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The superconducting phase transitions between different vortex states with the magnetic field for a thin
mesoscopic superconducting ring surrounded by a medium that enhanced its superconductivity near the bound-
ary are investigated by the phenomenological Ginzburg-Landau theory. The transitions between different giant
vortex states and between the giant vortex and multivortex states with �L�1 �L is the vorticity of the vortex
state� are found for a small ring with increasing surface enhancement. The influences of the surface enhancing
superconducting effect and the inner radius as well as the temperature on phase transition are studied by
examining the H-�� /b�, H-Ri, and H-T phase diagrams, respectively. Further increasing the effect of enhanced
surface superconductivity, we find the reentrant transition with the same vorticity and the transitions between
the stable multivortex states with �L�1 for different ring inner radii. We also investigate the vortex configu-
rations for a relatively large ring, and the vortex state with two stable vortex shells can be found as the ground
state due to the enhanced surface superconductivity.
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I. INTRODUCTION

A mesoscopic sample is such that its size is comparable to
the magnetic-field penetration depth � or the coherence
length �. Previously, the samples of different shapes sur-
rounded by vacuum or an insulator medium have been con-
sidered extensively both experimentally1 and theoretically.2–8

It has been shown that two kinds of superconducting state
can exist in these samples, i.e., the giant vortex state and the
multivortex state. The giant vortex state has cylindrical sym-
metry and is stable in small size due to the confinement
effect. Meanwhile, the giant vortex state can break up into
multivortices for sufficiently large size and the transition be-
tween such states is described by the saddle-point state,
which corresponds to the energy barrier state between those
states. For the vortex phase transitions in mesoscopic super-
conducting disks, the vorticity L always changes with one
unit at the penetration field,3 and several vortices can simul-
taneously enter into the system for sufficiently large radius.4

Palacios calculated the saddle points or energy barriers that
prevent the vortex escape and entrance in superconducting
mesoscopic disks5 as well as the vortex configurations with
two stable vortex shells �or rings� in disks with larger radius6

using the lowest Landau level approximation. The transitions
between the different vortex states of thin mesoscopic super-
conducting disks and rings have been studied by Baelus et
al.,7 and the L↔L+1 transition between two giant vortex
states in small system as well as the transitions between a
multivortex state and a giant vortex state and between two
multivortex states in larger sizes were obtained. For the tran-
sitions between different vortex states in superconducting
disks with a sufficiently large radius such that several shells
of vortices can be stabilized, the change in vorticity can be
larger than one with increasing and decreasing magnetic field
comparing with small disks.8

Apart from the size and geometry, the vortex properties of
a mesoscopic superconductor are strongly influenced by the
boundary condition. For a superconductor in contact with a

medium with surface enhancement or suppression of super-
conductivity, we have the general boundary condition9,10

n� · ��− i�� − A� ���s =
i

b
���s, �1�

where n� is the unit vector normal to the sample surface, A� is
the vector potential, � is the order parameter, and b is the
surface extrapolation length, which is the effective penetra-
tion depth of the order parameter into the surrounding me-
dium. For both the superconductor-vacuum and the
superconductor-insulator boundary, one has b→�. The case
b�0 corresponds to surface suppression of the supercon-
ducting order parameter and this case has been studied in
Ref. 11 for mesoscopic cylinders. The opposite case b�0
corresponds to surface enhancement of superconductivity.
The vortex properties of mesoscopic thin disks and infinitely
long cylinders as well as thin rings with enhanced surface
superconductivity were studied in Refs. 12–14, respectively.
It has been found that increasing the superconductivity near
the surface leads to higher critical fields and critical tempera-
tures, and the multivortex state can be stabilized by the sur-
face enhancement of superconductivity and can be found as
the ground state. Moveover, the phase transitions between
states with �L�1 can be found in small disks with enhanced
surface superconductivity for a small maximum value of vor-
ticity or at magnetic fields close to the superconducting/
normal transition point.12

