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We discuss the effects of quenched disorder on a model of charge density wave �CDW� ordering on the
square lattice. Our model may be applicable to the cuprate superconductors, where a random electrostatic
potential exists in the CuO2 planes as a result of the presence of charged dopants. We argue that the presence
of a random potential can affect the unidirectionality of the CDW order, characterized by an Ising order
parameter. Coupling to a unidirectional CDW, the random potential can lead to the formation of domains with
90° relative orientation, thus tending to restore the rotational symmetry of the underlying lattice. We find that
the correlation length of the Ising order can be significantly larger than the CDW correlation length. For a
checkerboard CDW on the other hand, disorder generates spatial anisotropies on short length scales and, thus,
some degree of unidirectionality. We quantify these disorder effects and suggest techniques for analyzing the
spatially dependent local density of states data measured in scanning tunneling microscopy experiments.
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I. INTRODUCTION

One of the major stumbling blocks preventing a quantita-
tive confrontation between theory and experiment in the cu-
prate superconductors is the influence of quenched disorder
on the experimental observations. The dopant ions exert a
significant electrostatic potential on the CuO2 plane, and
thus, unless the ions can be carefully arranged in a regular
pattern, the mobile charge carriers experience a random po-
tential. Recent scanning tunneling microscopy �STM�
observations1–5 clearly display that quenched randomness is
crucial in determining the spatial modulations of the local
density of states �LDOS�.

There has been much recent interest in determining the
nature of the spin and charge density wave �CDW� order
observed in STM, neutron, and x-ray scattering in a variety
of cuprate compounds at low temperatures.1–9 The quenched
disorder acts on the CDW order as a “random field,” which is
always a relevant perturbation at low temperatures: true
long-range order is disrupted at any finite random field
strength.10 Nevertheless, one might hope that an analytic
treatment may be possible in the limit of weak random fields.
Many such analyses10–14 have been carried out in the litera-
ture, describing states with power-law correlations and sup-
pressed dislocations �or related topological defects� at inter-
mediate length scales. At the longest scales, dislocations
always proliferate and all correlations are expected to decay
exponentially; no analytic treatment is possible in this strong
coupling regime. As we will discuss below, current experi-
ments on the cuprates are in a regime dominated by disloca-
tions, and there does not appear to be any significant regime
of applicability of the defect-free theory. Consequently, we
are forced to rely on numerical simulations for an under-
standing of experiments. We will present numerical results
over a representative range of parameters. Our aim is to al-
low insights into the underlying theory by a comparison of
experimental and numerical results.

II. MODEL

A previous work by two of the authors15 studied the in-
fluence of thermal fluctuations on density wave order on the

square lattice. Here, we study the influence of quenched ran-
domness on the same underlying theory. A generic density
was defined that could be any observable invariant under
spin rotations and time reversal

���r� = Re��xe
iKx·r� + Re��ye

iKy·r� , �2.1�

where Kx= �2� /a��1/ p ,0�, Ky = �2� /a��0,1 / p�, a is the lat-
tice spacing, and p is an integer describing the period of the
CDW. �x,y are complex order parameters, which were as-
sumed to vary slowly on the scale of a lattice spacing.

If both amplitudes ��x,y� have nonzero expectation values,
the charge density is modulated in both x and y directions
and describes a solid on the square lattice. In addition, if the
wave length of the charge ordering is commensurate with the
underlying crystal, i.e., for integer p, the density displays
true long-range order. For incommensurate charge order,
fluctuations due to finite temperature will cause quasi-long-
range order with a power-law decay of correlation functions.
If only one of the two amplitudes ��x,y� has nonzero expec-
tation value, the density Eq. �2.1� describes unidirectional
�striped� CDW order. Again, the presence of a commensurate
lattice potential makes the order long ranged at finite tem-
peratures, whereas in the incommensurate case it is quasi
long ranged.

In the incommensurate phase, in the absence of disorder,
the free energy expanded in powers of �x,y and its gradients
consistent with the symmetries of the square lattice is given
by

F� =� d2r�C1���x�x�2 + ��y�y�2� + C2���y�x�2 + ��x�y�2�

+ s���x�2 + ��y�2� +
u

2
���x�2 + ��y�2�2 + v��x�2��y�2� .

�2.2�

The homogeneous mean field solution of this model is sum-
marized in Fig. 1, where the checkerboard, stripe, and liquid
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phase values of �x,y are shown along with the accompanying
free energy densities.

