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The existence of shell structure and the accompanying high degeneracy of electronic levels leads to the
possibility of strong superconducting pairing in metallic nanoclusters with N~ 10?—10% delocalized electrons.
The most favorable cases correspond to (a) “magic” clusters with strongly degenerate highest occupied and
lowest unoccupied shells and a relatively small energy spacing between them as well as to (b) clusters with
slightly incomplete shells and small Jahn-Teller splitting. It is shown that realistic sets of parameters lead to
very high values of 7, as well as to a strong alteration of the energy spectrum. The impact of fluctuations is
analyzed. Spectroscopic experiments aimed at detecting the presence of pair correlations are proposed. The
pairing should also manifest itself via odd-even effects in cluster spectra, similar to the case in nuclei.
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I. INTRODUCTION

The problem of the superconducting state of metallic
nanoparticles has attracted a lot of interest (see, e.g., Refs.
1-12 and the reviews in Refs. 13 and 14). However, the
experimental and theoretical studies have focused, mainly,
on relatively large nanoparticles (N=10*-10°, where N is
the number of delocalized electrons). In this paper we con-
sider superconducting pairing in small nanoclusters with N
~10?-10%. Our approach was previously outlined in short
communications.'> Here we present a detailed description
and some results.

The most distinguished feature of small nanoparticles is
the discrete nature of the electronic spectrum. In dealing with
small nanoclusters, N=~10?-10%, one might think>!? that
they do not display superconducting properties, because the
average level spacing (Ep/N~10°—10° K) greatly exceeds
the pairing energy gap. However, the presence of the so-
called shell structure leads to a more complex situation. It
turns out that for many real clusters the pattern of electronic
states is very different from an equally spaced level distribu-
tion. Instead, they contain highly degenerate energy levels,
or groups of very close levels, so that the energy spacing for
electronic states close to the Fermi level, Ep, is rather small.
The situation in such clusters is very favorable for pairing,
and one can even expect, as will be shown below, a giant
strengthening of the phenomenon relative to bulk samples.

The structure of the paper is as follows. Section II con-
tains a qualitative description of the pairing in nanoclusters
and the impact of shell structure. The main equations are
introduced in Sec. III. A detailed evaluation of the critical
temperature and the energy spectrum in the presence of pair-
ing is given in Secs. IV and V. Section V also contains an
analysis of the properties near 7. and a discussion of the role
of fluctuations. Pair correlation in some specific clusters is
described in Sec. VI. The manifestations of pair correlation
in small nanoclusters and the possibility of their experimen-
tal observation are discussed in Sec. VIIL
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II. SHELL STRUCTURE AND PAIRING: QUALITATIVE
PICTURE

Metallic clusters contain delocalized electrons, and their
states form shells similar to those in atoms or nuclei. This
shell structure has been extensively studied in both experi-
ment and theory. Theoretical treatments based on the density
functional approximation include both direct Coulomb and
exchange interactions. It has been demonstrated that such
treatments allow one to introduce an effective self-consistent
potential (Woods-Saxon, jellium model, etc.). Such an ap-
proach provides a good description of various experimental
data (see, e.g., Refs. 16-20 and reviews in Refs. 21-24). In
addition to the alkali-metal clusters in which shell structure
was originally discovered,? its presence has been detected
also for many other nanoclusters, such as Al, Ga, Zn, Cd, In,
etc.673! Shell structure has been observed in clusters con-
taining up to hundreds of delocalized electrons and reported
even in larger Ga clusters, N=7 X 10 (Ref. 27).

The presence of shell structure is manifested in the ap-
pearance of so-called “magic” numbers with N=N,—e.g.,
N,,=20,40,58,...,138,168,..., etc. Such clusters possess
completely filled electronic shells and, similarly to “inert”
atoms, are most stable. The “magic” clusters have spherical
shapes, and their electronic states are labeled by their orbital
momentum (/) and radial quantum number (n).

If the shell is not complete, the cluster undergoes a Jahn-
Teller distortion and its shape becomes ellipsoidal. This splits
the degenerate levels into sublevels labeled by the projection
of the orbital momentum (m). For our purposes, the most
interesting case corresponds to clusters containing a slightly
incomplete highest occupied shell (HOS). Then one can ex-
pect a small level splitting. Thus the presence of shell struc-
ture does, indeed, make the distribution of energy levels far
from equidistant.

The importance of shell structure and the corresponding
degeneracy was discussed in Refs. 6, 7, 11, and 12. In an
especially interesting paper,’” motivated by the discovery of
Cgo clusters and fulleride superconductivity in fullerines, it
was proposed that spherical clusters with a half-filled shells
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should possess high values of 7. However, in this situation
the cluster shape deformation would be very large, drasti-
cally decreasing 7. The author of Ref. 7 suggested that it
might be possible to employ a cluster network incorporating
charge transfer to overcome this problem. The idea of such a
superconducting molecular (or, more exactly, cluster) crystal
is very interesting. In the present paper we concentrate on
pairing in an isolated cluster. We will consider clusters with
almost filled shells to avoid large deformation.

The superconducting pairs are formed by electrons with
opposite projection of angular momentum (m,—m). In many
aspects the picture of pairing is similar to that in atomic
nuclei (see, e.g., Ref. 32 and the reviews in Refs. 24 and 33).
In both cases (nuclei and clusters) we are dealing with finite
Fermi systems and shell structures. The pairing states are
labeled by similar quantum numbers (m,—m). The manifes-
tation of pairing also has similarities (see below, Sec. VII).
However, for clusters we can develop a more microscopic
approach, thanks to the action of Coulomb forces and the
presence of two subsystems (electrons and ions). The pairing
is caused by the electron-vibrational coupling; i.e., the
mechanism is similar to that in the usual bulk superconduct-
ors.

The most favorable case corresponds to clusters in which
the HOS and lowest unoccupied shell (LUS) have high de-
generacies and, in addition, the spacing between them is rela-
tively small. The pairing effect strongly influences the clus-
ter’s energy spectrum, with the impact particularly strong for
clusters with slightly incomplete shells where the excitation
energy in the absence of pairing can be rather small. A de-
tailed theory will be described in the next section.