In the present paper, we investigate the phase transitions
between different vortex states with increasing or decreasing
the magnetic field for thin mesoscopic superconducting rings
surrounded by a medium which enhances superconductivity
at the sample surface through the phenomenological
Ginzburg-Landau theory. The ring has more than one bound-
ary in comparison with the disk sample, and the disk is a
special case of the ring with zero inner radius. We generalize
the method in Ref. 15 and present a systematic study of the
phase transition for the mesoscopic rings with a fixed thick-
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ness. We find the transitions between different giant vortex
states and between the giant vortex and multivortex states
with �L�1, which can only exist in large size when the
parameter 1 /b tends to zero, for a small ring with increasing
surface enhancement. For the influences of the surface en-
hancement and the inner radius as well as the temperature on
phase transition, we give the H-�� /b�, H-Ri, and H-T phase
diagrams, respectively. Further increasing the surface en-
hancement, we find the reentrant transition �“giant vortex
→multivortex→giant vortex”� with the same vorticity and
the transitions between the stable multivortex states with
�L�1 for different ring inner radii. The vortex configura-
tions for a relatively large ring are also investigated finally
and we find that the vortex state with two stable vortex shells
can exist in the ground state due to the enhanced surface
superconductivity.

The paper is organized as follows. In Sec. II, we present
our theoretical model and give the necessary formalism. The
different kinds of phase transitions as well as the H-�� /b�,
H-Ri, and H-T phase diagrams for the small rings are pre-
sented in Sec. III. In Sec. IV, the vortex configurations and
transitions between different stable states for the larger rings
are studied. Our results are summarized in Sec. V.

II. THEORETICAL APPROACH

We consider mesoscopic superconducting rings with outer
radius Ro and inner radius Ri and thickness d. We restrict
ourselves to sufficiently thin rings such that d�� ,�. In this

case, the external magnetic field H� is uniform and directed
normal to the rings plane. The Cooper pair density ���r���2 is
determined from a solution of coupled nonlinear GL equa-
tions for the superconducting order parameter ��r�� and the

magnetic field h��r��=�� 	A� �r��

�− i�� − A� �2� = � − ����2, �2�


2�� 	 �� 	 A� = j�, �3�

where the density of the superconducting current j� given by

j� =
1

2i
��*�� � − ��� �*� − ���2A� . �4�

We use the cylindrical coordinates r�= �� ,� ,z� and choose the

gauge A� = �H� /2�e�
� , where � is the radial distance from the

cylinder axis z, and � is the azimuthal angle. The ring lies
between z=d /2 and −d /2. We measure the distance in units
of the coherence length � and the magnetic field in Hc2
=c
 /2e�2=
�2Hc, and the superconducting current in j0
=cHc /2��, where Hc is the thermodynamic critical field and

=� /� is the GL parameter. The free energy of the super-
conducting state, measured in F0=Hc

2V /8� units, is ex-
pressed as

F =
2

V
�� dV�− ���2 +

1

2
���4 + �− i�� � − A� ��2

+ 
2�h��r�� − H� 	2
 +
1

b
� dS���2� . �5�

The last term in Eq. �5� is the surface contribution, which
reduces the free energy when b�0, implying the supercon-
ductivity enhanced effect.

For the multivortex state, the order parameter can ex-
pressed as a superposition of giant vortex states with differ-
ent Lj,

����� = 

Lj=0

L

CLj
fLj

���exp�iLj�� , �6�

where L is equal to the number of vortices in the ring or it is
the effective total angular momentum of a vortex state. For
the transitions between a multivortex state and a giant vortex
state and between different multivortex states, we consider
states that are built up by three components in Eq. �6�,

����� = CL1
fL1

���exp�iL1�� + CL2
fL2

���exp�iL2��

+ CL3
fL3

���exp�iL3�� , �7�

where L1�L2�L3. Then the energy of the multivortex state
becomes

FL1,L2,L3
= CL1

4 AL1
+ CL2

4 AL2
+ CL3

4 AL3
+ 4CL1

2 CL2

2 AL1,L2

+ 4CL2

2 CL3

2 AL2,L3
+ 4CL1

2 CL3

2 AL1,L3
+ 2�L1

CL1

2 BL1

+ 2�L2
CL2

2 BL2
+ 2�L3

CL3

2 BL3
, �8�

where

ALj
=

2�d

V
�

Ri

Ro

�d�fLj

4 ��� , �9�

ALj,Lk
=

2�d

V
�

Ri

Ro

�d�fLj

2 ���fLk

2 ��� , �10�

BLj
=

2�d

V
�

Ri

Ro

�d�fLj

2 ��� , �11�

and fLj
��� as well as �Lj

have been shown in Ref. 15. The
trial function fLj

��� can be expressed as a linear combination
of two confluent hypergeometric functions �or first and sec-
ond types of Kummer functions� M and U.16

