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As an example of ordering due to quantum fluctuations, we examine the nearest-neighbor antiferromagnetic
quantum O�n� rotor model on the pyrochlore lattice. Classically, this system remains disordered even at zero
temperature; we find that adding quantum fluctuations induces an ordered phase that survives to positive
temperature, and we determine how its phase diagram scales with the coupling constant and the number of spin
components. We demonstrate, using quantum Monte Carlo simulations, that this phase has long-range spin-
nematic order, and that the phase transition into it appears to be first order.
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I. INTRODUCTION

Ordering of antiferromagnetic spins on geometrically
frustrated lattices is a subtle problem.1,2 In some of the most
frustrated cases, the canonical nearest-neighbor antiferro-
magnetic interaction fails to produce a unique classical
ground state ordering pattern. Thus low temperature ordering
in such systems must be attributed to additional interactions
or to selection via thermal or quantum fluctuations, the latter
phenomena being termed order by disorder.

In recent years there has been much interest in antiferro-
magnetism on the pyrochlore lattice of corner-sharing tetra-
hedra, Fig. 1.3 The classical statistical mechanics of the
purely nearest-neighbor problem is now fairly well under-
stood. It is known4 that XY spins order, by disorder,
collinearly5 while Ising, Heisenberg, and higher-dimensional
spins do not order even in the zero temperature limit. The
correlations of this set of cooperative paramagnets have been
found to exhibit a universal dipolar form characteristic of an
underlying gauge field,6 truncated by a correlation length that
diverges as T→0.

While thermal fluctuations thus do not lead to ordering in
the Heisenberg problem, there is much work arguing that
quantum fluctuations do lead to ordering at low tempera-
tures, for the case of Heisenberg spins. Close to the classical
limit, this conclusion follows from arguments based on the
1/S expansion discussed recently by Henley.7 Henley derives
an effective Hamiltonian on the space of classical ground
states which captures the effects of the zero point energy of
harmonic spin waves in a loop expansion. This indicates a
selection of collinear ground states with a large unit cell and
a residual degeneracy that is of order O�L�, where L is the
linear size of the sample. It is expected that a nonlinear treat-
ment of the spin waves will lift this remaining degeneracy
and predict long-range spin order in a particular collinear
configuration. In the opposite limit of small spins and large
quantum fluctations, there is a set of investigations princi-
pally of the S=1/2 case, starting with the pioneering work of
Harris et al.8–13 which suggest a breaking of the inversion
and translation symmetries of the lattice with only short
range order among the spins. For S=1 Yamashita et al.14

have also argued for a breaking of inversion symmetry as
well as long-range order in the transverse component of the
spin chirality. Two large N studies15,16 have also suggested

symmetry breaking for small spin values. Indeed Ref. 16
finds that the quantum dimer model that arises in a large N
treatment does indeed break inversion symmetry and has fur-
ther translational symmetry breaking via an order by disorder
mechanism.

In this paper we further explore the impact of quantum
fluctuations on spins on the pyrochlore lattice by endowing
them with the dynamics of quantum rotors instead. The re-
sulting problems, which are readily defined for O�n� sym-
metric spins for all n, are distinct from the Heisenberg spin
problems even at n=3, although there is clearly a family
resemblance which detailed analysis will bear out. The rotor
models are interesting in their own right17 and their n=1
representative is the transverse field Ising model which has
been studied on a variety of frustrated lattices.18

The Hamiltonian for the quantum rotor model on the py-
rochlore lattice is given by

H = g�
i

L� i
2 + �

�i,j�
S� i · S� j , �1�

where S� i is a unit vector in n dimensions located at site i, L� i
is its associated angular momentum, and the second sum
goes over all nearest-neighbor pairs of sites on the pyro-
chlore lattice. The coupling constant g measures the strength
of quantum fluctuations.