One should stress that the strength of pair correlation var-
ies for different clusters. Correspondingly, the critical tem-
perature 7. and the energy gap are strongly dependent upon
the cluster’s parameters, its shape, the strength of the cou-
pling, etc. We will consider a number of specific cases in the
subsequent sections. It is important that in some special, but
perfectly realistic situations one can obtain very large values
of T,. Qualitatively, this can be understood in the following
way. If the HOS is highly degenerate, this means that this
shell contains many electrons, which can be viewed as a
sharp peak in the density of states at the Fermi level. The
situation is similar to that studied in Ref. 34 for bulk mate-
rials; the presence of a peak in the density of states results in
a noticeable increase in 7.

One may also recall that, generally speaking, it is known
that size quantization leads to an effective increase in the
density of states, which can lead to an increase in T, (see,
e.g., Refs. 35 and 36). Shell structure in clusters corresponds
to an extreme case of size quantization, when the usual size
effect is enhanced by the large degeneracy of electronic
states. If, in addition, the energy spacing is relatively small
(see below), this leads to a large enhancement of the pairing
phenomenon.

III. MAIN EQUATIONS

Let us write down a general equation describing the pair-
ing in a metallic cluster. The electron-vibrational interaction,
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like in the usual case, is considered as the major mechanism
of pairing. However, as is known, the BCS formalism is

valid in the weak-coupling approximation (then TC<<ﬁ,

where Q) is the characteristic vibrational frequency). Since
we want to go beyond this restriction, we start with a more
general equation (cf. Refs. 37-39) which explicitly contains
the vibrational propagator. The equation for the pairing order
parameter A(w,) has the following form:

Aw)7= 723 3 Do, 0, F (0,). (D)

Here w,=(2n+1)7T, n=0,x1,+2,... (we employ the ther-
modynamic Green’s functions formalism; see, e.g., Ref. 40),

D(wn - wn’sﬁ) = ﬁz[(wn - wn’)2 + 62]—1 5

Fi(oy) = Moo, + & + A w,)]™! (1)

are the vibrational propagator and the Gor’kov pairing
function,*! respectively, £=E,—u is the energy of the sth
electronic state referred to the chemical potential w, V is the

cluster volume, 7=(I)2/MQ? is the Hopfield parameter, (I} is
the electron-ion matrix element averaged over electronic
states involved in the pairing (see, e.g., Refs. 42 and 43), M
is the ionic mass, and Z is the renormalization function (see,
e.g., Refs. 38 and 40).

Equation (1) contains a summation over all discrete elec-
tronic states. For “magic” clusters which have a spherical
shape, one can replace summation over states by summation
over the shells: 2, —2,G;, where G, is the shell degeneracy,
G;=2(2l;+1), and [; is the orbital momentum. If the shell is
incomplete, the cluster undergoes a Jahn-Teller deformation,
so that its shape becomes ellipsoidal, and the states s are
classified by their projection of the orbital momentum |m|
=1, so that each level contains up to four electrons (for
|m| =1). Note that in a weak-coupling case (7/V<1 and
correspondingly 77T, < {)), one should put, in Eq. (1), Z=1,
D=1, recovering the usual BCS scheme.

Equation (1) looks similar to that in the theory of strong-
coupling superconductivity,** but is different in two key as-
pects. First, it contains a summation over discrete energy
levels E,, whereas for a bulk superconductor one integrates
over a continuous energy spectrum (over &). Another impor-
tant difference is that, as opposed to a bulk superconductor,
here we are dealing with a finite Fermi system, so that a
number of electrons, N, is fixed. As a result, the position of
the chemical potential differs from the Fermi level E and is
determined by the values of N and 7. Specifically, one can
write

N=2 2 3 (@)e o= 2 (s +0igy). ()

W, s s

Here J4(w,) is the thermodynamic Green’s function,
w0 =05(1 F &fe,), o =[1+exp(Fe/D]  (3)

and
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£,= (& +85,)", (4)

where &, is the gap parameter for the sth level and g is
the root of the equation &,.,=A(ig;). Since {=FE;—u, Eq. (2)
determines the position of the chemical potential for a given
number of electrons N as well as the dependence u(T).

Note also that for the clusters of interest (N=10?%; then,
kyR>>1) the order parameter A= A(w),); the coordinate de-
pendence and consequently the dependence on s are rather
weak (see, e.g., Refs. 10 and 45) and can be neglected. Here
R is the cluster radius and kj is the electronic wave vector
for the highest occupied shell (k;=2/r,, where r, is the elec-
tron density parameter; we put =1). The value of kj; for the
clusters of interest is close to the Thomas-Fermi screening
wave vector and to the Fermi momentum k. The value of
the energy of the HOS, Ey, is likewise close to the bulk
Fermi energy Ef.

Note also that the Coulomb term " can be included in
the usual way. It is worth noting that, unlike atoms, the posi-
tive charge in clusters is distributed over the cluster volume.
As a result, for large clusters (N=107) the screening picture
is similar to that in a bulk sample. In addition, because of the
discrete energy spectrum, we do not encounter a strong loga-
rithmic singularity, but a threshold phenomenon, so that even
at low T, the value of the coupling constant should exceed
some critical value. Below we focus on the opposite case

when the value of T, is large (27T,/Q=1).

IV. CRITICAL TEMPERATURE
A. Theory

Based on Eq. (1), one can evaluate the critical tempera-
ture. At T=T. one should put A=0 in the denominator of the
expression (1’), obtaining

T 0? Alw,1)
Aw,)Z= 7722 = .
vanr s Q%+ (wn - (Jonr)2 (ON gs

)

Note that the presence of the renormalization function Z re-
moves the divergence at w,=w,,.

The value of the parameter # is close to its bulk value 7.
Indeed, the surface of the cluster can be treated as a scatterer
(cf. Ref. 46), and therefore the pairing is analogous to that in
the case of a “dirty” superconductor analyzed in Ref. 5; see
also Ref. 47, whereby the mean free path is much shorter
than the coherence length. Then the average value of I? is not
affected by the scattering and one indeed finds that n= 7,
where 7, is the bulk Hopfield parameter (see, e.g., Ref. 43).
Note also that the characteristic vibrational frequency is
close to the bulk value because pairing is mediated mainly
by the short-wavelength part of the vibrational spectrum.
Then Eq. (5) can be written in the form

T QZ A(wn')
A(wn)Z: )\b 2 2 ~ 2 2 .
2V S Bk -, E |

(6)

Here \,=7mv, is the bulk coupling constant,* and v,
=m"pp/2m is the bulk density of states. With increasing
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cluster size the spectrum eventually becomes continuous.