For the three-component approximation, the accuracy has
been discussed in Ref. 17, and the authors considered a state
described by a three-component approximation and by a
five-component one. They showed that the energies found for
a different number of components differ by less than 0.2%,
suggesting that the three-component approach is applicable.
Also, it would unlikely bring serious problems in determin-
ing the transition field value, and the uncertainty is then es-
timated to be less than 4.5% since the magnetic-field square
is proportional to the density of energy. Moreover, for the
three-component solutions �two vortex shells�, the energy
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functional is invariant for all the three phases whenever L1
+L3�2L2.6 Although the relative angular positions of vorti-
ces depend on the phases when L1+L3=2L2, there is an ob-
vious choice for these phases: �L1

=0, �L2
=0, and �L3

=�,
which gives a negative contribution to the free energy that
reflects a lock-in position between the vortex shells.6 So the
coefficient CLj

, which should be a complex number in gen-
eral, can be treated as a real number for our three-component
state, in particular when L1+L3�2L2. Through minimization
of Eq. �8� with respect to CL1

, CL2
, and CL3

, we can deter-
mine the parameters �CLj

�,

CL1
= ± ��2�L2

AL3
BL2

AL1,L2
+ 2�L3

AL2
BL3

AL1,L3

+ 4�L1
BL1

AL2,L3

2 − �L1
AL3

BL1
AL2

− 4�L2
AL1,L3

AL2,L3
BL2

− 4�L3
AL1,L2

AL2,L3
BL3

�/�16AL1,L2
AL1,L3

AL2,L3

− 4AL2,L3

2 AL1
− 4AL1,L2

2 AL3
− 4AL1,L3

2 AL2
+ AL1

AL2
AL3

�	1/2,

�12�

CL2
= ± ��2�L1

AL3
BL1

AL1,L2
+ 2�L3

AL1
BL3

AL2,L3

+ 4�L2
BL2

AL1,L3

2 − �L2
AL3

BL2
AL1

− 4�L3
AL1,L2

AL1,L3
BL3

− 4�L1
AL1,L3

AL2,L3
BL1

�/�16AL1,L2
AL1,L3

AL2,L3

− 4AL2,L3

2 AL1
− 4AL1,L2

2 AL3
− 4AL1,L3

2 AL2
+ AL1

AL2
AL3

�	1/2,

�13�

CL3
= ± ��2�L2

AL1
BL2

AL2,L3
+ 2�L1

AL2
BL1

AL1,L3

+ 4�L3
BL3

AL1,L2

2 − �L3
AL1

BL3
AL2

− 4�L2
AL1,L2

AL1,L3
BL2

− 4�L1
AL2,L3

AL1,L2
BL1

�/�16AL1,L2
AL1,L3

AL2,L3

− 4AL2,L3

2 AL1
− 4AL1,L2

2 AL3
− 4AL1,L3

2 AL2
+ AL1

AL2
AL3

�	1/2.

�14�

Note: In our derivation, the weak correlation term be-
tween vortices when L1+L3=2L2, i.e.,

4�L1+L3,2L2
CL1

CL3
CL2

2 � �2�d

V
�

Ri

Ro

�d�fL1
���fL3

���fL2

2 ���
 ,

�15�

had been omitted in Eq. �8�. This approximation is justified.
We checked the free energies of the vortex state with and
without the correlation term and found that the contribution
of the correlation term is very small �the relative deviation is
less than 0.1%�.

For nonzero temperature T, the temperature dependence
of �, Hc2 is assumed as

��T� =
��0�

��1 − T/Tc0�
, Hc2�T� = Hc2�0��1 − T/Tc0� , �16�

where Tc0 is the critical temperature at zero magnetic field
for the normal boundary condition, i.e., ���0� /b�=0. We will
only use ��0� and Hc2�0� as the basis for our units when we
consider the H-T phase diagrams.

