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We set up a melting model for vortex lattices in high-temperature superconductors based on the continuum
elasticity theory. The model is Gaussian and includes defect fluctuations by means of a discrete-valued vortex
gauge field. We derive the melting temperature of the lattice and predict the size of the Lindemann number. Our
result agrees well with experiments for YBa2Cu3O7−�, and with modifications also for Bi2Sr2CaCu2O8. We
calculate the jumps in the entropy and the magnetic induction at the melting transition.
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I. INTRODUCTION

The magnetic flux lattices in high-temperature supercon-
ductors can undergo a melting transition as was first sug-
gested by Nelson in 1988.1,2 Previously, Brezin et al.3 had
calculated a first-order liquid-to-solid phase transition by
renormalization group methods.3 Since then detailed proper-
ties of this transition have emerged from various theoretical
and experimental papers.

Most prominent are computer simulations of the Langevin
equation4 for the dynamics of the vortices, or Monte Carlo
simulations of an XY-type model5 coupled to an external
magnetic field. Analytic approaches are based mainly on the
Ginzburg-Landau model6 or on elastic models of the vortex
lattice. The simplest estimates for the transition temperature
in the vortex lattice came from an adaption of the famous
Lindemann criterion of three-dimensional ordinary crystals.7

In the formulation of Houghton et al. and Brandt,8 the crite-
rion states that the vortex lattice undergoes a melting transi-
tion once the mean thermal displacement �u2�1/2 reaches a
certain fraction of the lattice spacing a���0 /B�1/2, where
�0 is the flux quantum and B the magnetic induction. The
ratio cL��u2�1/2 /a is the characteristic Lindemann number,
which should be independent of B. Its value is not predicted
by Lindemann’s criterion. It must be extracted from experi-
ments, and is usually found to lie in the range cL�0.1–0.3.

The most prominent examples of high-temperature super-
conductors which exhibit vortex lattice melting are the an-
isotropic compound YBa2Cu3O7−� �YBCO�, and the strongly
layered compound Bi2Sr2CaCu2O8 �BSCCO�. Decoration
experiments9 on BSCCO show the formation of a triangular
vortex lattice; neutron scattering on YBCO shows a tilted
square lattice of vortices10 close to the melting region, the
latter being favored by the d-wave symmetry of the order
parameter and the anisotropy of the crystal.11 An explicit
calculation of the Lindemann number cL= �u2�1/2 /a for
YBCO can be found in Ref. 8 and for BSCCO in Ref. 12.

In this paper, we present a theory that is capable of speci-
fying the size of the Lindemann number cL, and predicting
corrections to the criterion. Our theory is based on a simple
Gaussian model which takes into account both lattice elas-
ticity and defect degrees of freedom in the simplest possible
way. The relevance of defect fluctuations for the understand-
ing of melting transitions is well known. For ordinary crys-

tals, this is textbook material.7 In the context of vortex melt-
ing it was emphasized in Ref. 13. For ordinary crystals, the
size of the Lindemann number has been calculated success-
fully by means of Gaussian lattice models with elastic and
defect fluctuations, which clearly display first-order melting
transitions in three dimensions and either first-order or a se-
quence of continuous transitions in two dimensions.

An important quality of these models is that in the first-
order case, where fluctuations are small, they lead to a simple
universal melting formula determining the melting point in
terms of the elastic constants. The universal result is found
from a lowest-order approximation, in which one identifies
the melting point with the intersection of the high-
temperature expansion of the free energy density, dominated
by defect fluctuations with the low-temperature expansion
dominated by elastic fluctuations. The resulting universal
formula for the melting temperature determines also the size
of the Lindemann number. Recently, the results of Ref. 7 for
square crystals were successfully extended to face-centered
and body-centered cubic lattices in three dimensions14 and
also to two-dimensional triangular lattices.15 A similar inter-
section criterion was also used for the melting point of vor-
tex lattices in the Abrikosov approximation of the Ginzburg-
Landau model6 useful for YBCO. Here we shall apply our
defect model to calculate the melting curves, the entropy
jumps, and magnetic induction jumps of the vortex lattices in
YBCO and BSCCO. We do not discuss in this work effects
on the vortex lattice from other sources than defect fluctua-
tions which can give rise to tricritical points and glass
transitions.16,17 Theoretical work on this subject can be found
in Refs. 18–20. There is in principle no problem of adding
pinning in our formalism. For simplicity, we shall confine
our discussion to the defect mechanism of melting.