Then the integration over ¢ leads to the usual three-

dimensional (3D) equation for 7, (see, e.g., Ref. 40).
Equations (6) can be written in the dimensionless form

¢n:2Knn’¢n” (7)

where

Knn' = chE {[1 + (an - Gn’)z]_l - 51111’2}((’;)2/ + 52)_1
S T

c

(8)
Here ¢,=A(w,)Q7!, &,=w,07", %:giﬁ‘l, r=27TQ"!, and

g= )\b(4wﬁva)_1. (8"

This expression for g is valid for neutral clusters as well as
for ions. For neutral clusters one can also write g
=N(Ep/37N), Ep=EQ7", and Ep=p%/2m". We are not
considering the Friedel oscillations of the carrier density. For
the relatively large clusters of interest their amplitude is
comparatively small (see, e.g., Ref. 16) and would modify
the results only slightly.

The value of the critical temperature can be obtained from
the matrix equation (cf. Refs. 37-39)

det|1 - K,,/| =0. )

The expression for the kernel K,,,,» directly follows from Eq.
(8); see Eq. (10) below.

Equation (9) has a matrix structure. For the examples we
considered (see below) the convergence was good even for a
2 X2 matrix, although we performed calculations with a
higher accuracy (4 X 4) as well. Let us consider two different
cases: (i) “magic” (spherical) clusters and (ii) open-shell (de-
formed) clusters.

B. “Magic” clusters

“Magic” clusters contain filled shells and are spherical in
shape. As was mentioned above, in this case one can substi-
tute X, — X,G;, G; the degeneracy of the jth shell. The criti-

]
cal temperature can be evaluated from the matrix equation

(9). With the use of Egs. (2) and (8), we obtain

KZn’ = chz G.i(f;;;n’ +fr:;n’+l)Xn'§gj’n #n'
J

J m#n

K, = chz Gj{O.an;Q_an’gj —(n+0.5)7" 7% 2 [((m+n+1)?

—(n—m)? ,l;mﬂ:;m+l(m+0.5)xm;gi}. (10)
Here

o=+ (mxr?2]", (11)

(117)

We focus on the case when 7.= 27T,/ Q)>1. In this case
the matrix equation (9) converges rapidly [see below Eq.

Xpp=[(n+ 0.5)%7 + 0]
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(15) and Sec. VI]. Note also that the main contribution to the
sums over shells in Egs. (9) and (10) comes usually from the
HOS and LUS, so that with sufficient accuracy one can con-
sider two terms (j=H, L, Gy=2Q2ly+1), G, =221, +1), Iy
and [; are the corresponding angular momenta). Let us intro-
duce also the parameter u, defined by the relation

w=Ey+ i(E; - Ep), (12)

§n=-RAE, & =(1-RAE. (127)

Here AE=AE;¢=E;—Ey. The chemical potential w and,
correspondingly, the parameter u are determined by the re-
lation (2) which for “magic” clusters has the form

N=2 Guig; +vig)),
J

3,07 =0.5(1 % &fe)),

(pf:[1+exp(18j/T)]. (13)

One can see from Egs. (8)—(11) that the critical tempera-
ture 7. is determined by parameters which can be measured
experimentally. These parameters are the number of valence
electrons N, the energy spacing AE=E; —E. The magnitude
of T. for a given nanocluster depends on these parameters

and on values of \,, Ep, and ﬁ, which are known for each
material. The value AE has been calculated in different mod-
els (see, e.g., Refs. 16, 21, and 22), but it also can be mea-
sured experimentally. As for the degeneracies Gy
=2(2ly()+1), they can be obtained from symmetry consid-
erations; they are similar in different models—e.g., “poten-
tial box” model or jellium.'® Consequently, our analysis em-
ploys parameters which can be determined from
experimental data.

Below, we will describe a detailed calculation of 7. for
several specific clusters (see Sec. VI). Let us demonstrate
first that for perfectly realistic values of the parameters a
high value of T, can be obtained. Consider a cluster with the
following parameter values:

AE =65 meV, 0=25 meV,

£
m =m,,

kp=15x 108 cm™, \,=0.4,

radius R=7.5 A, and G+ G, =48 (e.g., Iy=7, I, =4).
(14)

At this point, Egs. (9)—-(13) can be used. To estimate the
value of 7., one can use with good accuracy, the equation
1-Ky=0 (a more exact treatment, based on a 4 X 4 matrix
changes the result only by several percent). One can also
neglect by the relatively small dependence of w on 7, so that
|€n| = €| =AE/2. As a result, we are faced with the equa-
tion [see Eq. (10)]

1 :geffF(Tc;AE)5
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8 =88(Gy+Gy), (15)
where g is defined by Eq. (8'), 7,=2T,/{), and
F(7;AE) = 7(m + 1) {7 + (AE)’T"!
~45[@A7+ D)2+ (AET '

Substituting the parameters values from above, we find by
solving Eq. (15) that 7,=10% K.

One can see directly from Eq. (15) that the high degen-
eracies of the HOS and LUS play a very important role.
Qualitatively, these degeneracies increase the effective
electron-vibrational coupling g.¢, and, more specifically, the
effective density of states. As was noted in Sec. II, a sharp
peak in the density of states at the Fermi level is very ben-
eficial for pairing.

Consider another case with different values of the param-
eters:

AE=0.1eV, Q=25meV, m =0.75m,,

kp=15x104cm™, \,=0.5, radius R=6 A,

and G+ G, =48 (e.g., Iy=17, I,=4); then, g =0.2.
(16)

The solution of Egs. (9) and (10) for the 4 X 4 matrix leads to
T.=120 K. In the first approximation one can use Eq. (15),
and we obtain

T.=110 K.

The value of T, is sensitive to the magnitude of the HOS-
LUS spacing. Indeed, if we calculate 7, for a model cluster
with parameters (16) and modify only AE=0.1eV
—0.65 meV, we obtain a higher value of 7,.=160 K.