III. SMALL RINGS

First, we investigate the phase transitions between states
with different vorticity L under the effect of enhanced sur-
face superconductivity for small superconducting rings with
fixed outer radius Ro=2.0� and thickness d=0.1�. Figure 1
shows the free energies F and the corresponding magnetiza-
tion M =−�F /�H curves of the equilibrium vortex states for a
ring with Ri=0.3� and � /b=−0.02. The giant vortex states
�solid curves� are denoted as their L values and the saddle-
point states �dashed curves� as �L1 :L2�, which set a barrier
for state transition between L1 and L2. The L1 and L2 states
correspond to the minima of the free energy in functional
space, and the lowest barrier between those two minima is a
saddle point. The vertical dashed lines in Fig. 1�b� show the
transition fields Htr, where the ground-state transitions from
L to L+1 would occur for a sample of body. Due to an
energy barrier between the states with vortivity L1 and L2,
the L1 state can remain stable up to the penetration field
Hp��Htr� and transits to the L2 state with increasing applied
field, and for decreasing field the L2 state can remain stable
down to the expulsion field He��Htr� and the transition be-
tween the L1 and L2 states can occur. In Fig. 1�a�, there do
not exist stable multivortex states for � /b=−0.02 and the
phase transitions 0→1→2→3→ “Normal state” can occur
with increasing field, and “Normal state” →3→2→1→0

FIG. 1. �a� Free energy and �b� magnetization of the ground
state and the saddle-point states in a superconducting ring with Ro

=2.0� and Ri=0.3� and � /b=−0.02. The different giant vortex and
saddle-point states are shown by the solid and dashed curves, re-
spectively. The vertical dashed lines give the ground-state
transitions.
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with decreasing field. These transitions are given in Fig. 1�b�
by the arrows. For the influence of the inner radius on phase
transition, we plot the penetration fields Hp �solid curves�
and the expulsion fields He �dashed curves� as a function of
the inner radius Ri for the rings with � /b=−0.02 and fixed
outer radius R0=2.0� for L�3 in Fig. 2. The solid squares
denote the critical inner radii where the number of vortices
changes. We see that the He for the L=1 state and the Hp for
the L=0 state decrease with increasing the inner radius, and
for the other states the He and Hp increase first to maxima
and then decrease. Moreover, for very large inner radii the
transitions with �L=2 can occur in general. Surprisingly,
with decreasing field, the 3→1 transition occurs when the
inner radius varies in the range of 0.32��Ri�0.51� and for
the larger inner radii we only find the 3→2 transition. Figure

3 gives the H-T phase diagram for a superconducting ring
with Ro=2.0��0�, Ri=0.3��0�, and ��0� /b=−0.02. The thick
solid curve indicates the superconducting/normal transition
with the corners showing the switching between different L
states. The thin solid curves are the boundaries for a preced-
ing stable state with increasing magnetic field and the thin
dashed curves are the boundaries with decreasing field.
Therefore, together with the superconducting/normal transi-
tion boundary, they define the regime where the state L is
stable in the phase space.

It has been shown that, because of the enhanced surface
superconductivity, the multivortex states can become stable
with increasing values of �� /b� in small rings.14 Figure 4�a�
shows the free energies and Fig. 4�b� the corresponding mag-
netization curves of the equilibrium vortex states for a ring
with Ri=0.3� and � /b=−0.1. The multivortex states �dash-
dotted curves� are denoted as �L1 :L2�, where L1 and L2 are
the angular momentum values of which the multivortex
states are composed. From Fig. 4�a�, we can find that the
multivortices can exist as the metastable states, meanwhile
the phase transitions become more complicated. Just like
the disk sample,12 we find that the transitions with
�L�1 can occur �see the arrows in Fig. 4�b�	: 0→2→4
→6→7→8→ “Normal state” with increasing field and
“Normal state” →8→7→5→ �1:5�→3→0 with decreas-

FIG. 3. The H-T phase diagram for a ring with Ro=2.0��0� and
Ri=0.3��0� and ��0� /b=−0.02. The thick curve indicates the
superconducting/normal transition. The thin solid curves are the
boundaries of the stability regions for increasing magnetic field and
the thin dashed curves are the boundaries for decreasing field.