In this work we focus on the influence of quenched dis-
order on CDW order and thus consider adding a term to the
free energy consisting of two complex random fields, cou-
pling directly to �x,y

FH = −� d2r�Hx
*�x + Hy

*�y + c.c.� , �2.3�

resulting in the total action

F = F� + FH, �2.4�

where the complex random fields H� ��=x ,y� are param-
etrized as H��r�=h��r�ei���r�, h� are Gaussian-distributed
random variables with mean 0, and standard deviation h0,
and �� are uniformly distributed random phases on �0,2��.

Let us confine ourselves to the condensed phase where s
�0, and u	0 for stability. The interesting physics are en-
capsulated by the effects of altering the coupling constant v
and the strength of the random field h0. While v changes the
low energy ground states from checkerboardlike configura-
tions for v�0 ���x�= ��y�� to stripelike patterns �����
� ��
�=0� for v	0, h0 should destabilize both types of
states.

A careful treatment of the coupling between CDW order
and a random electrostatic potential yields random compres-
sion terms of the form14 h���� ���=arg����� omitted in
the free energy Eq. �2.3�. In addition, an renormalization
group analysis of the full action F�+FH generates random
shear terms. Random compression and shear terms are re-
sponsible for the power-law decay of correlation functions
on intermediate length scales, on which the influence of to-
pological excitations �dislocations� in the phase fields ��

can be neglected.14

In STM experiments, the correlation length of charge or-
der is found to have values ranging from1 2.5 to roughly3 5

CDW periods. In neutron scattering experiments, peak
widths corresponding to correlation lengths larger than ten
CDW periods were observed.6,7 The correlation length de-
scribes the scale on which dislocations proliferate, and the
presence of a relatively short correlation length indicates that
there is no intermediate length scale on which compression
and shear terms are important. For this reason, the omission
of these terms from the elastic energy should be justified.

Although there is no explicit reference to the level of
doping in the free energy equation �2.2�, it can have several
effects. It will directly influence the wave vector of CDW
order, with higher doping levels corresponding to larger
wave vectors. The doping level can also influence the ener-
getics of CDW formation and, hence, the elastic constants in
the free energy. As these elastic constants are effective pa-
rameters and should be determined from the analysis of ex-
perimental data, their dependence on the doping level need
not be taken into account when analyzing the model. There
may also be commensurability effects for doping levels near
1 /8. Neglecting the influence of a random potential, chang-
ing the doping level in the presence of a periodic lattice
potential gives rise to a commensurate-incommensurate
transition.15 In the presence of disorder, however, commen-
surability effects are manifest only as a crossover and not a
phase transition, as the commensurate phase is unstable with
respect to disorder-induced dislocations on large length
scales.16 Guided by the experimental results discussed above,
in this study we are interested in the strong disorder regime
with proliferating dislocations and thus commensurability ef-
fects are not important for our analysis.

III. NUMERICAL MINIMIZATION

Because of the presence of the two complex random fields
H��r�, we have elected to minimize Eq. �2.4� numerically.
The interplay of elastic and disorder energy causes frustra-
tion and gives rise to an exponentially large number of low-
lying states with similar energies but very different configu-
rations. As these states are separated by large energy barriers,
relaxation after an external perturbation is very slow and
glassy dynamics can be observed. For these reasons, numeri-
cally finding the ground state of such a system is a hard
problem and as novel algorithms are developed and em-
ployed, even to relatively simple models, new states with
lower energies are inevitably found.17

Gradient methods that move strictly downhill in the en-
ergy landscape are fast, but prone to becoming stuck in local
minima and are not always able to reproduce the results of
slower ergodic methods. Simulated annealing algorithms18

have been the most successful at thoroughly sampling the
possible configuration space by using a fictitious tempera-
ture. By successively lowering this temperature, the resolu-
tion of finer and finer energy scales becomes possible while
avoiding the danger of being stuck in a metastable excited
state.