As was mentioned above, the value of T, also depends on
the degeneracies G,=2(21,;+1) and G;=2(2I;+1), and they
can be obtained from symmetry considerations. Indeed, in
this section we focus on “magic” clusters which have a
spherical shape (the case of the deformed cluster will be
discussed below, Sec. IV C) and for which the spectrum is
determined by the “radial” quantum number n and the orbital
momentum /.

According to various experimental data and theoretical
calculations (see, e.g., the reviews in Refs. 21 and 22), the
shell energy levels are not equidistant and the spacing be-
tween them varies considerably. As mentioned above, the
most favorable case corresponds to a small AE and large Gy
and G;. The value of the AE may be measured experimen-
tally or calculated. While the sizes corresponding to “magic”
numbers can be determined by mass spectrometry, photo-
emission or ionization potential measurements appear to be
the best technique to determine the electron energy spectrum.

As was noted above, the shell structure has been studied
with the use of such models as the jellium model, a potential
box, the Woods-Saxon potential, the oscillator model, etc.
Note that the jellium model (see, e.g., Ref. 16) and the
spherical potential box model give similar sets of electronic
shells and “magic” numbers. It is important that all the ex-
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perimentally observed “magic” numbers such as N,,=2, 8§,
32, 132, 198, etc., are among those obtained by calculations
based on these models; this offers strong support for the
classification based on their use. One should note, however,
that the models also predict some “magic”’ numbers which
have not been observed. This is due to the fact that some of
the HOS and LUS are anomalously close and their hybrid-
ization leads to the formation of an incomplete single shell
and to Jahn-Teller distortion. In Sec. VI below we describe a
detailed calculation for some specific clusters, but first let us
consider the case of a cluster with an unfilled electronic
shell.

C. Incomplete shells

Clusters with partially occupied shells undergo a Jahn-
Teller transition manifested as a shape distortion. The trans-
formation from spherical to ellipsoidal shape splits the de-
generate levels. The scale of the splitting depends on the
number of electrons removed from the HOS (or added to
LUS) and on the properties of the material [see below, Eq.
(17) and Sec. VI]. Because of the splitting, one should not
use Egs. (10), (11), and (13) which are valid only for the
“magic” clusters. The value of T, for clusters with incom-
plete shells can be calculated (see below, Sec. VI) with the
use of Eq. (9) and more general expressions obtained from
Egs. (10)—(13) with the replacement 2,G;— X —i.e., a sum-
mation over all levels formed by the splitting of highest oc-
cupied and lowest unoccupied shells. The density of states is
now spread over different energy levels, and such a weaken-
ing of the sharp peak feature is not a positive factor for 7.
On the other hand, the removal of electrons from the HOS
strongly affects the position of the chemical potential, and
this factor turns out to be favorable for pairing. The best
scenario would correspond to clusters with almost filled
shells (e.g., N=N,,—2, where N,, is a “magic” number) and,
correspondingly, a small deviation from sphericity. In this
case the HOS turns into a set of close levels classified by the
projection of their angular momentum m. The picture of
splitting is similar to that in atomic nuclei (cf., e.g., Ref. 49).
To calculate the magnitude of the splitting, one can use the
following expression:>

SE =2E U7,

Pl =201+ 1) = 3m*](21+ 3)7' (21 - 1)L, (17)

Here U is the deformation parameter, E§0)=EHEEHOS. An
explicit expression for the deformation parameter can be
found>! by minimizing the total energy OFE=SEq+ OE
where OE, is described by Eq. (17) and the deformation
contribution SE4;=3UVc,), cq=C11—C12; €11 and ¢, are the
elastic constants and V is the cluster volume. The deforma-
tion parameter is determined by the condition J(SE)/dU=0.
The scale of splitting is different for various materials. We
will discuss this question in detail in Sec. VI. Let us estimate
the scale of the splitting for the model cluster (see above,
Sec. IV B). Assume c¢,=10'> dyncm™2, R=7.5 A, and [=7,
where R is the cluster radius. The value of the energy Ey is
on order of Ep=8.5 eV. Then Eq. (17) yields SE=10 meV.
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Such a splitting is relatively small. It is worth noting that
there is a realistic situation with even much smaller splitting.
It can arise in the case of an overlap of the manifolds of
sublevels formed by splitting of HOS and LUS. For example,
for the cluster with initial spacing AEY~0.1 eV (here the
superscript M stands for the initial “magic” cluster with N
=168), g.r=10 (see above, Sec. IVC), R=6 A, Cel
=10'2 dyn/cm?, and N=166 (two electrons removed from
the HOS), there is an overlap of the manifolds with [=7
(HOS) and [=4 (LUS). A direct calculation gives AE
~2 meV for the smallest excitation energy. The removal of
two electrons does not noticeably affect the critical tempera-
ture which is close to that for the cluster with N=168 (T.
~ 110 K). However, the pairing drastically affects the energy
spectrum (see below, Sec. V A).

The splitting also can be affected by the spin variable,
especially for clusters of transition metals. As is known, the
spin-orbit interaction is essential for shell splittings in nuclei
(see, e.g., Ref. 33 and the general case in Ref. 49). However,
for the clusters of simple metals considered here, one can
show that the contribution of a spin-orbit interaction 6Egq to
the splitting is small relative to that caused by the Jahn-Teller
deformation SF described above. It turns out that SEgq
=~ 1 K (see Appendix C), so that SEqo< SE. The large value
of 0Egq in nuclei is due to the fact that nuclear forces are
much stronger than the Coulomb interaction, and conse-
quently the depth of the nuclear potential which affects the
scale of the splitting (see Appendix C) is much larger
(~50 MeV) than that for metallic clusters. Clusters are also
qualitatively different from atoms in that they contain an
ionic core which affects the screening and can undergo shape
deformation.

The situation might be different in clusters of transition
metals containing atoms with incomplete d and f shells,
where correlation effects could be essential. But an analysis
of such systems is beyond the scope of this paper.