At any n and in the limit of large coupling constant g, the
ground state has all rotors in their zero angular momentum
state, and thus no long-range correlations or symmetry
breaking. In this limit there is also a gap of O�g� so this

FIG. 1. Pyrochlore lattice
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quantum paramagnetic phase is stable for a range of values
of g.19 The opposite limit of g=0 is the classical model,
which has a highly degenerate ground state and, for n�2,
dipolar correlations in the zero-temperature limit but no sig-
nificant strength in any Fourier component of the
magnetization.4,6

The problem at hand is to understand how the system
interpolates between these two very different disordered lim-
its. In the following we report progress on this question.
Primarily we will show that the system develops spin-
nematic �collinear� long-range order for a finite range of val-
ues of g� �0,gc� at T=0. More generally we derive the sche-
matic phase diagram in the temperature-coupling constant
plane shown in Fig. 2 with the various scalings that we have
derived indicated. We have not been able to establish or ex-
clude further symmetry breaking at the lowest temperatures
into a state with long-range spin order. We do however offer
analytic evidence �for the case n=3� that such further sym-
metry breaking is likely quite weak.

We turn next to understanding the quantum mechanics of
the building block of the pyrochlore lattice, the single tetra-
hedron. The basic results derived here will next enable us to
deduce the existence of nematic order on the full lattice and
the scalings of various energy scales with n. Thereafter we
describe results of a simulation for the n=3 problem and
conclude with a discussion of the 1/n expansion for this
problem and a summary.

We note that the quantum mechanics of rotors is different
from the quantum mechanics of spins and therefore the type
of analysis and the results in the two cases are different in
some important respects. As an example, consider four anti-
ferromagnetically coupled spins S on a tetrahedron. In a

ground state two of the spins add to S�=0, . . . ,2S and the
other two add to the same value so that the ground state,
which has total spin zero, can be obtained. The limiting dis-
tribution as S→� has significant weight at all values of S�
and thus the four spins do not order in a collinear configu-
ration. In contrast, as we show below, four quantum rotors on
a single tetrahedron can order collinearly.

II. SINGLE TETRAHEDRON

In this section we analyze the basic unit of the pyrochlore
lattice—a single tetrahedron. It consists of four mutually
coupled spins and its Hamiltonian is

H = g�
i=1

4

L� i
2 + �

1�i�j�4
S� i · S� j . �2�

This may also be viewed as a system of four interacting
particles, each moving on the surface of a sphere in n dimen-
sions. The first term in H is their kinetic energy, while the
second term is a repulsive interaction potential.

In the classical limit of g=0 it is known4 that for n=2 �XY
spins� the spins order collinearly in the zero T limit—two
spins pointing in one direction and the other two in the op-
posite direction.20 On the other hand, for n�2 the spins re-
main disordered even in the T→0 limit as we review below.
In the rest of this section we show that in the quantum case
�g�0� for any n there are ways to take the g→0 and T
→0 limits that give collinearly ordered spins. Furthermore,
we find the dependence of the crossover from ordered to
disordered spin states as a function of g, T, and n, as indi-
cated in Fig. 2.

A. Classical spins g=0

We start by describing the configurations of the spins and
the classical ground states �CGS�. The spins are in a CGS if
the potential is minimized; this is when the four spins add up
to zero. This implies that in a CGS, the fourth spin lies in the
three-dimensional space spanned by the other three spins.
Thus the ground states can be parametrized by two angles �
and � as shown in Fig. 3, plus an overall rotation in spin
space. � gives the deviation of all spins from collinearity,
while � is the angle between the planes in spin space
spanned by each pair of spins. All four spins in a CGS are at
the same angle � from the reference axis; the reference axis
that minimizes � is used in our convention of parameterizing
these ground states. Mostly we will consider nearly collinear
states with small �.

For both the classical and the quantum analysis, we need
to consider the matrix of second derivatives of the potential
energy with respect to the orientations of the four spins at a
given classical ground state. There are 4�n−1� degrees of
freedom in the system and n constraints in a ground state.
The eigenmodes with zero eigenvalues of this matrix generi-
cally lie along the directions of the ground state since the
potential there is constant. Therefore there are 3n−4 eigen-
modes with zero eigenvalue and n eigenmodes with nonzero
eigenvalue around a generic point of CGS. As can be

FIG. 2. Schematic crossover diagram of a single tetrahedron,
with the scalings with g, T, and n indicated. The solid line is where
the system crosses over from being collinear to disordered, while
the dashed line shows the value of g where, for a given T, the
deviations from collinearity are minimized. The solid line is also a
very approximate phase transition curve for the full pyrochlore lat-
tice. However we expect that the curve starting at gc will bend
initially to the right due to the entropy of the spin waves that exist
in the ordered phase.
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checked by explicit calculation, for small �, n−1 of the latter
modes have eigenvalues of order one, while the remaining
one is a “soft mode” with its eigenvalue proportional to �2.
This last mode corresponds to the spin deviation away from
the nearly collinear CGS that decreases � for one pair of
nearly parallel spins and increases it for the other pair, as
indicated in Fig. 3. This soft mode’s stiffness is independent
of the other angle �.

