJ mol−1 nm−2 and K2= �3.55±0.02�
�104 kJ mol−1 nm−2. The RBM frequency is well repro-
duced as a function of the radius �Fig. 2�b��. The theoretical
prediction yields a power law fit fRBM=39.96R−0.97, which
is in very good agreement with the power law obtained
from the MD simulations. The fitted value of the strain-

independent energy Ē0 is −562.274±0.010 kJ mol−1. To-
gether, the parameters also yield a good fit of the strain en-
ergy in Fig. 2�a�.

Figure 3 shows VAl-O and VSi-O �Eq. �1�� as a function of
N, with the parameters obtained from the fits of Figs. 2�a�
and 2�b�. The contribution of VAl-O to the total energy per

atom Ē�N� �Eq. �3�� decreases monotonically with increasing
nanotube radius, while that of the VSi-O increases. If the inner
and outer surfaces of the nanotube were identical, with no
silanol groups bound on the inner surface, then the last term

in Eq. �3� would not exist. Ē�N� would decrease monotoni-
cally with increasing N, and the lowest-energy structure is
that of the planar gibbsite sheet. For the same reason, a
graphene sheet has a lower energy than the carbon
nanotube.6,7 However, due to the functionalization of the in-
ner surface with silanol groups, and the difference in Si-O
and Al-O bond energies, a strain energy minimum is ob-
served at N=24, as shown in Fig. 2�a�. This strain energy
minimum, as well as the subsequent increase in strain energy
as a function of nanotube radius, are predicted even by the
simple harmonic force-constant model, and are unique fea-
tures of the nanotube material under consideration here. Ac-
cording to the model prediction, the minimum at N=24 cor-
responds to a nanotube diameter of 1.98 nm based on the
aluminum atoms. Adding 2�0.14 nm=0.28 nm for the oxy-
gen atoms on the outer surface, the outer diameter of the

FIG. 3. Bond strain energies �Eq. �1�� of Al-O and Si-O vs the
number of aluminum atoms in the circumference.
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nanotube is predicted as 2.26 nm, which compares well with
the experimental value of �2.2 nm. The experimental value
is based directly on TEM imaging and indirectly on center-
to-center distances inferred from XRD patterns.8–10 We also
mention the difference between the energetics of the present
system and that of framework materials like zeolites which
are made up of corner-sharing SiO4 tetrahedra. In the latter
case, the flexibility �i.e., almost zero deformation energy� of
the Si-O-Si linkages allows the formation of a large number
of crystal structures of almost equal energy �e.g., Ref. 19�.
The synthesis can hence be easily directed to a particular
structure by use of an organic structure-directing agent. In
the nanotube, we encounter the opposite situation: the octa-
hedra and tetrahedra are confined into a cylindrical geometry
in which a change of diameter requires changes in bond
lengths. This results in a substantial energy minimum and
monodispersity of the diameter.

Additionally, we estimated the vibrational frequencies of
the Al-O-Al and Al-O-Si linkages. Previous investigators
have developed approximate analytical expressions for the
stretching frequencies of atoms in solid-state networks,
based on the central force model.17,18 These predictions
qualitatively agree with experimental infrared �IR� and Ra-
man spectra. With the two force constants K1 and K2, it is
possible to develop a similar analysis of the mixed-oxide
nanotube composed of both AlO6 octahedra and SiO4 tetra-
hedra. We consider this detailed analysis to be outside the
scope of the present Brief Report. However, we show here
the physical significance of the force constants by calculating
the frequencies of the “symmetric” stretching18 vibrations of
the oxygen atom in the Al-O-Al and Al-O-Si linkages. The
calculated frequencies were found to be 583 cm−1 �Al-O-Al�
and 1091 cm−1 �Al-O-Si�, which are in the expected ranges
for these linkages.20

Finally, we mention the analogous aluminogermanate

nanotube,20 synthesized by a simple substitution of Si with
Ge in the reactant solution. It is also highly monodisperse
with an outer diameter of �3.3 nm �N=36�.10 MD simula-
tions are currently not feasible due to the lack of reliable
force-field parameters for Ge. The tetrahedral Ge-O bond has
a weaker force constant than the Si-O bond. A weaker mis-
match of Al-O and Ge-O bond energies is expected, and
therefore a larger nanotube radius at the energy minimum, as
can be predicted by Eq. �3�. If the equilibrium bond lengths
and force constants for different octahedral �tetrahedral�
combinations of metal ions �layer and inner surface� can be
estimated—from a force field, quantum chemical calcula-
tions, or experimental data—then the resulting nanotube di-
mensions can be predicted.

In summary, the unique energy minimum as well as sev-
eral vibrational properties of the single-walled aluminosili-
cate nanotube �imogolite� can be explained via a simple har-
monic force constant model of the strain energy. The force
constant model allows at least a qualitative description of the
essential physics governing the diameter control, and can be
considered a good starting point for understanding the syn-
thesis of the present class of single-walled metal oxide nano-
tube materials. Although more complicated models can be
constructed �e.g., with O-Al-O and O-Si-O angle bending
terms�, the current results clearly show the potential for en-
gineering the shape and dimensions of inorganic oxide nano-
materials by subtle control over interatomic bonding forces.
Several such materials form in naturally occurring aqueous
environments �e.g., hollow single-walled and double-walled
aluminosilicate nanospheres21� and warrant close study of
their structure and energetics.
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