V. ENERGY SPECTRUM
A. Ground state

The onset of pairing has a great impact on the cluster
energy spectrum. Let us begin by evaluating the gap param-
eter and, correspondingly, the spectrum at 7=0 K. We start
with Eq. (1), whose solution at 7=0 K yields the spectrum.
Indeed, it is seen directly from Eq. (2) that the spectrum has
the form (4), where the gap parameter is the root of the
equation

£0. = ALI(E + g5, "] (18)

Equation (1) at 7=0 K can be written in the following di-
mensionless form:

¢(x1)
)= fd L(x; . (19)
P(x g; o L(x xl)x%+g+¢2(x1)
Here L(x;x))=f"+f"—dxif f*(x)/ p(x,), =1

+(xcxx), dp(x0)=AX)Q!, and x=wQ~". The solution of
Eq. (19) can be sought in the form
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$(x) = B(1 + ax?) 7. (20)

The position of the chemical potential w [or the parameter
it; see Egs. (12) and (12')] is determined by Eq. (2). Note
that the value of & is strongly affected by the pairing and
must be determined in a self-consistent way. For example,
for a “magic” cluster in the absence of pairing ©=0.5 at T
=0 K (see Appendix B). This changes if ¢»# 0 (see below).
The values of the parameters «, 8, and & can be obtained
from Egs. (19) and (2) by an iterative procedure—namely by
minimizing the quantity [{$V—¢?)/(p?)|, where ¢'") and
¢ are the first and second iterations. Subsequently, the gap
parameter can be evaluated from Egs. (18) and (20) by solv-
ing the corresponding cubic equation. The solution has the
following form:

e0,s = (21\3) pysin{(1/3)arcsin[(3y3/2) (Blan) ]}, (21)

Here

= [a—l _ 52]]/2.
For “magic” (spherical) clusters the major contribution
comes from the HOS and LUS shells. The method described

above allows one to calculate the gap parameters g,.; and
€p..- The minimum excitation energy is equal to

(217)

As=gy+g, (22)

where
ey = (AE) + 51", (22))
e =[(1 - D(AE) +&5,]", (22")

where g and €, are determined by Eqgs. (21) and (21')
with 7y =[a@™' - &, 12, and &, and & are the first terms on
the right-hand side of Eq. (4).

For example, for a cluster with the realistic set of param-

eters AE=65 meV, E;=8 eV, 0=25 meV, and \,=0.4 we
obtain £5=50 meV and £;,=-30 meV, so that Ae=80 meV.
This value noticeably exceeds the shell spacing in the ab-
sence of the pairing, AE=65 meV.

The spectral changes induced by the pairing are much
larger for clusters with slightly incomplete shells. As was
discussed in Secs. II and IV C, in this case the HOS and LUS
are split. This case can be treated with the help of Egs. (2),
(17), and (19); however, in this case one should take into
account a number of separate terms s, corresponding to dif-
ferent values of m. The general picture is that the upper
occupied level is always incompletely filled and the mini-
mum excitation energy in the absence of pairing is rather
small. Especially interesting is the case when split HOS and
LUS manifolds overlap. For example, for the case discussed
at the end of Sec. IV C the interval AE was =2 meV. With
pairing, we obtain Ae~40 meV, a dramatically altered
value. Therefore, Ae>>AE, and pairing is seen to lead to a
large increase in the minimum excitation energy.

B. Region near 7,: Ginzburg-Landau functional

Let us consider the pairing at temperatures close to 7.
Once again, we can employ the general equations (1) and (2).
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The order parameter A—Q0 as T—T. As a result
A(w,) < w,, and the right-hand side of Eq. (1) can be ex-
panded in a series in terms of A?. We can start with the

expression (at T~ T,) for a solution of Eq. (1) similar to Eq.
(20):

¢,=b(1 +add)™". (23)

Here ¢,=A(0,)Q!, @,=w,07", and b*=cér=0o1.(1-1), t

=T/T,. Near T, the expression (23) also can be written as
(for small n): ¢n=b(1+a7§/4)‘1fn; here, f,={1.f;,...}. The
amplitudes f,, as well as the parameter o could be calculated
from Egs. (1) and (4). More specifically, one can use Eq. (7),
but the kernel K,,,; should be written as a power series in of
(1-1). As a result, near T, the kernel can be written as a sum

K, =K, +KY, (24)

nn' nn

where K|, , is described by Eq. (10) and
() ,
K = gérz [(I-7(n—n )z)f’;n,

!
n#n

U= 24 D e
, ~ 2
- Z(f;;n' +f::;,1,+1)(7%(n + 0.5)2 + gsSl/S)Xn’;g

=~ 2
=872 Fr + S )b + E(SSBIX, 7

K =2g0r3, (1-47(n+0.5))f5r X2

~ 2+ 0.5 + ESUS) X, 7

- 2g762 (¢ + E(So/S) B 31 XoiE »

where f;. and Y, are defined by Egs. (11) and (11’) and
S=22+¢)", Si=2EC+e)

Sy= 2 (1 - a&) Y@ /4] - 2+ @),

s

@f::eXquJ/T})iieXP(_|EJ/7})§s::E§“ﬂr’ Mo = M(Y}l
(25)

One can write the following expression for the thermody-
namic potential:

80, =A[- (7.- Db*+ (20)7'b"], (26)
where 60,=0,-0, is the change in the thermodynamic po-

tential caused by the transition to the superconducting pair-

ing state, @,=0 Q! Equation (26) is analogous to the
Ginzburg-Landau functional (cf., e.g., Ref. 53). Indeed, the
condition 980,/ db*=0 leads to the relation b*>=—0 5.

The parameter A=—b"2(90,/dr.) [see Eq. (26)] can be
evaluated with use of the well-known expression (see, e.g.,
Ref. 40)
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(90N o) = Nt Hine) (27)

where Ao=7/v [see Eq. (1)]. With the relation (90 /X )
=(00,/97,)(97./ I\gp) We obtain

A = 751m(d7)dg). (28)
Here g is defined by Eq. (8') and

§20.5 2 (fl + S VnE X &, BB (29)
5,5
nn'=0
The quantities f;.. and x,,, are defined by Eqs. (11) and (11'),
and ¢ is the general expression for the order parameter
[see the Appendix, Eq. (A2)].

Equations (1), (25), and (28) allows us to calculate the
major parameters such as o, a, and A, which describe the
pairing near 7. As before, these values are not universal and
depend on the properties of the materials. For example, for
“magic” clusters the values depend on the degeneracies Gy
and G, the spacing AE, etc. For the model case considered

above, Eq. (14), the calculations lead to 6=0.5, A=~16, and
a=0.1. Below, these parameters will be calculated for vari-
ous specific systems (see Sec. VI).