The melting criterion will be derived in Sec. II. The cal-
culation of the melting temperatures, the entropy jumps, and
the jumps of magnetic induction for YBCO and BSCCO is
carried out in Sec. III.

II. MELTING CRITERION

Due to the large penetration depth �ab in the layers in
comparison to a we have to take into account the full non-
local elasticity constants when integrating over the Fourier
space, as emphasized by Brandt in Ref. 21. For our Gaussian
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model, the partition function of the vortex lattice can be split
into Z=Z0Zfl where Z0 is the partition function of the rigid
lattice and Zfl is the thermally fluctuating part calculated via
the elastic Hamiltonian plus defects. Due to the translational
invariance of the vortex lattice in the direction of the vorti-
ces, which we shall take to be the z axis, we may simply
extend the models on square7 and triangular lattices15 by a
third dimension along the z axis, which we artificially dis-
cretize to have a lattice spacing a3, whose value will be fixed
later. The elastic energy is

Eel =
v
2�

x
��iui��c11 − 2c66���iui� +

1

2
��iuj + � jui�

�c66��iuj + � jui� + ��3ui�c44��3ui� . �1�

The subscripts i , j have values 1 , 2 and l , m , n have values
1 , . . . ,3. The vectors ui�x� are given by the transverse dis-
placements of the line elements of the vortex lines with co-
ordinate x. We have suppressed the spatial arguments of the
elasticity parameters, which are really functional matrices
cij�x ,x���cij�x−x��. Their precise forms were calculated by
Brandt.21 The volume of the fundamental cell v is equal to
a2a3 �square� or a2a3

�3/2 �triangular�. For a square lattice,
the lattice derivatives �i in Eq. �1� are given by �i f�x�
= 	f�x+aei�− f�x�
 /a and �3f�x�= 	f�x+a3e3�− f�x�
 /a3. For
a triangular lattice, the xy part of the lattice has the link
vectors ±ae�m� with e�1,3�= �cos 2� /6 , ±sin 2� /6 ,0� and
e�2�= �−1,0 ,0�. The lattice derivatives around a plaquette are
defined by ��1�f�x�= 	f�x+ae�1��− f�x�
 /a, ��2�f�x�= 	f�x�
− f�x−ae�2��
 /a, ��3�f�x�= 	f�x−ae�2��− f�x+ae�1��
 /a. From
these we define discrete Cartesian lattice derivatives used in
the Hamiltonian �1� �i f�x�= �2/3�e�l�i��l�f�x� and �3f�x�
= 	f�x+a3e3�− f�x�
 /a3 transforming like the continuum de-
rivative with respect to the symmetry group of the lattice.15

Therefore, the Hamiltonian �1� has the full symmetry of the
triangular lattice and the correct continuum elastic energy for
zero lattice spacing.

The quadratic approximation to the energy �1� is so far
only appropriate for the low-temperature classical thermody-
namic behavior. It is possible to extend the Hamiltonian at
the quadratic level in such a way that the range of applica-
bility extends beyond the melting transition. This is possible
by the introduction of integer-valued defect gauge fields. We
observe that the displacement fields in �1� are restricted to
values within the fundamental cell. The defect gauge fields
enter to characterize the jumps of the displacement fields
across the Volterra surface.7,15 As usual for gauge fields we
choose a minimal coupling to the lattice displacements. On
account of the three lattice derivatives per fundamental cell
and further two dimensions for the displacements there are
six independent integer-valued gauge fields per fundamental
cell corresponding to the various defect configurations. One
can eliminate two of them �we choose the defect fields cor-
responding to jumps in the z direction� by relaxing the re-
striction of the displacement fields to the fundamental cell
�elimination of gauge freedom�. See the discussion in Ref. 7
for square lattices. A similar consideration was also carried
out in Ref. 15 for the two-dimensional triangular lattice

where the elimination of the gauge degrees of freedom is
more complicated due to the absence of the z direction. Fi-
nally, we can eliminate one more integer-valued defect field
since the elastic energy in �1� depends only on the displace-
ments ui via the strain tensor �iuj +� jui.

7 In summary, only
three independent integer-valued fields have to be included
in �1� to obtain the elastic energy of the vortex lattice includ-
ing defects. By taking into account the above considerations
one can then easily determine the partition function includ-
ing defects for the square vortex lattice by using the consid-
erations in Ref. 7 and for the triangular ones by using Ref.
15.

