
Qubit measurement by a quantum point contact: A quantum Langevin-equation approach

Bing Dong,1,2 Norman J. M. Horing,2 and X. L. Lei1
1Department of Physics, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030, China

2Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
�Received 30 May 2006; published 6 July 2006�

We employ a quantum Langevin-equation approach to establish Bloch-type dynamical equations, on a fully
microscopic basis, to investigate the measurement of the state of a coupled quantum dot qubit by a nearby
quantum point contact. The ensuing Bloch equations allow us to analyze qubit relaxation and decoherence
induced by measurement, and also to determine the noise spectrum of the meter output current with the help of
a quantum regression theorem, at arbitrary bias voltage and temperature. Our analyses attempt to provide a
clear resolution of a recent debate concerning the occurrence of a quantum oscillation peak in the noise
spectrum.
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The quantum point contact �QPC� has been proposed and
designed as an efficient, practical weak continuous measure-
ment device �meter�.1–7 Recently, theoretical analyses of the
detector noise spectrum have been carried out under arbitrary
bias voltage and temperature conditions using a perturbative
Green’s function method,8,9 and also a quantum jump
technique10 and a Gurvitz-type master-equation approach
with a multisubspace ansatz,11 in which some results have
led to disagreements and remain inconsistent.12 Therefore,
this problem requires further study.

Here, we reconsider this issue employing a recently de-
veloped generic quantum Langevin-equation approach,13

which we approximate to establish a set of Bloch-type dy-
namical equations describing the time evolutions of qubit
variables explicitly in terms of the response and correlation
functions of the detector variables. These Bloch equations
provide analytical expressions for the bias-voltage- and
temperature- �T�-dependent relaxation and decoherence of
the qubit induced by measurement. We then evaluate the de-
tector current and frequency-independent shot noise within
second-order perturbation theory, and they are shown to sat-
isfy the nonequilibrium fluctuation-dissipation �NFD�
theorem.14 Finally, we calculate the frequency-dependent
noise using a quantum regression theorem �QRT� based on
the derived Bloch equations.15

The system we examine is a double quantum dot charged
qubit c1 and c2 coupled with a nearby low-transparency QPC
detector. In order to properly account for dissipative effects
in the qubit evolution, we write the total Hamiltonian of the
system in terms of the eigenstate basis of the qubit, i.e., c�

=cos �
2 c1+sin �

2 c2, c�=sin �
2 c1−cos �

2 c2, with �=tan−1 �

� ��
is the tunnel coupling between two quantum dots with ener-
gies ±��:

Hq = ��z, Hm = �
	,k
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HI = �
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Qi
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where �=2��2+�2 measures the energy difference between
two eigenenergies, i.e., the Rabi frequency; c	k

† �c	k� is the
electron creation �annihilation� operator in lead 	 �=L ,R� of
the QPC with a flat density of states �	; Qi

z=−Qi�t�cos �,

Qi
+=Qi

−=− 1
2Qi�t�sin �, Qi

1̂= W
� Qi�t� with Q1�t����k,qcLk

† cRq
†

and Q2�t��Q1
†�t� the generalized coordinates; W and � are

the direct and the qubit-modified tunneling matrix elements
of the QPC, respectively, which are taken as constants; FQz

= �̂z= 1
2 �c�

†c�−c�
†c��, FQ = �̂±=c����

† c����, and FQ1̂ = 1̂ �the
unit operator� are the generalized forces. Here, the terms
Q±FQ± describe energy-exchange �inelastic� processes during
measurement, in which a qubit-state transition takes place
from one eigenstate to the other one due to the measurement.
Note that our setup, Eq. �1�, is similar to those of previous
studies.6–8,10

In our derivation of Bloch-type dynamical equations for
the qubit variables, operators of the qubit and the detector are
first expressed formally by integration of their Heisenberg
equations of motion �EOM’s�, exactly to all orders in the
tunnel coupling and qubit-detector coupling constants W and
�. Next, under the assumption that the time scale of decay
processes is much slower than that of free evolutions, we
replace the time-dependent operators involved in the inte-
grals of these EOM’s approximately in terms of their free
evolutions �Markov approximation�. Finally, these EOM’s
are expanded in powers of coupling constants up to second
order, taking the convenient and compact form13
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where the summation notation c is over z , ± , 1̂�, and n , l are
over 1,2�; the statistical average �¯�m�q� is in regard to the
detector �qubit� variables; and the super- �sub�script “o” sig-
nifies free evolution of the corresponding variables; �= t− t�.
In conjunction with free evolution, the qubit dynamics are
modified by the measurement process in a way that relates to
the response function Rnl�t , t�� and correlation function
Cnl�t , t�� of free meter variables, which are defined as