FIG. 2. The penetration field Hp �solid curves� and the expulsion
field He �dashed curves� as a function of the inner radius Ri for a
ring with Ro=2.0� and � /b=−0.02 for L�3. The solid squares
denote the critical inner radii where the number of penetrating/
expulsing vortices changes.

FIG. 4. The same as Fig. 1 but for � /b=−0.1. The metastable
states are shown by the dash-dotted curves. The open circles indi-
cate the multivortex to giant vortex transition fields. The solid circle
in the inset denotes the transition field from the �1:5� stable state to
the �3:5� state.
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ing field. The transition between the �1:5� metastable state
and the L=3 giant vortex state with decreasing field is real-
ized through the intermediate saddle-point state �1:3:5�, i.e.,
the �1:5� state transits to the �3:5� saddle-point state first and
then to the L=3 state.

As an example, Fig. 5 gives the energy barriers U corre-
sponding to the transitions �1:5�→3 �a� and 3→0 �b� �solid
curves�, and those for �1:5�→4 as well as 3→2 and 3→1
are indicated by the dashed and dash-dotted curves. The tran-
sition fields from the �1:5� stable state to the �3:5� and �4:5�
states are given by the solid circles in Fig. 5�a�. We can see
that the barriers between the �1:5� and L=3 states as well as
between the L=3 and L=0 states have the lowest values and
the expulsion fields He have the largest values. Figures
6�a�–6�c� and 6�e�–6�g� show the contour plots of the
Cooper-pair density for the �1:3:5� and �3:5� saddle-point
states at different magnetic fields, respectively. Figures 6�d�
and 6�h� show the phase contour plots corresponding to Figs.
6�c� and 6�g�, respectively. Phases near the zero are given by
white regions and near 2� by dark regions. We can find that
one vortex is in the hole while the other four vortices are
located on one shell for the metastable �1:5� state. With in-
creasing field, two vortices near the outer boundary move
towards, the center and the other two vortices near the outer
boundary move into the ring for the �1:3:5� state. We can see
the positions of the vortices clearly from Fig. 6�d� at
H /Hc2=3.32 when the �1:3:5� state transits to the �3:5�
saddle-point state. After transiting to �3:5� state, two vortices
will move outside of the system with increasing field and
then form the L=3 giant vortex state. In Fig. 6�h�, the phase

difference ��=3	2� when encircling the superconductor
near the outer boundary, which means vorticity L=3. For the
�0:3� saddle-point state, Fig. 7 shows the contour plots of the
Cooper-pair density and phase of the order parameter at dif-
ferent magnetic fields. With increasing field, three vortices
move from the center to the outer region of the ring, and the
state changes from L=3 to L=0, as shown in Figs. 7�a�–7�d�
for the Cooper-pair density and in Figs. 7�e�–7�h� of the
phase of the order parameter.

With increasing the ring inner radius, the phase transitions
will become more complicated. As an example, the phase
transitions and the expulsion fields He for vorticity L=5 and
6 for the rings with Ro=2.0� and � /b=−0.1 and different
inner radii Ri are given in Table I. With increasing the inner
radius, the �1:5� and �2:6� states can be found as the meta-
stable states, whereas the �0:5� and �1:6� metastable states
disappear.14 So we can find the transitions from different
multivortex states to the giant vortex states with increasing
inner radius. However, for the large inner radii only the tran-
sitions between different giant vortex states can exist.

In Fig. 8, we plot the H-T phase diagram for a ring with
Ro=2.0��0�, Ri=0.3��0�, and ��0� /b=−0.1. The solid

FIG. 5. The energy barriers U corresponding to the transitions
�1:5�→3 �a� and 3→0 �b� �solid curves� and the other possible
transitions �dashed and dash-dotted curves�. The solid circles in �a�
denote the transition fields from the �1:5� stable state to the �3:5� or
�4:5� unstable states.

FIG. 6. Contour plot of the Cooper-pair density and phase of the
order parameter �d� and �h� for a ring with Ro=2.0� and Ri=0.3�
and � /b=−0.1 corresponding to the �1:3:5� saddle-point state �a�,
�b�, and �c� as well as the �3:5� state �e�, �f�, and �g� at H /Hc2

=2.95, 3.1, 3.32, 3.5, 3.7, and 3.82, respectively. Light and dark
regions correspond to low and high Copper-pair density. Phases
near zero are given by white regions and near 2� by dark regions.