As a compromise, we have elected to employ a combina-
tion of both greedy conjugate gradient19 and ergodic simu-
lated annealing20 methods. We allow for the possibility of
local uphill moves where the configuration update involves

FIG. 1. The homogeneous mean field solutions of Eq. �2.2� for
�x,y.
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making a downhill step in a random area of the sample. The
size of the randomly chosen region is annealed by tracking
metropolis acceptance rate. This method faithfully repro-
duces the results of early Monte Carlo work on the random
field XY model.21

We have performed simulations for a number of lattice
sizes L= 	20,32,48,64,100
, commensurate with the experi-
mentally observed1–4 period of modulations in the local den-
sity of states of four lattice spacings �p=4� and multiple
realizations of disorder Nrd�L�= 	200,200,150,150,100
.
Let us consider a L�L square lattice of N sites labeled by i,
then after rescaling to give dimensionless coupling param-
eters, the continuum free energy of Eq. �2.4� in units where
the lattice constant a is set to unity takes the form �with
��,i=arg���,i��

FL = −
1

2 �
�=x,y

�
�i,j

J�,j���,i����,j�cos���,i − ��,j�

+ �
�=x,y

�
i
��C1 + C2 + s����,i�2 +

u

2
���,i�4

− 2h�,i���,i�cos���,i − ��,i�� + �u + v��
i

��x,i�2��y,i�2,

�3.1�

with �i , j indicating the usual sum over nearest neighbors
and the factor of 1 /2 is inserted to avoid double counting.
The coupling matrix J�,j has diagonal elements Jx,i±x=Jy,i±y
=C1 and off diagonal couplings Jx,i±y =Jy,i±x=C2. We have
chosen to set C1=C2=1 and s=−0.1, thus restoring full ro-

tational symmetry of the elastic energy on scales much larger
than the lattice spacing and confining our analysis to the
condensed phase. We have also elected to pick the value of
the quartic coupling u to ensure the condensation energy
remains constant across the critical line v=0 by setting
u�v0�=−s and u�v�0�=−�s+v /2�.

IV. RESULTS

Employing this minimization procedure, we obtain stable
low-energy field configurations, such as the ones shown in
Figs. 2–4. For v=−0.1 and h0=0.6 �Fig. 2�, we observe small
circular regions, �5 lattice spacings across, where the local
random field configuration has taken a value that makes it
energetically favorable to suppress the magnitude of either
�x or �y in its vicinity. For the uncoupled theory �Fig. 3�,
�x,y appear much smoother and although there still exists
separate regions of stripe and checkerboard order, the inter-
faces between these regions are poorly defined. We may also
observe the effects of positive v=0.1 at the same disorder
strength as seen in Fig. 4. In this case, the magnitude of
either �x or �y is suppressed to zero over large regions of
the sample leading to a ground state field configuration with
well-defined domains having unidirectional order in either
the x or y directions.

We can construct the form of the density fluctuations
���r� �Eq. �2.1�� from the minimized value of the spatially
dependent order parameters �x,y�r� for CDWs with a period
of four lattice spacings �p=4�. We may then compare the
results of ���r�, seen in Fig. 5, for various values of v and h0

to the STM experiments mentioned in Sec. I in an attempt to

FIG. 2. �Color online� The ground state field
configuration on a 100�100 lattice for a random
field standard deviation of h0=0.6 and xy interac-
tion v=−0.1 for a particular realization of
disorder.
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qualitatively identify the range of parameters in Eq. �2.4�
corresponding to these experimental systems. For v�0 and
h0=0.0, we observe robust checkerboard ordering, which is
coherent over the entire lattice. As the variance of the ran-

dom field is increased, dislocations in the phase of the ��

fields gradually destroy the local ordering, and the correla-
tion length is reduced to less than three CDW periods for
h0=1.2. For v=0.0 and h0=0.0, density fluctuations in the

FIG. 3. �Color online� The ground state field
configuration on a 100�100 lattice for a random
field standard deviation of h0=0.6 and xy interac-
tion v=0.0 for a particular realization of disorder.

FIG. 4. �Color online� The ground state field
configuration on a 100�100 lattice for a random
field standard deviation of h0=0.6 and xy interac-
tion v=0.1 for a particular realization of disorder.
The phase of �x,y fluctuates strongly in regions
where its amplitude is suppressed.
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x and y direction have a period of four lattice spacings and
identical amplitudes. However, the response of the system to
increasing h0 is very different from the v=−0.1 case. For any
finite amount of disorder, there is a significant enhancement
in the size of unidirectional correlations as the sample breaks
up into regions with the magnitude of either �x or �y greatly
reduced. In the clean limit with v	0, we obtain purely uni-
directional density fluctuations. As the strength of disorder is
increased, large domains of � /2 relative orientation appear,
and finally, for large values of h0 the system breaks up into
many such regions of varying sizes. Qualitative comparison
of the central column of Fig. 5 with STM results for the local
density of states1–5 indicates that the correct parameter re-
gime for the model free energy Eq. �2.4� may include mod-
erate disorder �h0�0.5� and a slightly positive value of v.