By using a Hubbard-Stratonovich decoupling of the qua-
dratic displacement terms in �1�, the stress representation 7 of
the partition function becomes

Zfl = det� c66

4�c11 − c66�
�1/2

det� 1

2��
�5/2



x
�


i�m
�

−	

	

d
im�
��


m
�

nm�x�=−	

	 ���
−	

	 du

a �exp�− �
x

1

2�

� ��
i�j


ij
2 +

1

2�
i


ii
2 − ��

i


ii� c11 − 2c66

4�c11 − c66���i


ii�
+ �

i


i3
c66

c44

i3��

�exp�2�i�
x
��

i�m

�mui
im + �
i�j

Dij
ij�� . �2�

The parameter � is given by �=vc66/kBT�2��2. 
ij represent
stress fields.7 The matrix Dij�x� in Eq. �2� is a discrete-valued
local defect matrix composed of integer-valued defect gauge
fields n1 , n2 , n3 for square7 and triangular vortex lattices15

as follows:

Dij
� = �n1 n3

n3 n2
� , �3�

Dij
� =�

1

2
n1

1
�3

�n1 − n2� +
2
�3

n3

1
�3

�n1 − n2� +
2
�3

n3 −
1

2
n1 − n2

� .

�4�

The vortex gauge fields specify the Volterra surfaces in units
of the Burgers vectors. By summing over all n1,2,3�x�, the
partition function Zfl includes all defect fluctuations, disloca-
tions as well as disclinations. There is a constraint for a
vortex lattice which does not exist for ordinary three-
dimensional lattices. Dislocations in the vortex lattice can be
either screw or edge type, but in either case the defect lines
are confined in the plane spanned by their Burgers vector and
the magnetic field.13,22 The reason is that the flux lines in a
vortex lattice cannot be broken. This results in the constraint
D11=−D22 on the defect fields.

We now calculate the low-temperature expansion of the
partition function Zfl to lowest order, which includes only the
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nm=0 term. By carrying out the integration over the displace-
ment fields ui�x� in Eq. �2� we obtain, as in Refs. 7 and 15,
the leading term in the low-temperature expansion of the free
energy

Zfl
T→0 = �a3

a
�2N 1

det	�2���c44/c66

exp�− N �

i��1,6�
lii� , �5�

where

lii =
1

2

1

VBZ
�

BZ
d2k dk3ln� ciia3

2

c44
Kj

*Kj + a3
2K3

*K3� . �6�

Here Km is the eigenvalue of i�m and N is the number of
vertices in the lattice. The momentum integrations in �6� run
over the Brillouin zone of the vortex lattice whose volume is
VBZ= �2��3 /v, as indicated by the subscript BZ.

Next we calculate the high-temperature expansion Zfl
T→	

to lowest order. By carrying out the integration over the dis-
placement fields ui�x� in Eq. �2� and further by summing
over the defect fields nm under the condition D11=−D22 men-
tioned above, it turns out that the stress fields 
12 and 
u
�
11−
22 can have only integer numbers. Doing the inte-
grals over the stress fields 
i3 and 
g�
11+
22 we obtain,
in the lowest-order high-temperature limit, corresponding to

12=0 and 
u=0,

Zfl
T→	 = �a3

a
�2NCN

2N

1

det	�2���2c44/c66

e−Nh �7�

with

h =
1

2

1

VBZ
�

BZ
d2k dk3ln�1 +

c11 − c66

c44

Kj
*Kj

K3
*K3

� . �8�

The constant C has the values C�=1 for the square vortex
lattice and C�=�3 for the triangular one.

In the low-temperature expansion representing the solid
phase, defect field configurations nm�0 correspond to dislo-
cations and disclinations giving finite-temperature correc-
tions to the free energy −ln�Z� /kBT. These corrections are
exponentially small with an exponent proportional to −�.7,15

In contrast to this, corrections to the high-temperature expan-
sion in the fluid phase corresponding to stress configurations

12�0 and 
u�0 of integer values result in temperature
corrections to the free energy which are also exponentially
small with an exponent proportional to −1/�. The structure
of the high- and low-temperature corrections to the partition
function is extensively discussed in Refs. 7 and 15 for ordi-
nary crystals, and can be easily transferred to our case of
vortex lattices. It was shown in Refs. 7 and 15 for the two-
dimensional square and triangular as well as the three-
dimensional square crystal that the exponentially vanishing
higher-order corrections to the low- and high-temperature
expansion of the free energy are negligible in the determina-
tion of the transition temperature. This is particularly true for
the three-dimensional crystal �see Ref. 7, p. 1082� which we
take as a justification to restrict our calculation to lowest
order in this paper.