Rnl�t,t�� =
1

2
�����
Qno�t�,Qlo�t���−�m, �3�

Cnl�t,t�� =
1

2
�����
Qno�t�,Qlo�t���+�m. �4�

The nonvanishing correlation functions can be readily ex-
pressed in terms of reservoir fermion distribution functions
of the meter, and their Fourier transforms are13

R12/21��� = g1�� ± V�, C12/21��� = g1T�	V ± �

T
� , �5�

with g1=��L�R�2 /2 and ��x�=x coth�x /2�. V is the bias
voltage applied between the left and right leads of the meter.
We use units with �=kB=e=1.

For the long time scale of interest, making the replace-
ment �−�

t d�Þ�−�
� d�, these EOM’s, Eq. �2�, can be further

simplified as �here, we write ��̂z�±��→�z�±��

�̇z = −
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C�R�±=C�R�12±C�R�21�, and the relaxation rate 1
T1

and de-
coherence rate 1

T2
given by

1
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It is readily seen that the relaxation time �T1� stems com-
pletely from inelastic measurement events, which is concep-
tually consistent with the physical definition of qubit relax-
ation. These inelastic processes also contribute to qubit
decoherence with the partial rate 1 /2T1. In contrast, elastic
processes do not induce relaxation but do contribute to pure
decoherence with the partial rate cos2 �C+�0�. In the case of
�=0 �no interdot hopping, �=0�, the relaxation rate is, of
course, zero, meaning that the qubit is completely localized,
1
T2

=C+�0�, and �z
�= ± 1

2 �depending on the initial state�, �±
�

=0. On the other hand, if �=� /2 
the symmetric �S� case,
�=0�, 1

T1
=C+��� and 1

T2
= 1

2T1
. We have the general steady-

state solutions of Eqs. �6a� and �6b� as

�z
� = −

R+���
2C+���

, �±
� = 0. �8�

The Markov approximation employed in the derivation of
Eqs. �6� requires �1� measurement-induced decay of the qubit
�d��; and �2� rapid internal decay of the two electrodes,
1 /�c�V �coarse-graining assumption�, which implies that
the noise spectrum in the following calculation is meaningful
only for low frequencies ��V.

The tunneling current operator through the meter is de-
fined as the time rate of change of charge density, NL
=�kcLk

† cLk, in the left lead:
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Using linear-response theory we have
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with A1= 1
4 cos2 �− 2W

� cos ��z− W
2� sin ��p+ � W

�
�2. In the

case of �=0, the steady-state current is Il�r�=V�g0

+g1±2�g0g1� with g0=2��L�RW2, where Il�r� means the
QPC current when dot 2 �1� of the qubit is occupied by an
electron; for the S case �=0, we have

I = g0V + g1V	1 −
�

V

C−���
C+���� . �11�

To address the noise spectrum of a “symmetric” detector,
we employ its definition as the Fourier transform of the
current-current correlation function S���, which can be cal-
culated using linear-response theory,

S��� = �
−�

�

d� ei��1

2
�
�JL�t�,�JL�t���+�m,q, �12�

with �JL�t�=JL�t�− �JL�t��. It is well known that the shot
noise spectrum consists of the �-independent Schottky noise
S0 �the pedestal� and the �-dependent part. Substituting the
current operator of Eq. �9� into Eq. �12� and using the defi-
nitions Eqs. �3�–�5�, we obtain the �-independent noise S0 as

S0 = 2A1
�C+�0� + 	1

2
sin2 � −

W

�
sin ��p

��C+���

+ 	sin2 ��z
� −

1

4
sin 2��p

��R+��� , �13�

where the first terms on the right-hand side of Eq. �10� at t
→� and Eq. �13� obey the NFD relation, while the other two
terms represent the generalized NFD relation due to energy-
exchange processes involved in the course of measurement.14