C. Fluctuations

Equation (26) allows one to investigate the interesting
subject of fluctuations. In general, it is known (see, e.g., Ref.
54) that a decrease in size increases the role of fluctuations.
In connection with this, it is important to note that the large
values of 7, and of the gap parameter for the clusters studied
here result in a relatively small coherence length, comparable
with the cluster size. The situation is similar to that in the
high-T',. oxides.

Let us estimate the broadening of the transition 67./T,
due to fluctuations. This calculation can be performed with
the use of Eq. (26) (cf. Ref. 53, Chap. 8). First, one calcu-
lates é‘@smn which is equal to (3@5;min=—(gza'rsl2)(l—t).
The width of the transition is determined by the condition
80 ~KkT (see, e.g., Ref. 53). As a result, we arrive at the
following expression:

ST, I
TC ~ (2m) " (Q2A0T,)"?, (30)

c

where A is defined by Eq. (28). A direct calculation for the
case specified in Eq. (16) shows that the transition broaden-
ing is on the order of (8T,/T,)=~5%. Similar values are ob-
tained from various specific clusters (see below, Sec. VI). A
width of the magnitude noticeably exceeds that for bulk su-
perconductors, but is still relatively small.

VI. SPECIFIC CLUSTERS

In the previous section we demonstrated that the cluster
with realistic parameters, Eq. (14), possesses a T~ 10® K,
which greatly exceeds that for conventional metals. The
presence of shell structure and the resulting large degeneracy
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are key factors leading to such high 7. Based on the general
method described above, one can calculate the critical tem-
perature and the gap parameter for some specific clusters. We
will consider “magic” and deformed clusters separately.

A. “Magic” clusters

The calculation of T, is based on Egs. (8)—(13). As was
noted above [see the discussion after Eq. (13)], its value
depends on the specific parameters for a given cluster. The
general method described above (Secs. III-V) can be em-
ployed to analyze clusters of different materials. Let us con-
sider some examples. In this section we describe calculations
performed for certain Ga, Al, Zn, and Cd clusters. This
choice is not accidental. The important facts are that shell
structure has been observed experimentally in all these
clusters,’*>3! and at the same time these materials are super-
conducting in the bulk state.

We performed calculations [see Eq. (9)] with a 4 X 4 ma-
trix, giving a high numerical accuracy (<1%). Note that
even 2 X2 matrices provide adequate accuracy (<10%). It
turns out that the major contribution comes from H and L
shells, so that in the summation over j in Egs. (9), (10), and
(13) it is sufficient to retain just the terms with G, and G;.

We selected two “magic” numbers N,,=168 and N,,
=380. Indeed, such clusters are characterized by large values
of orbital momentum / and by small AE. Let us consider first
the Alsq cluster (each Al atom contains three valence elec-
trons, so that N=168). The highest occupied shell corre-
sponds to /=7 and n=1 and contains 30 electrons. In addi-
tion to various materials parameters (see below) one needs to
know the value of AE=E;—Ey. The energy E; corresponds
to the lowest excited level for the selected “magic” cluster
N,, (here N,=168). Strictly speaking, this E; is different
from the Ey for the next “magic” cluster N, =186, since
these clusters differ in size. Nevertheless, this difference is
small (in the “potential box™ model it is of order of several
percent; see also Ref. 55).

The spacing AE can be measured experimentally, e.g., as
the difference in the ionization potentials for the two neigh-
boring “magic” clusters. According to Ref. 26 the Al cluster
with N=168 is, indeed, “magic” (a sharp drop of the ioniza-
tion potential is observed). Theoretically, the next cluster
with a complete shell corresponds to N,,,=186. However,
according to Ref. 26, the next “magic” number corresponds
not to N=186, but rather to N=198. This is probably due to
the closeness and consequent hybridization of the shells with
I1=4,n=2;1=2,n=3; =0, n=4. As a result, the next spheri-
cal shape will correspond to N=198 where the total number
of LUS states is G;=30 so that Gy+G;=60. According to
Ref. 26, AE=0.1 eV. With the use of these data and the

parameters for Alss clusters (R=~6.5 A, Q=350 K, Ny
~0.4 (Ref. 56), m" =~ 1.4m,, kp=1.75%10% cm™), we obtain
T.~90 K.

As the next example consider the Gasq cluster, which is
similar to Alss (the Ga atom also has three valence elec-
trons). Because of the similarity in the electronic structure
and close values of the work functions W (W,,=4.3 eV,
Wea=4.2 eV), one can assume that the values of the ioniza-
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tion potentials are also close. We can use the values Q
~270 K, \,=04 (Ref. 56), m" =~0.6m,, and kp=1.7
X 10% cm™!. Estimating the value of T, with the use of Eq.
(15), we obtain T,~170 K. A more accurate calculation
based on Egs. (9)-(13) leads to T.~ 145 K, which greatly
exceeds the bulk value (sz 1.1 K). As emphasized above,
such a drastic increase is due to the large degeneracy and,
correspondingly, to the large effective density of states at the
Fermi level. Another important factor is the relatively small
value of the interval AE.

Let us turn to a calculation of T, for other clusters. In the
absence of experimental measurements of AE, the calcula-
tion can be carried out in the following way. In order to
illustrate the method, lets consider, at first, the same Gasg
cluster. Let us write AE=Eyy—i.e., [y=(E./Ey)—1]. For

relatively large clusters (N >102) Ey=~Ep. The parameter y
can be estimated from the “potential box” model. As a result,
we have AE=Eyy and y=(Ey.,/Ey,,)—1. The parameter
¥ can be written as y=(z,,//z,,)*~1, and z,, and z,,,s are zeros
of the Bessel function J;,,,(x). In our case with N,,=168
and N, =186, y=4X 1073, After a calculation with Egs.
(8)—(13), we obtain for the Gasq clusters T, ~ 132 K, which
is close but lower than the value obtained above. One can see
that such a model provides a low limit of 7.