At low temperature, the classical system at equilibrium
can be approximated as occupying the states with potential
energy within kBT of the ground state and not those at higher
potential. Due to the soft mode, the number of such states
near an almost collinear CGS is proportional to T /� �for T
��4�. For n=2, this concentration of the accessible states
near �=0, due to the one mode that softens there, causes the
“order by disorder” effect and the spins order collinearly in
the T→0 limit. But the number of CGS with a given � is
proportional to �2�n−2�, due to the freedom of rotations about
the reference axis. This means that the probability density of
� behaves as ���2n−5� at small �. Thus for n�2 the collinear
states do not dominate even in the zero temperature limit,
and the classical spins remain disordered.

B. Quantum ground state, g�0

Here we show that for small g the ground state wave
function is localized around the collinear state and we obtain
the scaling with g and n of its spread, its energy and the
energy of the lowest excited states. First we present a
“power-counting” variational argument, which is valid when
n is large.

We treat the quantum zero-point energy of the motion
normal to the manifold of classical ground states as that of
harmonic oscillators. For small �, there are �n−1� “stiff”
oscillators, each with zero point energy ��g, and the one
soft mode, with zero point energy ���g. The latter produces

a �-dependent effective potential that lifts the degeneracy
within the set of classical ground states and has a minimum
at �=0. We are interested in characterizing the ground state
and the excited states in this potential.

The set of classical ground states for a given reference
axis constitutes a �2n−3�-dimensional manifold that inter-
sects with itself at the collinear states where �=0. The angle
� is proportional to the distance from this intersection. Each
pair of nearly parallel spins may be rotated about the refer-
ence axis. These latter rotations give 2�n−2� dimensions of
motion. One can also rotate the reference axis, which gives
the remaining �n−1� dimensions of motion. In the ground
state, these reference-axis degrees of freedom are in the zero
total angular momentum eigenstate and we will generally
ignore them in this section of the paper.

Thus we consider a variational wave function that is lo-
calized near �=0, spreading in angle by � in each direction
on the �2n−3�-dimensional manifolds near the collinear
state. The kinetic energy, given by a sum of terms of the
form g�2	 �xi

2 where the xi are coordinates on the manifold
of CGS, is for such a state �g�2n−3� /�2. The typical angle
� in this state is the �Pythagorean� sum of �n−1� angles of
displacement away from the reference axis that are mutually
perpendicular to each other and each of order �, so �
���n−1. At the level of accuracy we are using now, n
��n−1���2n−3�, so the kinetic energy is �n2g /�2, and the
full variational energy is this plus the effective potential of
���g. Minimizing this with respect to � gives the following
estimate for its typical value in the ground state:

�0 � n2/3g1/6. �3�

Thus we see that the ground state is collinear ��0→0� in the
g→0 limit. The crossover from collinear ordering �small �0�
to a strongly disordered state can be defined as occurring at
�0�1, which puts the crossover in the ground state at

gc � n−4 �4�

for large n.
The contributions to the ground state energy from the mo-

tion within the manifold of classical ground states as well as
that from motion along the “soft mode” direction are

E0� � �ng�2/3. �5�

In the former case, this energy is due to the motion in
�2n−3� directions, so the energy of motion in just one of
these directions along the manifolds of CGS, and thus the
energy to excite the motion in that direction to a higher-
energy eigenstate is

Eex � g2/3/n1/3. �6�

There are other, lower-lying excited states that do not alter
the degree of collinearity: these involve “rigid body” rota-
tions of the ground state we are discussing, and, at even
lower energy for small g, tunneling between the three dis-
tinct ways of pairing the four spins.