From the partition function �2� with no defects �nm=0� we
obtain for the Lindemann number cL= �u2�1/2 /a the momen-
tum integral

cL
2 =

a3
2

a2v

kBT

VBZ
�

BZ
d2k dk3

1

c44
�

i=1,6

1

ciia3
2

c44
Kj

*Kj + a3
2K3

*K3

.

�9�

This can be simplified by taking into account that c11 is much
larger than c66,c44 in the relevant regime.21,23 As announced,
we find the melting temperature from the intersection of low-
and high-temperature expansions, obtained by equating
Zfl

T→0=Zfl
T→	. By taking into account det	a3

2�3
*�3
=1 we ob-

tain h , l11� l66, and further that the i=1 term in Eq. �9� is
much smaller than the i=6 term. In the following analytic
discussion �but not in the numerical plots� we neglect these
small contributions. The temperature of melting is then given
by the simple formula

kBT

v

1

det1/N	c66

C =

e−l66

�
, �10�

where det	c66
 is the determinant of the N�N functional
matrix c66. The elastic moduli c44 and c66 at low reduced
magnetic fields b�B /Hc2�0.25 can be taken from Brandt’s
paper21

c66 =
B�0


�8��ab�2 , �11�

c44 =
B2

4��1 + �c
2k2 + �ab

2 k3
2�

+
B�0

32�2�c
2 ln

1 + 2�c
2/�u�2 + �ab

2 k3
2

1 + �c
2KBZ + �ab

2 k3
2

+
B�0

32�2�ab
4 k3

2 ln
1 + �ab

2 k3
2/�1 + �ab

2 KBZ
2 �

1 + �ab
2 k3

2/�1 + 2�ab
2 /�u�2�

, �12�

where �c is the penetration depth in the xy plane, 
=1, and
KBZ is the boundary of the circular Brillouin zone KBZ

2

=4�B /�0. At high fields �b�0.5�, c66 is altered by a fac-
tor 
�0.71�1−b�, and the penetration depths in c66,c44

are replaced by �̃2=�2 / �1−b�, where � denotes either �ab

or �c. In addition, the last two terms in c44 are replaced

by B�0 /16�2�̃c
2. For YBCO we have24 ��T�=��0�	1

− �T /Tc�
−1/3, ��T�=��0�	1− �T /Tc�
−1/2 and for BSCCO
��T�=��0�	1− �T /Tc�4
−1/2, ��T�=��0�	1− �T /Tc�4
1/2 / 	1
− �T /Tc�2
.25 When calculating c44 in Eq. �12� we have used
a momentum cutoff in the two-vortex interaction potential
k�2/ �u2�1/2, and not the inverse of the correlation length
1/� as in Ref. 21. The cutoff is due to thermal softening,7

and becomes relevant for �u2�1/2 /��1, or equivalently for
cL

�2��Hc2�T� /B�1, which is satisfied in the melting re-
gime of BSCCO, but not for YBCO.

It remains to determine the effective lattice spacing a3
along the vortex lines. An elementary defect in the vortex
lattice �arising for example from a crossing of two vortex
strings� occurs over a typical length scale in the z direction
determined from the condition that the sum of elastic dis-
placement energy and the energy required to stretch the line
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against the line tension is minimal. It is the elastic energy of
this smallest defect that has to be taken into account in our
model. The energy of an ensemble of dislocations is deter-
mined by the interplay of elastic energy of small displace-
ments and integer-valued defect fields. The relevant part of
the free energy is given by the discretized free energy
−ln�Z0Zfl�kBT 	Eq. �2�
 in which a3 is equal to the above
length scale in the z direction. To determine this, we insert
the variational ansatz for the transverse displacement field
ui=�i,1A0exp	−2 �z � /a3
 into the continuum version �in the z
direction� of the elastic energy �1� and approximate −�2

2

��K2
2��KBZ

2 /4 in Eel and K2��K2��KBZ
2 /2 in the elastic

constants, where the average �¯� was taken with respect to a
circular Brillouin zone. The optimal length scale a3 is chosen
such that Eel is minimal for a fixed amplitude A0�a corre-
sponding to a typical defect elongation.