The presence of such inherent and disorder-induced
stripeness leads to the natural definition of a local Ising-like
order parameter22

��r� =
��x�r��2 − ��y�r��2

��x�r��2 + ��y�r��2
, �4.1�

which measures the tendency of the system to have only one
of either �x or �y nonzero over some finite area, with a
value between −1 and 1.

As a result of our direct minimization procedure, we have
calculated a full set of low-energy field configurations for
multiple system sizes and realizations of disorder with xy
couplings v= 	−0.1,0.0,0.1,0.2
 and random field strengths
h0 between 0.0 and 2.0. Using this information, we can con-
struct the disorder-averaged correlation functions for each
system size throughout the relevant parameter space. Two
distinct types of correlations are of interest. The first are
simple CDW correlation functions between the �� fields
given by

G��r� = ����r���
* �0� , �4.2�

where �� 	x ,y
, whereas the second type measures fluctua-
tions of the Ising-like order parameter Eq. �4.1�

G��r� = ���r���0� , �4.3�

with angular brackets indicating a spatial average in the
ground state and the overline denotes an average over mul-
tiple realizations of disorder Nrd�L�. As L becomes large both
����r� and ���r� tend to zero, and the connected and dis-
connected correlation functions are equivalent. Note that the
definition of G��r� distinguishes between regions with strong
unidirectional order with � /2 relative orientation.

FIG. 5. �Color online� The
density fluctuations ���r� for a
CDW period of four lattice spac-
ings �p=4� on a 100�100 lattice
for v=−0.1 �left column�, v=0.0
�center column�, and v=0.1 �right
column� with h0=0.0, 0.6, and 1.2
from top to bottom for one ran-
dom field configuration. The cen-
tral row was constructed using the
values of �x,y from Figs. 2–4.
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For sufficiently large variances in the magnitude of the
random field, we expect that both Eqs. �4.2� and �4.3� will be
characterized by exponential decays of the form

G��r� � e−r/��

G��r� � e−r/��, �4.4�

where �� and �� are their respective correlation lengths.
G��r� and G��r� are shown for distances up to 40 lattice
spacings for v=−0.1, 0.0, and 0.1 in Fig. 6.

All correlations appear to decay exponentially for h0
0.4, and the most striking differences between G��r� and
G��r� can be seen at r=0 by comparing ���

2 �0� and ��2�0�.
The xy-interaction parameter v has little effect on the scale
of the background CDW order, whereas the background
Ising-like order, measured by G��0�, increases by three or-
ders of magnitude as v changes from −0.1 to 0.1. In addition,
it appears that �after proper finite size scaling� G��0� is es-
sentially a monotonically decreasing function of h0 from the
checkerboard to stripe parameter regime. The two insets in
Fig. 6 clearly show, however, that the slope of G��0� vs h0

changes from positive to negative near v=0.0.
In order to determine the decay constants associated with

G��r� and G��r�, we have performed a discrete Fourier

transform of the disorder-averaged correlation functions and
fit them to a Lorentzian in k-space for each linear system
size, xy interaction, and random field strength. The actual
correlation length is assumed to be equal to the width of the
Lorentzian. Finite size scaling was then performed for each
value of v and h0, as shown for v=−0.1 and h0=0.6 in Fig. 7
to extract approximate infinite system size values of �� and
��. The results of the finite size scaling procedure can be
seen in Fig. 8 where we plot the decay constants associated
with Gx and G� as a function of random field strength h0 for
various values of v, the error bars in the fits are on the order
of the symbol sizes.

For a fixed value of v, both �x and �� decrease monotoni-
cally as a function of disorder strength. The dependence of
correlation lengths on the xy coupling v for a fixed random
field strength is more interesting, as both correlation lengths
are nonmonotonic functions of v. Changing v from −0.1 to
0.0, the correlation length �x increases by almost ten lattice
spacings in the regime of moderate disorder strength. This
increase can probably be attributed to the fact that for v
=0.0, our model decomposes into two completely uncoupled
unidirectional CDWs with ordering in the x and y direction,
respectively. As disorder has a weaker influence on a unidi-
rectional CDW as compared to a checkerboard CDW, this
dependence of the correlation length on the value of v is

FIG. 6. �Color online� Selected
G� and G� correlation functions
for v=−0.1,0.0,0.1 and h0

=0.4,0.6,0.8,1.0,1.2 �legend ap-
plies to all panels�, which were
averaged over 100 realizations of
disorder in a 100�100 sample.
The insets show ��2�0� vs h0 for
v=−0.1 �upper right� and v=0.1
�lower right�.
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plausible. A further increase of v to positive values leads to a
reduction of �x.