FIG. 7. Contour plot of the Cooper-pair density and phase of
the order parameter for a ring with Ro=2.0� and Ri=0.3� and
� /b=−0.1 corresponding to the �0:3� saddle-point state at H /Hc2

=1.604, 1.64, 1.75, and 1.819, respectively.
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squares denote the transition temperatures at which the num-
ber of penetrating/expulsing vortices changes. It is clear that
the critical temperature is very sensitive to the value of
��0� /b and the superconducting/normal transition moves to
temperatures higher than Tc0 comparing with Fig. 3. More-
over, the stability regions of different states overlap strongly.
For the high temperature we only find the transitions with

�L=1 and the transitions between the multivortex and giant
vortex states also disappear. In addition, for the 4→2 tran-
sition we get that the temperature range is very small.

Now we investigate the influence of the surface enhance-
ment on phase transition. Figure 9 gives the H-�� /b� phase
diagram for a ring with Ri=0.3�. The thick solid curves cor-
respond to the nucleation fields Hnuc, where Hnuc is the criti-
cal field for the transition between the superconducting state
and the normal state. The thin solid and dashed curves de-
note the penetration fields Hp and the expulsion fields He,
respectively. The solid squares denote the critical values of
�� /b� at which the number of penetrating/expulsing vortices
changes. For the small values of �� /b� or large vorticity L,
only the transitions between the L and L±1 states can take
place with increasing or decreasing field. Increasing the val-
ues of �� /b�, we find that the transitions with �L=2 or 3 can
occur, i.e., two or three vortices can simultaneously enter or
leave the system with increasing or decreasing field, and the
transitions between the multivortex and giant vortex states
can be found.

Further increasing the surface enhancement of supercon-
ductivity, the multivortex states can exist in the ground
state.14 For a ring with Ri=0.1� and � /b=−0.2, we find that
there is a reentrant phase transition with the same vorticity
for the �0:3� stable multivortex state, as predicted for the
disks in Ref. 12, i.e., the giant vortex state transits to a mul-
tivortex state and then back to the same giant vortex state.
Figure 10 shows the contour plots of the Cooper-pair density
and phase of the order parameter for the �0:3� multivortex
state at different magnetic fields. For the ring with Ri=0.3�
and � /b=−0.2, the stable �1:L2� states can be found as the
ground state.14 We find that the phase transitions between the
stable multivortex states can occur for the small rings that we
stuided. Figure 11�a� gives the free energy of the stable �1:5�,
�1:6�, �1:7�, and �1:8� states as well as the saddle-point states
�1:5:8�, which means the �1:8� state transits to the �1:5� state,

TABLE I. The phase transitions as well as the expulsion fields
He,5 and He,6 for L=5 and 6 for rings with � /b=−0.1 and fixed
outer radius Ro=2.0� and different inner radii Ri.

Ri /� L=5 He,5 /Hc2 L=6 He,6 /Hc2

0 �0:5�→3 2.802 6→4 3.52

0.1 �0:5�→3 2.801 6→4 3.52

0.15 5→1 2.857

0.2 �1:5�→3 2.907 6→4 3.521

0.3 �1:5�→3 2.944 �1:6�→4 3.532

0.4 �1:5�→4 2.954 �1:6�→4 3.539

0.5 �1:5�→3 2.963 �1:6�→4 3.545

0.6 5→2 3.27 �2:6�→5 3.738

0.7 5→2 3.55 �2:6�→5 3.768

0.74 �2:6�→4 3.77

0.8 5→2 3.22 6→3 4.01

0.9 5→3 3.03 6→3 3.92

1 5→3 2.84 6→4 3.72

1.1 5→3 2.61 6→4 3.47

1.2 5→3 2.38 6→4 3.2

1.3 5→3 2.17 6→4 2.93

1.4 5→3 1.98 6→4 2.69

1.5 5→3 1.8 6→4 2.46

1.6 5→3 1.62 6→4 2.245

1.7 5→2 1.46 6→3 2.04

1.8 5→2 1.28 6→3 1.84

FIG. 8. The same as Fig. 3 but for ��0� /b=−0.1. The solid
squares denote the transition temperatures at which the number of
penetrating/expulsing vortices changes.