III. APPLICATION TO YBCO AND BSCCO

In the following, we treat first the more isotropic square
vortex crystal YBCO �a=��0 /B�. From c66 and c44 for
YBCO, the optimal length scale is given by a3
=4a�ab /�c
�1−b�1/2. When comparing the melting criterion
of the defect model in Eq. �10� with the Lindemann criterion
obtained by equating the parameter �9� to a universal num-
ber, we obtain identical results when taking into account that
the integrand in �9� and in l66 of Eq. �6� receive their main
contributions from the region k���k2��KBZ/�2. We can
approximate k3�0 in this region, resulting in a3

2c66/a2c44
�4/�. With the same approximation in Eqs. �6� and �9� we
can perform the integrals numerically. Then we obtain from
the melting condition �10� precisely the Lindemann criterion
in which the Lindemann number �9� is predicted to be

kBTm

4	c44�KBZ/�2,0�c66�KBZ/�2,0�
1/2a3
� cL

2 � �0.18�2.

�13�

Denoting the spacing between the CuO2 double layers by as
we obtain for the entropy jump per double layer and vortex

�Sl � kBTm��/�Tm��as/a3�ln	Zfl
T→	/Zfl

T→0
 . �14�

Inserting Eqs. �5� and �7�, this becomes

�Sl �
kBTmas

a3

�

�Tm
ln

kBTm/a3

	c44�KBZ/�2,0�c66�KBZ/�2,0�
1/2
.

�15�

Finally, we make use of the Clausius-Clapeyron equation
which relates the jump of the entropy density across the
melting transition to the jump of the magnetic induction by
�Sla3 /vas=−�dHm /dT��B /4�. Here Hm is the external
magnetic field on the melting line. Combining the Clausius-
Clapeyron equation with Eqs. �12� and �15� we obtain, with
the abbreviation �m�Tm /Tc, the following relations near Tc:

Bm�T� �
12


162�4

�1 − T/Tc�4/3cL
4�0

5

�kBT�2�ab
2 �0��c

2�0�
,

�Sl �
�
as

6a

�c

�ab

kB

�1 − �m�
�

2.7

103

ascL
2�0

2

Tc�1 − �m�1/3�ab
2 �0�

,

�B �
�
�

2a�0

�c

�ab
kBTm �

2.5

102

�1 − �m�2/3cL
2�0

�ab
2 �0�

. �16�

These results agree with the general scaling results in Ref.
26, with the advantage that here the prefactors are predicted
whereas those in Ref. 26 had to be determined by fits to
experimental curves �there is only a slight discrepancy be-
cause we use a different temperature dependence of the pen-
etration depth�.

Next, we calculate the corresponding expressions in
the case of the more layered crystal BSCCO 	a
= �21/2 /31/4���0 /B
. First, we have to determine the disloca-
tion length scale a3 in this case. For dislocation moves we
have �u2�1/2�1/KBZ. This means that we can neglect the last
two terms of c44 in Eq. �12�, coming from the self-energy of
the vortex line, when determining a3. Remembering this we
obtain by a similar procedure as for YBCO the dislocation
length scale a3�4a�2�ab /�c

��. From this we find
a3

2c66/a2c44�1, resulting in l66�0. By taking into account
that B�3�ab

2 /32�0�1 on the melting line we obtain that
c44�k ,k3� for �k3 � �� /a3 is dominated by the last term in
�12�. Then we obtain

c44�k,k3� � �
B�0

32�2�ab
2 �1 + �ab

2 KBZ
2 �

for k3 �
1

�ab
,

B�0ln�1 + 2B�ab
2 /�0cL

2�
32�2�ab

4 k3
2 for k3 �

1

�ab
.

�17�

By using these values we obtain by numerical integration
of �9�

cL
2 �

kBTm � 0.36

a3�c66�KBZ/�2,0�c44�KBZ/�2,0�
+

kBTma3 � 1.60

a4c44�KBZ/�2,1/a3�

�
kBTm�ab

2 � 138

�0
2a

�1 + �ab
2 KBZ

2 +
kBTm�ab

2 �c
2 � 137

�0
2a3ln�1/cL

2�
�ab

�c
.

�18�

The first term comes from the integration region �k3 �
�1/�ab, the second from the region 1/�ab� �k3 � �� /a3 in
Eq. �9�.