The above arguments have approximated the soft mode as
harmonic, which is correct for the bulk of the ground state
wave function in the limit of large n. However, we should

FIG. 3. �Color online� Left, parametrization of the classical
ground states of a single tetrahedron, showing the orientations of
the four spins and the reference axis. All the spins are at angle �
from the reference axis. The short arrows indicate the mode that
goes soft as the spins become collinear. The line with no arrows is
the reference axis in spin space that we measure � from. Right,
when the spins are nearly collinear, the space of low-energy con-
figurations that includes the soft mode may be parameterized by the
two small displacements away from collinearity, r�1 and r�2.
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check that the g dependence that we have derived remains
valid at small g even when n is small �such as for the inter-
esting case of n=3�. To do better at small g and small � but
general n, we combine the soft mode degree of freedom with
the manifold of classical ground states, and formulate the
Schrödinger equation within this space. Label the two pairs
of nearly parallel spins 1 and 2 and let the displacement of
one of the spins in each pair away from the reference axis be
r�1 and r�2, respectively, Fig. 3. The other spin in each pair has
precisely the opposite displacement. These displacements are
�n−1�-dimensional vectors and, when small, their magni-
tudes are equal to the angles of rotation of the unit vectors.
To leading order at small g and small ri the resulting
Schrödinger equation is

H�
 = − 2g��1
2 + �2

2�
 + �1/2��r1
2 − r2

2�2
 = E�
 . �7�

By comparing the kinetic and potential energy terms in this
Hamiltonian H�, we see that indeed the characteristic scale
of angle is g1/6 and the scale of energy is g2/3, as obtained
above in the harmonic approximation. The ground state in
this unusual quartic potential for large n is concentrated
away from the collinear state at r1�r2�n2/3g1/6, where the
harmonic approximation used before remains valid. But for
small n the ground state wave function has considerable
weight close to collinearity where the harmonic approxima-
tion is not appropriate. The leading correction at small g to
Eq. �7� appears to be from the � dependence of the stiffness
of the other “hard” modes that were ignored. This gives a
��2�g contribution to the effective potential that thus con-
tributes to the energy at order g5/6, one order higher in our
“small” parameter of g1/6.

C. T�0

Next we consider nonzero temperature for small g, exam-
ining the crossovers that occur, first from the fully quantum
regime for T�Eex where the system remains in its nearly
collinear ground state, to an intermediate regime 	Eex�T
�Tc�g��g1/2 / �n−2�
 where there are many thermal excita-
tions present but it remains near collinear, and then, for n
�2, to the disordered regime at higher T.

The modes within the manifold of classical ground states
are excited when the temperature reaches the excitation en-
ergy Tex=Eex�g2/3 /n1/3. At higher temperatures, we can
treat these degrees of freedom as classical. The soft mode
has an excitation energy of ���g and this mode will be in its
classical regime where it is highly excited only at angles
where this is less than T. There the probability of being near
a particular CGS is

P��� �
T

��g
; �8�

this applies for �0���T /�g. For ���0, within the support
of the ground state wave function, P���� P��0�. At larger
angles, greater than both �0 and T /�g, the soft mode is in its
ground state, which gives an effective energy of ���g and

P��� � exp�− ��g/T� . �9�

Again, the number of distinct CGS with a given � behaves
as ��2�n−2� at small �, so the typical value of � is near the
maximum of �2�n−2�P���. In the intermediate regime we are
discussing, which is Eex�T�Tc�g��g1/2 / �n−2�, this maxi-
mum occurs near

��T� �
�n − 2�T

�g
. �10�

Thus, for n�2 and small T and g, the crossover to the ther-
mally disordered state occurs at

Tc�g� � g1/2/�n − 2� , �11�

where ��T��1. These small g, T results apply as long as the
quantum ground state is itself nearly collinear, which re-
quires g�n−4 and thus T�n−3. The crossover temperature
Tc�g� must have a maximum of order n−3 and then decrease
to zero at gc, as indicated in Fig. 2.

The striking result here is that this simple system of four
rotors has a nonmonotonic, or reentrant behavior at low T as
one increases g from the classical limit of g=0 to the quan-
tum limit of large g for n�2. This is illustrated in Fig. 4.
Initially at small g it is disordered due to the large entropy of
the disordered states relative to the collinear states. As g is
increased, the effective potential due to the soft mode in-
creases, causing the system to be more and more confined to
the nearly collinear eigenstates, as ��T� decreases with in-
creasing g. This trend continues until the energy Eex of the
excited states within the manifold of CGS increases to of
order T, at which point the system is predominantly in the
ground state, with �0�T1/4n3/4. This point, where the devia-
tions from collinearity are minimized, occurs at gmin
�T3/2n1/2. Beyond this point, further increase of g �decrease
of the “mass”� causes the ground state to instead deviate
more from collinearity with increasing g, until it crosses over
in to the fully disordered quantum regime at gc.