From Eq. �10�, it is clear that the time evolution of the
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qubit variables determines the temporal behavior of the
meter current, and is consequently responsible for the
frequency-relevant part of the noise spectrum. To calculate
the �-dependent noise, it is thus necessary to evaluate the
two-time correlation functions �ab���= ��a�t+���b�t�� �a ,b
=z , p ,m� using the QRT starting with the dynamic equations
�6�. The QRT states that given closed-form equations of mo-
tion of one-time averages of a set of operators O j,

d

d�
�O j�t + ��� = �

k

Lj,k�Ok�t + ��� + � j , �14�

then the two-time averages of O j with any other operator P
also obey the same equations:15

d

d�
�O j�t + ��P�t�� = �

k

Lj,k�Ok�t + ��P�t�� + � j�P�t�� . �15�

Because the solutions of interest here involve long-time be-
havior after the initial turn-on, we replace the initial values
of �ab�0�= ��a�t��b�t�� and the last term �P�t�� in Eq. �15�
with their respective steady-state values. Once these equa-
tions for �ab��� are solved and substituted into the definition
Eq. �12�, we calculate the frequency-dependent noise spec-
trum S���.

There is no general analytic expression for the noise spec-
trum, except in two special cases: In the absence of coupling,
�=0, I�t�=
 1

2 +2� W
�

�2�R−�0�− 4W
� �z�t�, but �̇z=0, therefore

the total noise is independent of � with S= Il�r�coth�V /2T�;
on the contrary, for the S system �=0, we have I�t�= I0

+ I1�t�= �g0+g1�V−A�p�t�+B�z�t�, with A= 4W
� g1V and B

=C−���. Moreover, since �z�t� is decoupled from �±�t� in
Eqs. �6� due to �z=0 and �� =0, we have �pz���=�zp���=0,
and then S���=Re
A2�pp���+B2�zz����− �I1�2. Finally, the to-
tal noise spectrum S���=S0+S1���+S2��� is

S0 = g0V coth	 V

2T
� +

1

2
C+����1 − 	 2g1�

C+���
�2� , �16a�

S1��� =
��I�2�d�2

��2 − �2�2 + 4�d
2�2 , �16b�

S2��� = �1 − 	 2g1�

C+���
�2� 
C−����2�d

�2 + 4�d
2 , �16c�

with �I=4V�g0g1. The pedestal shot noise S0 is identical
with the previously found result.8 For the frequency-relevant
noise spectrum in a S qubit, the decoupled qubit dynamics
give rise to two distinct components: S1��� stems from the
transverse qubit dynamics �p, i.e., elastic and inelastic
measurement-induced qubit decoherence, which is similar to
the calculation of Ref. 6 but augmented with our specific
predictions for V- and T-dependent parameters �d and �I;
while S2��� is generated by the longitudinal qubit dynamics
�z �qubit relaxation�, which is exclusively due to inelastic
processes in measurement. Clearly, our S1��� is similar to
Shnirman et al.’s8 Eq. �35� except for the reduction factor.
Moreover, our S2��� coincides with C3��� 
Eq. �39� of Ref.
8� under the same limit conditions, and also vanishes for V

�� at T=0. In our model, S2��� is at least one order of
magnitude smaller than S1���, irrespective of V, T, and g1 /g0


inset in Fig. 1�a��, indicating that the detector spectrum
mainly reflects S qubit decoherence behavior. Noticing that
our different low-bias behavior of S1��� as compared to that
of Ref. 8 is due to the coarse-graining assumption, which
requires V�� to guarantee an accurate noise spectrum at
���.

Figure 1�a� plots measurement-induced qubit decoherence
effects on the noise spectrum in the maximal meter-response
case g1=g0=0.25. It may be observed that with increasing �d
�corresponding voltages V /�=1.5, 2.0, 3.0, and 4.0�, S���
changes from a Lorentzian-type function, with a peak located
at the qubit Rabi frequency �=�, to a spectrum shape cen-
tered at �=0, indicating the Zeno effect regime. This behav-

FIG. 1. �a� S��� as function of frequency � /� for various �d

values. The parameters we use in calculation are g0=g1=0.25 and
T=0.1�. �b� The peak-to-pedestal ratio vs bias voltage. �c� Ranges
of various functional forms for the noise spectrum for a given QPC
transparency g0=0.25. Inset: S��� vs � /�. Solid lines denote re-
sults for various g1 /g0 values at g0=0.25. The dashed and dotted
curves are for g1=g0 but lower values of g0=0.125 and 0.06,
respectively.