From our melting criterion �10� and the Clausius-
Clapeyron equation 	where dHm /dT�dBm /dT because
Bm�T��Hc1�T� �Ref. 27�
, we obtain for BSCCO

Bm�T� �
1

192

1
�3�7

	1 − �T/Tc�4
2

�ac
2 �0��c

2�0�
�0

5

�kBT�2 ,

�Sl �
��askB

4�2a

�c

�ab

1 + 3�m
4

1 − �m
4 �

2.9

104

as�1 + 3�m
4 ��0

2

Tm�ab
2 �0�

,

�B �
�3/2

2�2a

�c

�ab
kBTm �

1.8

103

�1 − �m
4 ��0

�ab
2 �0�

. �19�
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Parameter values for optimally doped YBCO �BSCCO�
are given by24 �ab�0��1186 Å (�ab�0��2300 Å), �ab�0�
�15 Å (�ab�0��30 Å), CuO2 double-layer spacing as

=12 Å �as=14 Å�, Tc=92.7 K �Tc=90 K� and the anisotropy
parameter �=�c /�ab�5 ���200�.

We now calculate numerically the melting curves, the as-
sociated Lindemann parameter cL, the entropy and the mag-
netic induction jumps �Sl and �B from the intersection cri-
terion of the full low- and high-temperature expressions �5�
and �7� without further approximation. To accomplish this,
we use the elastic constant c11 given by Brandt in Ref. 21.
The intersection criterion of the low- and high-temperature
expansions of the partition function is then at least in the
case of BSCCO a complicated integral equation via the de-
pendence of c44 on the Lindemann parameter cL. One can
solve this integral equation by numerical methods. The re-
sults are shown in Figs. 1 and 2.

IV. DISCUSSION

Our approximate analytic results �16� and �19� for YBCO
and BSCCO turn out to give practically the same curves. For
comparison, we show in Figs. 1 and 2 the experimental
curves for YBCO of Refs. 28–30 and for BSCCO of Refs. 27
and 31. The good agreement in Fig. 1 with the theoretical
curves based on Eq. �13� shows that the Lindemann number
is independent of the magnetic field for YBCO for the entire
temperature range. For BSCCO the agreement is good for
smaller B fields, but the second term in Eq. �18� introduces
some dependence of the Lindemann number on B, largest
near B=0. There is some disagreement in Fig. 1 at larger B
and in Fig. 2 at small B. This is not surprising since our
vortex lattice model cannot be a good approximation in these
regimes. At high B, the discrepancy comes mainly from Jo-
sephson decoupling of the layers,32 most pronounced for the

strongly anisotropic BSCCO superconductor, which leads
also to large pinning effects.33 We think that this is also the
reason for the difference in the curves of Kadowaki et al. in
Ref. 31 and of Zeldov et al. in Ref. 27 shown in Fig. 2.
Pinning has the largest influence on the form of the melting
curve at high B,34 resulting in a decrease20 of �Sl and �B in
the limit of low temperatures shown by the curves of Zeldov
et al. Near B=0, our model does not include the increase of
the entropy coming from the thermal creation of vortices, in
addition to the ones caused by the external magnetic field
which form the lattice.35 Moreover, in YBCO order param-
eter fluctuations become important;36 these are ignored here.

Summarizing, we have obtained the melting curve, the
entropy, and the magnetic jump from a simple lattice defect
model, and derived the Lindemann rule, including the size of
the Lindemann number, and corrections to it. The determina-
tion of jump quantities over the phase transition cannot be
obtained by the simple Lindemann rule. Our curves agree
well with the experimental curves for YBCO and BSCCO
except at zero and large magnetic fields. The simplicity of
the model has allowed us to derive all results via analytic
approximations. Our defect model is the simplest extension
of the linear elasticity theory of vortex displacements. We
have merely added integer-value defect gauge fields which
introduce into the elasticity theory the rich physics of other
phases of the vortex lattice caused by defect fluctuations, in
particular the liquid phase and the associated melting transi-
tion.

FIG. 1. Melting curve B=Bm�T� for YBCO and BSCCO. The
experimental values are from Ref. 28 for YBCO and Ref. 27 for
BSCCO. The numbers on the theoretical melting curves are the
Lindemann numbers cL calculated from Eq. �9�.

FIG. 2. Entropy jump per double layer per vortex �Sl �first row�
and jump of magnetic induction field �B �second row� at the melt-
ing transition. The experimental values for YBCO are from Ref. 28
for �Sl, Ref. 29 for �B by superconducting quantum interference
device experiments �SQUID�, and Ref. 30 by torque measurements
�Torque�. The experimental values for BSCCO are from Ref. 31 by
SQUID measurements �SQUID� of the magnetic field and Ref. 27
by microscopic Hall sensors �Hall�.
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