As v controls the degree of stripe order, it is not surprising
that the correlation length for the Ising-like order parameter
increases from only a few lattice spacings for v=−0.1 to 20
to 40 lattice spacings for v=0.1 in the regime of moderate
disorder strength. It is important to note that for v=−0.1 and
v=0.0, Ising correlations are exclusively due to disorder
fluctuations. When v approaches zero coming from negative
values, fluctuations of the two fields �x and �y are increas-
ingly independent, and Ising correlations increase. When

moving further into the stripe regime, we find ���v=0.1�
	���v=0.2� for all values of h0. This can be attributed to the
sharpening of domain walls between striped regions with
relative orientation � /2, allowing them to better accommo-
date the value of the local random field, increasing their
overall length.

While �x reaches a maximum value at v=0, �� peaks at
v=0.1 �see inset of Fig. 8�. The fact that these peaks occur at
different values of v leads to the interesting situation that
��	�x for positive v. Hence, with respect to the analysis of
experimental data, ��	�x is a clear signature for a striped
charge order if no random potential was present. In the limit
of large v, the system breaks up into domains with either �x
or �y order and the correlation lengths �x and �� become
equal to each other.

V. EMPIRICAL DETERMINATION OF STRIPENESS

In Sec. IV, the analysis of correlation functions exploited
our ability to calculate the effective Ising-like order param-
eter defined in Eq. �4.1� using the ground state values of the
independent CDW order parameters �x,y. However, we wish
to make contact with the STM experiments discussed in Sec.
I, which measure the spatial dependence of the local density
of states �corresponding to the density fluctuations measured
in this study�. Therefore, it would be useful to develop a
method of analyzing ���r� directly, which might expose any
underlying local Ising-like correlations that are not readily
apparent in either real or Fourier space.

With this goal in mind, we propose a method for analyz-
ing experimentally measured STM data on the spatially vary-
ing DOS. We begin by defining an effective local Ising-like

order parameter �̃�r� at each of N data points in a LDOS
dataset through the following procedure, with more detail
provided in the Appendix. �i� Identify the wave vectors
Kx ,Ky, which describe the CDW order, and determine the
average number of data points np corresponding to a single
period in either the x or y direction. In this study, we have
fixed p=4, K�= �2� / pa�ê� and only sample data points that
are commensurate with the lattice so np= p. �ii� Surround
each data point labeled by r with a np�np box �r �depicted
in Fig. 9�, which is “centered” as close to r as possible. �iii�

FIG. 7. �Color online� Finite size scaling of the correlation
lengths �x, �y, and �� using system sizes of L
= 	20,32,48,64,100
 for v=−0.1 and h0=0.6. y intercepts were
extracted to approximate L→�.

FIG. 8. �Color online� The correlation lengths associated with
the exponential decay of Gx�r� and G��r� extracted from finite size
scaled Lorentzian widths in Fourier space. Symbol type denotes
different values of v; closed symbols with solid lines refer to �x, and
open symbols with dashed lines correspond to ��. The inset shows
the two types of correlation lengths plotted for fixed h0 as a function
of v. Note that the maximum values occur at different values of the
xy coupling.

FIG. 9. �Color online� One of N 4�4 boxes used in the calcu-
lation of S��r ,r�−r��. Here, �r has relative site labels 0 to 15 and
is centered at site 5 with r� currently located at site 10.
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Define a local density-density correlation function, which
lives in each np�np box �the smallest that contains enough
information to resolve the wave vectors 	±Kx , ±Ky
� that is
arbitrarily assigned to the central point. The result is N np
�np matrices

S��r,r� − r�� = ����r�����r��r�−r���r
�5.1�

where the right-hand side of Eq. �5.1� indicates an average
over all sites r���r and whose rows and columns are la-
beled by the x and y components of r�−r� employing peri-
odic boundary conditions for the box. The specific form of
one of the matrices contributing to this sum is given in Eq.
�A1�. �iv� Perform a local discrete Fourier transform of Eq.
�5.1� using only those points in �r

S��r,k� =
1

np
2 �

r���r

S��r,r��e−ik·r� �5.2�

for k� 	±Kx , ±Ky
 at each of the N boxes. �v� Finally, define
an effective local Ising-like order parameter as the difference
of local structure factor amplitudes at ±Kx and ±Ky scaled by
their sum inside each box

�̃�r� =
S��r,Kx� + S��r,− Kx� − S��r,Ky� − S��r,− Ky�
S��r,Kx� + S��r,− Kx� + S��r,Ky� + S��r,− Ky�

.