Consider now Zng, and Cdg, clusters (where each atom
contains two valence electrons). Using the parameters Q
=275 K, \,=04, Ep~12 eV (for Zn) and Q=210 K, X\,
=04, Ez~10 eV (for Cd), we obtain, after the calculations,
T.~95 K (for Zn) and T, =~ 65 K (for Cd). These values also
greatly exceed those for the bulk metals (T%%OQ K for Zn
and T2~0.6 K for Cd).

Another promising “magic” number is N,,=380. The HOS
corresponds to /=10, n=1, so that the HOS contains 42 elec-
trons and the LUS has /=4, n=3. To best of our knowledge,
the measurements of the HOS-LUS interval have not been
performed for such systems. For an estimate we use the “po-
tential box” model; the values of AE for Zng, and Cdq
clusters appear to be close: AE=6 meV. A calculation per-
formed with use of Eqgs. (9)—(13) and a 4 X 4 matrix leads to
the following: 7.~105 K for the Znjq, clusters and 7.
~90 K for the Cd,g clusters.

B. Incomplete shells

Clusters with incomplete shells undergo a Jahn-Teller dis-
tortion and acquire nonspherical, ellipsoidal shapes. We con-
sider clusters with slightly incomplete shells. As noted
above, in this case one may expect small shape deformation
and the energy spectrum can be viewed as a small splitting of
the initially degenerate HOS and LUS. For example, clusters
with N=166 can be treated as nanoparticles whose electronic
system is obtained by the removal of two electrons from the
“magic” structure with N=168. The HOS of such a deformed
cluster is split, with 28 electrons occupying levels corre-
sponding to different values of the projection of the orbital
momentum, so that |m|=/[=7. Here we focus on clusters
with an even number of electrons (odd-even effects will be
discussed below, Sec. VII).
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The scale of the splitting depends on the number of va-
cancies in the shell (the number of “removed” electrons), and
on the elastic parameter ¢, (see Sec. IV C). Fortunately, for
Zn and Cd clusters, the latter parameter is large (see below)
and the splitting should be small.

Consider the Zngs cluster (N=166). The HOS of the de-
formed cluster is made up of eight sublevels (|m|=1), each
with a degeneracy G,=4, except m=0 with Gy=2. The spec-
trum can be calculated from Eq. (17); the parameter c
=1.4X10'2 dyn/cm? (Ref. 57). The upper level (|m|=7) of
the incomplete shell contains only two electrons. This factor
strongly affects the position of the chemical potential, which
is especially important at 7=0 K (see below). The critical
temperature can be calculated from the general equations
(9)-(13) with the substitution X,G;— X —that is, by summa-
tion over all split levels. As a result, we obtain 7.~ 106 K
for the Zngs cluster. A similar analysis for the Cdgs cluster
leads to the value 7,.~85 K. These values of 7, are higher
than for the “magic” clusters with N=168; this is due to the
change in the position of the chemical potential.

As mentioned, pairing results in a considerable impact on
the cluster electronic spectrum. It turns out that this impact is
especially strong for clusters with incomplete shells, and is
manifested in the appearance of the pairing gap parameter.
We will discuss this aspect in the next section.

C. Energy gap

The effect of pairing on the spectrum is much stronger for
the clusters with slightly incomplete shells. Consider, e.g.,
the Cdgs cluster (N=166). Because the uppermost level of
the set formed by the splitting of its HOS is not fully occu-
pied (a complete shell corresponds to N=168), the smallest
excitation energy (in the absence of pairing) AE in=E =
—E|,y=1-1 is not large. Indeed, based on Eq. (17), one can find
AE, ;=6 meV (cy=1.25%10'2 dyn/cm?). Based on Egs.
(4) and (18)—(20) one can calculate the gap parameters &g,y
and g(.;; and . We obtain a~=2X 1072 and 8=0.9, and this
leads to the value Ag,;,~34 meV. A similar result can be
obtained for Zng; clusters (cg=1.4X10'2 dyn/cm?); a
~45x1072, and B=0.9. For these clusters AE,;,
~6.5 meV and Ag,;,=~42.5 meV. Therefore Ag,;, > AE, i,
and, indeed, the impact of pairing is very significant.

VII. PROPOSED EXPERIMENTS: DISCUSSION

We have described the phenomenon of pair correlation in
an isolated nanocluster. The question arises as to how this
correlation can be observed and what kind of experiment can
verify its presence. Of course, if a tunneling network of such
nanoclusters were built, a macroscopic superconducting cur-
rent could be observed. We will discuss this aspect below,
but first, let us address the possibility of observing pair cor-
relation in an isolated cluster.

Pairing leads to a strong temperature dependence of the
excitation spectrum. At 7>T, the minimum excitation en-
ergy is given by AE,,;, (AE,;,=AEM=E,-E, for “magic”
clusters and AEmm:Effn‘:l—E"fﬂ:,_l for clusters with slightly
incomplete shells); the especially interesting case corre-

024514-8



SHELL STRUCTURE AND STRENGTHENING OF...

sponds to an overlap of the HOS and LUS manifolds. Below
T, and especially at low temperatures close to 7=0 K, the
excitation energy is strongly modified by the gap parameter
and noticeably exceeds that in the region 7> T.. The shift is
especially dramatic for clusters with slightly unoccupied
shells. We demonstrated above (Secs. IV C and VI B) that
for such clusters the ratio Agp;,/AE;, can be ~6-7. An
overlap of the HOS and LUS manifolds leads to even greater
values. A change of such a magnitude in the excitation en-
ergy should be experimentally observable and would repre-
sent a strong manifestation of pair correlation. Generating
beams of isolated metallic clusters at different temperatures
(see, e.g., Refs. 4 and 58) in combination with mass selection
would allow one to focus on clusters of specific size at vari-
ous temperatures. A measurement of the energy spectrum, in
particular a determination of AE,,;, (for example, by photo-
electron spectroscopy; see, e.g., Refs. 59 and 60) would re-
veal a strong temperature dependence of the spectrum. For
example, in Ga clusters (N=168, T.~ 130 K) one should ob-
serve a large difference in AE,;, at the low-temperature re-
gion and above 7.~ 130 K. Similarly, for Cd clusters with
N=166 a large difference should be observed between spec-
tra at low temperatures and at 7> 7.~ 85 K. The use of Ga
and Cd nanoclusters for such experiments looks reasonable,
because these materials are superconducting and, as men-
tioned above, the existence of electronic shell structure in
their clusters has been confirmed experimentally. An experi-
ment of this type would be both realistic and informative.
Note that pairing would manifest itself differently from a
structural transition,®! since the former strongly affects the
spectrum near the H and L shells, whereas the latter would
modify the entire spectrum. If it is possible to place small
nanoclusters into a tunneling barrier, then the spectrum can
be determined with the use of inelastic tunneling spectros-
copy similar to that employed in Refs. 1 and 2. In this case
there will be no problem related to optical selection rules.