FIG. 9. The H-�� /b� phase diagram for a ring with Ro=2.0� and
Ri=0.3�. The thick solid curves correspond to the nucleation fields
Hnuc. The thin solid and dashed curves denote the penetration fields
Hp and the expulsion fields He, respectively. The solid squares de-
note the critical values of �� /b� at which the number of penetrating/
expulsing vortices changes.
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and Fig. 11�b� shows the energy barriers U corresponding to
the transitions �1:8�→ �1:5� �solid curves� and the other
possible transitions �dashed and dash-dotted curves�. Due to
the fact that the �1:5:8� state has the lowest energy barrier
and the highest expulsion field, the transition �1:8�→ �1:5�
is most likely to occur. Figure 12 shows the contour plots of
the Cooper-pair density for the �1:5:8� saddle-point state at
different magnetic fields. For the �1:8� and �1:5� state, one
vortex accommodates in the hole, while seven and four vor-
tices are near the outer boundary, respectively. We can
clearly see that three vortices move to the outer region of the
ring with increasing field. Increasing the inner radius of the

ring with � /b=−0.2, the �2:L2� states can also be found as
the ground state.14 Figure 13 gives the free energy �a� of the
stable �2:7�, �2:8�, �2:9�, and �2:10� states and the saddle-
point state �2:7:10� as well as the energy barriers �b� corre-
sponding to the transition �2:10�→ �2:7� �solid curves� and
the other possible transitions �dashed and dash-dotted
curves� for a ring with Ri=0.5� and � /b=−0.2. Notice that
the transition between the �2:9� and �2:10� states cannot be
found and only exist in the �2:10�→9 transition. For the
�2:7:10� state, it has the lowest energy barrier and the highest
expulsion field. Figure 14 gives the contour plots of the
Cooper-pair density for the �2:7:10� state at different mag-

FIG. 10. The contour plot of the Cooper-pair density and phase
of the order parameter for the �0:3� multivortex state at H /Hc2

=2.308 �a�, 2.82 �b�, and 3.331 �c� for a superconducting ring with
Ro=2.0� and Ri=0.1� and � /b=−0.2.

FIG. 11. �a� The free energy of the stable �1:5�, �1:6�, �1:7�, and
�1:8� states, and the saddle-point state �1:5:8� between �1:5� and
�1:8� states for a superconducting ring with Ro=2.0� and Ri=0.3�
and � /b=−0.2. �b� The energy barriers U correspond to the transi-
tion �1:8�→ �1:5� �solid curves� and the other possible transitions
�dashed and dash-dotted curves�.

FIG. 12. Contour plot of the Cooper-pair density for the �1:5:8�
state for the ring in Fig. 11 at H /Hc2=4.227 �a�, 4.482 �b�, 4.737
�c�, 5.247 �d�, 5.374 �e�, and 5.504 �f�.

FIG. 13. �a� The free energy of the stable �2:7�, �2:8�, �2:9�, and
�2:10� states, and the saddle-point state �2:7:10� between �2:7� and
�2:10� states for a superconducting ring with Ro=2.0� and Ri

=0.5� and � /b=−0.2. �b� The energy barriers U correspond to the
transition �2:10�→ �2:7� �solid curves� and the other possible tran-
sitions �dashed and dash-dotted curves�.
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netic fields and three vortices being expelled from the system
with increasing field.

IV. LARGE RINGS

We consider now the relatively large superconducting
rings surrounded by a medium that enhances superconduc-
tivity at the sample surface with fixed outer radius Ro=4.0�
and thickness d=0.1�. As an example, Fig. 15 gives the free
energies of the different vortex states for a superconducting
ring with � /b=−0.1 and Ri=0.5� for L�14. Notice that
the �1:4:12�, �1:5:13�, and �1:5:14� states can be found as
the metastable state and the ground state. We can get
this clearly from the inset in Fig. 15. With increasing
field, the ground state changes as follows:

0 → 1 → 2 → �0:3� → �0:4� → �1:5� → �1:6� → �1:7�

→ �1:8� → �1:9� → �1:10� → �1:11� → �1:4:12� → �1:12�

→ �1:5:13� → �1:13� → �1:5:14� → ¯ .