�5.3�

We may now directly compare Eqs. �4.1� and �5.3� for dif-
ferent values of v at fixed h0 as seen in Fig. 10. The similar-

ity between ��r� and �̃�r� is striking and shows both envi-
rons of checkerboard order �dark regions, ��x�r��= ��y�r���
and stripe order �light regions, ��x�r��� ��y�r��=0�.

The agreement between the left and right panels in Fig. 10
can be further quantized by defining an equal point correlator

Q =
���r��̃�r� − ���r���̃�r�

����̃

, �5.4�

where �� is the standard deviation of ��r�

�� = ���2�r� − ���r�2. �5.5�

Using this definition, we find values for Q of 0.62, 0.92, and
0.71 for h0=1.0 and v=−0.1, 0.0, and 0.1. The smaller cor-
relations for v= ±0.1 are due to the fact that �r cannot be
constructed symmetrically about the site r as we need to
resolve the specific wave vectors 	±Kx , ±Ky
, and thus, small
regions with rapid changes in �x,y �sharp domain walls� will

be poorly reproduced by the effective field �̃.
A further comparison can be made by examining the

disorder-averaged values of the magnitudes of the direct and
effective Ising-like order parameters,

��� = ����r��

��̃� = ���̃�r�� , �5.6�

which are shown in Fig. 11 for various values of v as a
function of disorder. Again we observe significant agreement
between the direct and effective Ising-like order parameters,

now having averaged over 100 realizations of disorder. At
h0=0.0, we recover the results that in the disorder-free theory
��� should be identically zero for v�0 and equal to one for
v	0. Increasing disorder causes a smooth increase in unidi-
rectional order for v�0 and a reduction for v	0 with the
effective order parameter having a slightly larger dependence
on h0. For v=0.0, the magnitude of Ising-like order quickly
jumps to a value near 0.5.

The concurrence between ��r� and the effective object

�̃�r� inferred from the scaled difference in local structure
factor peaks amplitudes at wave vectors ±Kx and ±Ky is not
surprising in the context that they are both calculated from
the same underlying complex fields �x,y in the condensed
phase. However, the utility of Eq. �5.3� becomes apparent
when considering the plethora of experimental STM spectra
where only the LDOS is measured and the underlying order
is a topic of hot debate. The current analysis of such spectra
involves performing a discrete Fourier transform over the
entire field of view. In real materials, disorder plays an im-
portant role, and short density-density correlation lengths are
often observed. Therefore, such a global Fourier transform
discards a large amount of relevant local information which
could, in principle, be used to probe any hidden electronic
structure.

FIG. 10. �Color online� A comparison between the magnitude of

the direct ��, left-panels� and effective ��̃, right panels� Ising-like
order parameters for h0=1.0 and v= 	−0.1,0.0,0.1
 for a particular
realization of disorder in a 100�100 sample with np= p=4.
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VI. UNCOUPLED THEORY

In the limit of large disorder a number of results can be
explained for the uncoupled theory with v=0. On examina-
tion of the various correlation lengths in Fig. 8, it is apparent
that �x is almost twice as large as �� for v=0. This can be
understood with the help of an approximate analytical argu-
ment: for v=0, the lattice model Eq. �3.1� reduces to two
uncoupled unidirectional CDWs in the x and y directions.
Concentrating on the numerator of the Ising order parameter
�Eq. �4.1�� for the moment, in the case v=0 the correlation
function of � is then proportional to ���x�r��2��x�0��2. If
fluctuations of �x were described by a simple Gaussian
theory, this would imply �x=2��, which is indeed approxi-
mately found in Fig. 8.