FIG. 2. �a� S��� vs � /� for an asymmetric qubit with �=� at
various bias voltages; �b� S��� for different qubits at V=1.0�.
Other parameters: g0=g1=0.25, T=0.1�.
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ior can be understood as follows: �1� a low voltage applied to
a QPC cannot provide sufficient dissipation �small �d� to
suppress the Rabi oscillation of a S qubit; thus a peak occurs
in the noise spectrum contrary to the previous prediction of
Ref. 8 as mentioned above; on the other hand, �2� a high
voltage can freeze the qubit due to enhanced relaxation, in-
dicating appearance of the Zeno effect. The specific value of
the voltage dividing the two regimes naturally depends on
the QPC-qubit coupling for a given QPC transparency g0.
Based on Eq. �16b�, the transition occurs under the condition
�d�� /�2, which leads to a rough transition boundary in-
volving � /W and V �log

g1

g0
�−log V� as shown in Fig. 1�c�

for the QPC with a fixed transparency g0=0.25. The Lorent-
zian spectrum regime extends to a wider range of V for sys-
tems with weaker detector-qubit coupling �. The inset of Fig.
1�c� exhibits the fact that the spectrum changes from the
Zeno regime back to the Lorentzian regime as g1 decreases.
We should notice that the transition boundary depends on g0
due to g1�g0, though �d is independent of g0. In the high-
voltage limit V�� ,T, we can still obtain the Lorentzian
noise spectrum of detector output by applying a QPC with
very low conductance g0�� /V, to guarantee �d��. This
remark is demonstrated by the dashed and dotted lines in the
inset of Fig. 1�c�.

Another interesting feature is the quantum upper bound of
4 for the signal-to-noise ratio �SNR� in the qubit measure-
ment, which was first pointed out by Korotkov and Averin in
the high-voltage limit.6 From Fig. 1�b�, we observe that �1�
the SNR increases rapidly initially with rising voltage, and
reaches a maximum value less than 4 �depending on g1�
around V=�; �2� increasing qubit-QPC coupling g1 results in
reduction of the SNR due to enhancement of S0, and the SNR
becomes 2 in the high-voltage limit in the case of maximal
response g1=g0. These results indicate that low QPC trans-
parency g0, weak meter-qubit coupling g1, and V�� are
necessary for an efficient meter.

The efficiency of a meter also depends decisively on
temperature.6 The spectrum peak at �=� in Fig. 1�a� will
gradually disappear with increasing T �not shown here�,

which is ascribed to enhanced detector-induced decay �d.
From Eq. �7�, �d is independent of V at T�� /2 and V��,
implying that the QPC is always a good meter for a S qubit
at low temperature and bias voltage.

The noise spectra for asymmetric �A� qubits are summa-
rized in Fig. 2. In contrast to the S qubit, the A qubit longi-
tudinal dynamics start to play a dominant role in the spec-
trum around �=0 when V�� 
Szz in the inset of Fig. 2�a��,
making S��� approach a zero-frequency maximum more
quickly, albeit that the transverse spectrum Spp still has a
peak at �=�. This is to say that breakdown of the resonance
condition causes the A qubit measurement to enter into the
Zeno effect regime more quickly, even with �d��.

In conclusion, we have analyzed the noise output spec-
trum of a QPC-qubit measurement system for arbitrary volt-
age and temperature conditions using a general quantum-
operator Langevin equation approach to derive Bloch
equations for the system. In contrast to the results in Ref. 10,
which does not consider quantum interference between elas-
tic and inelastic processes of measurement, our calculations
indicate that qubit oscillations always cause a peak in the
QPC noise spectrum at the Rabi frequency � for a S qubit,
because the qubit coherence dynamics dominate contribu-
tions to the noise spectrum �if the condition �d�� /�2 is
satisfied�, which agrees with previous studies in the high-
voltage limit.6 However, the coherent peak at the Rabi fre-
quency is suppressed by the relaxation dynamics of an A
qubit even when �d��. Our analyses provide physical in-
sight into qualitative criteria for design of an efficient detec-
tor: �1� low transparency g0 of a QPC; �2� weak meter-qubit
coupling g1; �3� small asymmetry ratio � /�; �4� relatively
low temperature.
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