Figure 16 gives the contour plots of the Cooper-pair density
at different magnetic fields corresponding to the �1:5:14�
stable state. With increasing field, nine vortices enter the sys-
tem and merge together with four other vortices forming one
shell, meanwhile one vortex sits in the hole �see Figs.
16�a�–16�g�	. Figure 16�h� shows the contour plot of the
phase of the order parameter corresponding to Fig. 16�g�,
indicating clearly that there exists one vortex in the hole and
the other 13 vortices are positioned on a single shell around
the center. Moreover, notice that two stable vortex shells can
exist in the rings that we studied. �Note: two stable vortex
shells had not been found for the disk of radius R=4�.6� In
Fig. 17, the contour plots of the Cooper-pair density for the
�0:3:12� state at H /Hc2=1.6 �a�, the �1:5:14� state at H /Hc2
=1.74 �b�, and the �2:7:16� state at H /Hc2=2.02 �c� in the

FIG. 14. Contour plot of the Cooper-pair density for the �2:7:10�
state for the ring in Fig. 13 at H /Hc2=5.53 �a�, 5.73 �b�, 5.93 �c�,
6.33 �d�, 6.45 �e�, and 6.545 �f�.

FIG. 15. The free energy for different vortex states in a super-
conducting ring with Ro=4.0� and � /b=−0.1 and Ri=0.5� for L
�14. The inset shows the �1:4:12�, �1:5:13�, and �1:5:14� states in
more detail.

FIG. 16. Contour plot of the Cooper-pair density and phase of
the order parameter �h� for a ring with Ro=4.0� and Ri=0.5� and
� /b=−0.1 corresponding to the �1:5:14� state �a�, �b�, �c�, �d�, �e�,
�f�, and �g� at H /Hc2=1.684, 1.696, 1.72, 2, 2.3, 2.4, and 2.492,
respectively.

FIG. 17. Contour plot of the Cooper-pair density for the rings
with Ro=4.0� and � /b=−0.1 and Ri=0.0� �a�, Ri=0.5� �b�, and
Ri=1.0� �c� corresponding to the �0:3:12� state at H /Hc2=1.6,
the �1:5:14� state at H /Hc2=1.74, and the �2:7:16� state at
H /Hc2=2.02, respectively.
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rings with � /b=−0.1 and Ri=0.0�, Ri=0.5�, and Ri=1.0� are
given, respectively. We can see that an inner shell and an
outer shell exist in these rings, meanwhile one vortex sits in
the hole for the �1:5:14� state and two vortices for the
�2:7:16� state. Therefore, for the �L1 ,L2 ,L3� state in a large
ring there exist an inner shell with �L2−L1� vortices and an
outer shell with �L3−L2� vortices, and L1 vortex �vortices� is
�are� located on the hole.

V. CONCLUSIONS

In summary, we have investigated the phase transitions
for the thin mesoscopic superconducting rings surrounded by
a medium that enhanced its superconductivity near the
boundary through the phenomenological Ginzburg-Landau
theory. The ring has more than one boundary in comparison
with a disk sample and its vortex properties can be strongly
influenced by the surface enhancement of superconductivity,
so more complex and interesting features were found. For a
small ring, we studied the transitions between different giant
vortex states as well as between the giant vortex and multi-
vortex states with increasing or decreasing the magnetic

field, and the transitions with �L�1, which can only exist in
large size when the parameter 1 /b tends to zero, were found
with increasing the surface enhancement. We obtained the
H-�� /b�, H-Ri, and H-T phase diagrams and studied the
influences of the surface enhancement and the inner radius
as well as the temperature on phase transition, respectively.
Further increasing the surface enhancement of superconduc-
tivity, the reentrant transition �“giant vortex→multivortex
→giant vortex”� with the same vorticity was found for a
small ring inner radius. Moreover, the transitions between
the stable multivortex states with �L�1 were revealed for
different inner radii in the small rings. For a relatively large
ring, we investigated the vortex configurations and found
that the vortex state with two stable vortex shells can exist in
the ground state due to the enhanced surface superconductiv-
ity.
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