A similar approach can be used to account for the satura-

tion of ��� and ��̃� to 0.5 for v=0 as seen in Fig. 11. Again if
we assume uncoupled fluctuations in �x,y described by a
normal distribution with mean 0 and variance ��

2 , we can
directly calculate the expectation value of � by performing
integrals in polar coordinates

����x�2 − ��y�2�2

���x�2 + ��y�2�2� =
1

2
. �6.1�

VII. CONCLUSIONS

This paper has characterized the correlations in a disor-
dered CDW state on the square lattice as a function of the
parameter v in F� �which measures the degree of unidirec-
tionality of the CDW order, v�0 corresponding to checker-
board states�, and the random field strength h0. We intro-
duced a number of diagnostics to study the nature of the
disordered state: the correlation lengths, ��, of the CDW
order, the correlation length �� of the Ising order associated

with the unidirectionality, the on-site amplitudes G��0�,
G��0�, of these orders, and also discussed in Sec. V how
closely related quantities could be measured directly in ex-
periments.

Our results are presented in detail in Secs. IV and V, and
here we highlight some notable features: �i� As is clear from
the insets of Fig. 6, for v�0, the strength of the Ising order
increases with random-field strength, whereas the opposite is
true for v	0. �ii� The correlation length ��	�� only for v
	0, and this can serve as a diagnostic for the sign of v in an
analysis of the experiments. �iii� We have shown that the
correlator S� in Eq. �5.1� can serve as a very faithful diag-
nostic of the structure of �, and this should easily enable us
to place experimental observations in the appropriate param-
eter space of the present theory.

A full interpretation of the experiments should include a
direct analysis of the experimental data along the lines pro-
posed here. Nevertheless, a comparison of the qualitative
structure of the figures presented here �especially Fig. 5�
with, e.g., the STM observations of Ca2−xNaxCuO2Cl2 by
Hanaguri et al.1 does indicate that this system has a value of
v close to zero and likely positive.

This would indicate that there exists more prominent uni-
directional correlations in the local density of states than
what is apparent from a visual inspection of the tunneling
spectra alone, especially in the presence of disorder. Such a
result is consistent with the emerging picture of universal
spin fluctuations measured by neutron scattering in
La2−xSrxCuO4 and YBa2Cu3O6+x thought to be described by
models of static or fluctuating stripes.23

For the future, our approach offers an avenue to quantita-
tively correlate the STM experiments with neutron scatter-
ing. In particular, after determining the appropriate parameter
regime of F� from an analysis of the STM data, the resulting
���r� configurations can be used as an input to determining
the dynamic spin structure factor, as discussed in recent
works.24,25

While this paper was being completed, we learned of re-
lated results obtained by Robertson et al.26
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FIG. 11. �Color online� A comparison of the disorder averaged

magnitudes of � and �̃ for a 100�100 sample as a function of the
variance of the random field. Finite size scaling appears to have

little effect on these results. Symbols show the value of ���̃�r��
while lines refer to ����r��.
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APPENDIX: LOCAL ISING-LIKE ORDER PARAMETER

This appendix provides more detail on the method used in
the calculation of the effective local Ising-like order param-

eter �̃�r� described in Sec. V for the specific case of np= p
=4. Consider Fig. 9, which shows one of N 4�4 boxes �r,

where the sites contained within the box are given the rela-
tive labels 0–15 and it is “centered” at the �1,1� point here
labeled 5.

For the particular case shown in Fig. 9 with r�=r10� , one of
the 16 matrices that contributes to the average S��r ,r�−r��
in Eq. �5.1� is written out explicitly as

S��r,r� − r�� = ¯ +
���r10� �

16 �
��14 + ��6 ��5 + ��7 + ��13 + ��15 2���4 + ��12� ��5 + ��7 + ��13 + ��15

2��2 2���1 + ��3� 4��0 2���1 + ��3�
��14 + ��6 ��5 + ��7 + ��13 + ��15 2���4 + ��12� ��5 + ��7 + ��13 + ��15

��10 ��9 + ��11 2��8 ��9 + ��11

� + ¯ ,

�A1�

where we have employed the shorthand notation ��i����ri��. After performing the average over all r�−r���r, i.e., calcu-
lating all 16 matrices at each site, S��r ,r�−r�� is Fourier transformed over the relative coordinates in the box using Eq. �5.2�
to give S��r ,k�. This expression may then be evaluated at ±Kx and ±Ky using Eq. �5.3� to give the effective Ising-like order

parameter �̃�r�.

*On leave from the Institut für Theoretische Physik, Universität zu
Köln, D-50923, Germany.
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