It has been shown (Secs. IV and VI) that small metallic
clusters under special but realistic conditions may display
high T.. One should note that the value of 7, can be affected
by a number of factors such as surface and lifetime effects,
the Coulomb interaction, etc. Surface vibrational modes, ac-
cording to Ref. 62, lead to an additional increase in 7. One
should also consider the geometrical factors. Such factors
lead to some smearing of sharp spectral features but the main
shell structure features persist. The high degeneracy of the H
and L shells and the corresponding increase in the effective
density of states turns out to be the crucial factor resulting in
high T..

In this paper we focus on small clusters (N~ 10%). As was
noted above, shell structure has been observed also for larger
clusters?’63% containing several thousands of electrons. For
such clusters one can observe also so-called supershell struc-
ture which is a manifestation of mesoscopic interference ef-
fects (see, e.g., Refs. 19, 24, and 65) with characteristic
times.®® The superconducting state of such systems is a very
interesting subject for future study. Another interesting prob-
lem mentioned above (Sec. IV C) is the study of clusters of
transition metals where the Coulomb interaction and corre-
sponding correlation effects could be essential.

As noted, clusters with pair correlation are promising
building blocks for tunneling networks. Charge transfer be-
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tween clusters, provided by Josephson coupling, would give
rise to a macroscopic superconducting current at high tem-
peratures. Such a network could be prepared by depositing
clusters on a surface. It requires special methods of growing
isolated clusters in a matrix without strong disturbance of
their shapes and spectra. Another possibility has been con-
sidered in Ref. 7 (see above, Sec. II) and envisions a molecu-
lar (cluster) crystal where clusters form an ordered 3D lat-
tice. There has been noticeable progress in this field; see,
e.g., Refs. 67-70.

The pair correlation also can manifest itself in odd-even
effects in cluster spectra. Such an effect has been observed in
Ref. 2, but for much larger particles (N~ 10*~10°). It would
be interesting if it were possible to perform similar spectros-
copy for small nanoclusters displaying shell structure such
as, e.g., Gasg or Cdgs studied here.

In this paper we studied simple metallic clusters (Al, Ga,
Zn, Cd). In principle, one may consider a variety of systems,
including those containing more complicated alloy clusters
(see, e.g., Ref. 71). In principle, it may be possible to raise 7,
even higher, possibly up to room temperature. Indeed, one
can see—e.g., from Eq. (15)—that an increase in T, can be

achieved by changing the parameters (Q, AE, etc.) in the
desired direction. The study of pair correlation and its impact
on shell structure in small nanoclusters is an interesting and
promising field.
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APPENDIX A: ORDER PARAMETER NEAR T,

Near T, the general equation (1) for the order parameter
can be linearized. This allows one to seek the solution at
small 7 in the more general form [cf. Eq. (23)]

¢, =b(1 +b,&2)(1 +ad> +a,@) " (A1)

One should select the parameters, so that Eq. (A1) form the
best fit to the form

¢, =b(1 +b,7/4)7'[1 + a(7/4) + a,(714)*]7'f,. (A2)

There should not be poles for the analytical continuation of
Eq. (A1) in the upper half-plane. Near T, the function ¢, can
be represented in the form ¢,=(f,+ @2, +- ), where i,
corresponds to lower eigenvalues of K. Using the condition
(f*¥»=0, one can obtain the following equation for the pa-

rameter b:
RO r =0, (A3)

where K, is defined by Eqgs. (24).
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Equation (2) allows us to determine the shift Su=u(T)
—u(T,), and we obtain

S=—(S,+cS,)dS. (A4)

Here Sji=0u)™!, dr=7—1., b, S;, S,, and S are defined by
Egs. (25) and (A3), c=67./2.

APPENDIX B: DEPENDENCE wu(T)

Let us evaluate the dependence i(T) for the “magic” clus-
ters in the absence of pairing. This dependence is influenced
mainly by the contributions of two shells, HOS and LUS. At
finite temperature we have

Gyl +exp(ZAEIT)]' = G,[1 + exp({1 = ZAE/T)]™,
(B1)
where Gy, =22l +1), AE=E; —Ey. As a result we obtain
= (TIAE)In{p + [p* + (Gu/G,)exp(AEIT)]'?}, (B2)

where p=(ly—1,)/ (21, +1).

Equation (B2) determines the dependence (7). At T
=0 K, we obtain £=0.5, so that the chemical potential, in-
deed, is located in the middle of the interval AE.
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APPENDIX C: SPIN-ORBITAL INTERACTION

Let us estimate the contribution of the spin-orbit (SO)
interaction to the level splitting in the case of slightly incom-
plete shells (e.g., for N=166). The general expression for the
SO interaction has the form

Hgo = — i(2m*c>) " [9UIdF, d19F]S. (C1)

For the effective potential, one can use the well-known
Woods-Saxon form (see, e.g., Ref. 19) U=U([1
+exp(dr/a)]™!, where Sr=r—R, R is the cluster radius, and
a=~1-2 A. With the use of Eq. (Cl) we obtain &Egq
=+ M(Q2m*c?)7', I=[(drrdUldre*(r), where ¢(r) is the
electronic wave function. The potential has an almost negli-
gible slope inside the cluster [here one can write ¢(r)
o J; 12(r), where J;,, is the Bessel function] except for the
region near r~ R. As a result, the integrand is peaked near R
in the region or~a; here the wave function is small. Then
we obtain:

SEgo = Uo(Er/mc?)(alR)?. (c2)

The depth of the potential is Uy~ Er+IP, where IP is the
jonization potential. Employing the values a=2 A, R=7 A,
Ep=10e¢eV, and IP=5 eV (see, e.g., Ref. 26), we obtain
OEso=1 K, so that SEgo< OE (see Sec. IV C).
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