III. PYROCHLORE LATTICE

Now that we have examined the behavior of a single tet-
rahedron, we turn to the question of the behavior of our
model on the pyrochlore lattice. This lattice consists of a
three-dimensional array of corner-sharing tetrahedra, so ad-
jacent tetrahedra share a single site. There are two aspects of
the ordering that occurs in the single tetrahedron in the ap-
propriately taken small g, T limit, namely the axis along
which the spins are all collinearly aligned, and which pairs of
spins are pointing which way along that axis. If two adjacent
tetrahedra sharing a single spin both order, they must order
along the same axis, so this “spin-nematic” order should
propagate throughout the lattice. As we show below, we have
found good evidence from quantum Monte Carlo simulations
that the pyrochlore lattice model has a phase with long-range
spin-nematic order in a region of its phase diagram with
nonzero g and T. Thus the crossovers we discussed in the
previous section for the single tetrahedron become true phase
transitions on the full lattice. Since this is an isotropic-to-
nematic phase transition with a cubic invariant in its Landau
theory, this phase transition is expected to be first order, and
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that expectation is indeed supported by our simulations.
The other aspect of the ordering does not strongly propa-

gate between adjacent tetrahedra: The spin nematic order
picks a particular axis in spin space, but there are six differ-
ent low-energy configurations of the spins’ directions along
this axis for each tetrahedron. If a given tetrahedron orders in
to one of these spin patterns, the adjacent tetrahedra that each
share a spin with it still each have three spin patterns that
remain compatible with the first tetrahedron. At this level of
consideration, for the full lattice the entropy of this spin de-
generacy is extensive, and the spins remain disordered, al-
though collinear. It seems likely that this spin degeneracy is
lifted to some degree by tunneling between the various spin
configurations, but this is something that so far we have not
detected, either analytically or in our simulations.

A. Degrees of freedom and modes

We start by reviewing the counting of the number of de-
grees of freedom and of constraints.4 Let N be the number of
tetrahedra. Then there are 2N spins and 2N�n−1� degrees of
freedom. Each tetrahedron has zero total spin in a classical
ground state; this gives Nn constraints. Thus the dimension
of the set of CGS is N�n−2�, and hence there are N�n−2�
zero modes around a generic CGS configuration. However,
around a fully collinear configuration there are N�n−1� zero
modes. Thus there are N soft modes whose stiffnesses vanish
as we approach the fully collinear configuration.

For a small displacement away from the collinear con-
figuration let � be the average of all �’s of all spins. We will
now argue that for the soft modes the associated second de-
rivative of the potential goes as ���2, just as for the single
tetrahedron.

In a collinear configuration consider two directions pa-
rametrized by z�, z
 that displace the system away from the
collinear configuration parallel to a manifold of CGS. H con-
tains no terms of the form z�

2 , z

2 , but only term z�

2z

2 , higher

order terms and terms containing other displacements. Let us
displace the system in the 
 direction to say z0
. Then z� has
to stay zero for the system to remain in CGS. But around the
new point, the mode along the � direction would become
z0


2 z�
2 and so ��z0


2 ��2. There are of course all the other
modes that need to be taken into account but it is reasonable
that this result will not change. To further check this, we
expanded the potential around one particular noncollinear
CGS, one in which each primitive unit cell has the same spin
configuration, with the spins displaced by an angle � from
the collinear configuration. The results are shown in Figs.
5�a� and 5�b� �with �=0.3�. For given n and � the “spin-
wave” bands are the union of 5�b� with �n−2� copies of 5�a�.

FIG. 4. Very schematic drawing of evolution of the distribution
of the eigenstates and probability distributions of the angle � at a
fixed T as g is increased. The height of each peak corresponds to the
probability that the system is at the given �. The width of each peak
corresponds to the spread of each eigenstate. The distribution is
localized approximately up to an angle � f and we say that the sys-
tem is localized if � f ��l�1. At the top g is small, the system is
noncollinear and effectively classical, occupying many excited
states. As g is increased �moving down in the figure� the system
becomes more collinear, and the number of different excited states
occupied at equilibrium decreases. Meanwhile, the spread of �
within the ground state is always increasing as g increases. At gmin

the excitation energy of the lowest excited state passes through T;
this is where the system is most collinear. As g increases further, the
spread within the ground state increases �bottom�.

FIG. 5. The eigenvalues of the Hessian matrix of the potential
evaluated at the states with �a� �=0 and �b� �=0.3 and plotted along
certain chosen directions of the Brillouin zone. For small � the
eigenvalues of the two lowest bands go as �i=ki�

2. The ki’s, or-
dered by their magnitude, are plotted in �c�.
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We see that two zero bands, which together contain N modes,
become nonzero �except for special directions that are of
measure zero�. We further find that stiffnesses of these soft
modes go as ���2.

B. Quantum ground state

Here we show that the “power-counting� variational argu-
ment used for the single tetrahedron goes through for the full
lattice with only slight modifications. We find that the ground
state wave function is localized around a collinear configu-
ration for small g and find its spread as a function of g and n.

We consider a variational wave function that is localized
near �=0, spreading in angle by � in each of the �nN di-
rections available to it. The kinetic energy of such a state is
�gnN /�2. The typical angle � in this state is the �Pythagor-
ean� sum of �n−1� angles of displacement that are mutually
perpendicular to each other and each of order �, so �
���n−1. The kinetic energy is �Nn2g /�2. There are N soft
modes so the potential energy is �N��g. Minimizing the
total energy with respect to � gives the same estimate as
before for its typical value in the ground state:

�0 � n2/3g1/6. �12�

Thus we see that the ground state is collinear ��0→0� in the
g→0 limit. The crossover from collinear ordering �small �0�
to a strongly disordered state can be defined as occurring at
�0�1, which puts the crossover in the ground state at

gc � n−4 �13�

for large n.

C. T‹0

We would like to extend the analysis done for the tetra-
hedron. What is more complicated here is that the soft modes
are not all the same and further they depend in some com-
plicated way on the displacement. We found that for one
particular displacement, their stiffnesses go as �i=ki�

2 where
ki’s are shown on Fig. 5�c�. To proceed we are going to make
the following assumption: Given some general displacement
that is characterized some mean �rms of displacements of all
spins, assume that this distribution of ki’s is not going to
change very much, at least in a qualitative way.

The probability of finding the system in some CGS, treat-
ing the perpendicular directions in harmonic approximation
is given by

P � �
i

1

sinh���i

�g

T

 �14�

where the �i’s are the eigenvalues of the matrix of the second
derivatives of the potential in the perpendicular directions.
With our approximations the probability of finding the sys-
tem with some �=�rms is

P��� � �
i

�N�n−2�

sinh��ki�
�g

T

 �15�

To find the localization, we need to find the behavior of
this function. We find that for large n it is sharply peaked at

� f = n
T
�g

. �16�

To see this differentiate its logarithm with respect to �

d

d�
log P��� =

1

��N�n − 2� − �
i

�ki�
�g

T

tanh��ki�
�g

T

� ,

�17�

and analyze the resulting function for large n. The k’s satisfy
0�ki�1. For �

�g
T �1 the second term is approximately N

and so the derivative is positive and the function is increas-
ing. For �

�g
T �1 for most of the values of i, the term under

summation sign is approximately �ki�
�g
T and so the second

term is approximately N�
�g
T . It is a bit smaller because ki

�1 but of that order. The derivative is zero when �
�g
T �n and

is negative for larger values of � and so as said, the function
is peaked at � f. Evaluating the second derivative we find that
the function is sharply peaked with ratio of the width to � f

being �1/Nn. Therefore the system is localized up to ap-
proximately � f just as in the case of the single tetrahedron.

As n decreases P becomes more and more distributed
around zero and at n=3 it is only a decreasing function.
Nevertheless most of its weight is still in the region approxi-
mately �� f and so the system is still localized approximately
up to � f.

D. Scaling argument

The previous argument shows that the spins localize, but
assumes that the distribution of ki does not change signifi-
cantly for other displacements. In this section we relax this
condition and only assume that ���2. We will show that if
the system localizes it depends on g and T only through �0
=T /�g.

We want to know the probability that the �’s have rms
�rms=�r. This is given by

P��r,�0� =

�� d���
i

sinh���i�����/�0�
−1
���� �i

2 − �r�

� � d���
i

sinh	��i�����/�0
�−1
.

�18�

The ��d� is symbolic, it means to sum over all ground state
configurations, in the neighborhood of the collinear configu-
ration. By changing variables and using the scaling property
of the eigenvalues it is easy to see that

cP�c�r,c�0� = P��r,�0� . �19�

Thus the shape of P depends only on � /�0 �and n�. Therefore
the localization depends on g, T only through �0.

GREGOR, HUSE, AND SONDHI PHYSICAL REVIEW B 74, 024425 �2006�

024425-6



E. Spin wave theory

We now consider a spin wave analysis, expanding to har-
monic order about each collinear CGS to see if a state selec-
tion in this approximation occurs. We note that this should be
asymptotically accurate at small g and that in the spin system
this corresponds to the 1/S computation which does select a
subset of the collinear states.7

A given collinear CGS can be concisely specified, up to a

global rotation, by writing the spins as S� i=�iẑ where �i
= ±1. Fluctuations about such a configuration can be param-

etrized as S� i= �x�i ,�i
�1−xi

2� where x�i= �xi
1 , . . . ,xi

n−1�. Expand-
ing the square root to second order in x, the nearest-neighbor
interaction can be written as

V = �
�i,j�

�i� j + �
�i,j�

x�i · x� j + �
i

�ixi
2�

jnni

� j . �20�

In every collinear CGS the first term is the same and the sum
in the last term is � j nn i� j =−2�i which eliminates all � s
from the last term. Thus the potential expanded to the second
order around a given collinear configuration is completely
independent of the choice of collinear configuration and
therefore so is the spin wave spectrum. Hence any selection
beyond collinear ordering must come from higher orders in
the expansion and thus is a weaker effect than one might
have guessed a priori.

IV. NUMERICAL SIMULATIONS

In this section we use imaginary-time path-integral quan-
tum Monte Carlo simulations to study the ordering of our
quantum rotors on the pyrochlore lattice in the Heisenberg
case n=3. This method is based on writing the partition func-
tion as the trace over all states and inserting Nt−1 additional
resolutions of the identity to obtain Nt copies �“time slices”�
of the pyrochlore lattice model, coupled ferromagnetically
along the imaginary time direction. The case of one time
slice is the classical model that does not order. We find that
an ordered phase does appear already in the case of two time
slices, although it is restricted to very low temperature. As
the number of time slices is increased, the ordered phase
apparently becomes more stable.

In principle, to get the quantitatively correct behavior of
our quantum Hamiltonian, we should take the continuum
�Hamiltonian� limit of Nt→� �with the appropriate scalings
of temporal and spatial couplings�. However, doing this ex-
trapolation properly is a computationally demanding task
that we have not seriously attempted. Instead we have simu-
lated primarily the case Nt=8, mapping out a portion of its
phase diagram and characterizing the phase transition into
the spin-nematic ordered phase. We find that the ordering
transition is first-order, and that the phase diagram is indeed
qualitatively similar to the crossover diagram we obtained
for a single tetrahedron. We expect that these conclusions are
correct also in the Hamiltonian limit.

A. Quantum Monte Carlo

As mentioned above the method is derived by writing the
partition function as a trace over all states and inserting Nt

−1 resolutions of identity. At large Nt we obtain

Z =� �
k,i

dn�k,ie
S, �21�

S = K0�
k,i

n�k,i · n�k+1,i − K1 �
k,�i,j�

n�k,i · n�k,j , �22�

K0 =
NtT

g
, �23�

K1 =
1

NtT
, �24�

where n�k,i is a unit vector at site i in time slice k. The nearest-
neighbor pairs on the pyrochlore lattice are denoted �i , j�,
and the relations between the couplings here and T and g are
shown. In S the first term comes from the kinetic energy term
and the second from the potential energy term in the original
problem.

Our simulations consist of simulating this system for fi-
nite Nt which we treat as an approximation to true system
obtained by taking Nt to infinity. The samples are of size Nx

3

primitive unit cells �thus 4Nx
3 spins� in each time slice, with

periodic boundary conditions.

B. Order parameter

The spin-nematic order parameter that we use is the sym-
metric traceless tensor

Q�
 =
1

4NtNx
3�

k,i
�nk,i

� nk,i

 −

1

3
��

 , �25�

where � and 
 run over the three directions in spin space.
Note this order parameter is defined as a sum over all of
space and imaginary time at one instant during our simula-
tion. To make a dimensionless combination that is sensitive
to the ordering, we use the generalized “Binder ratio”

q3 = �6� TrQ3

�TrQ2�3/2� , �26�

where the average here is over different instantaneous mea-
surements of Q during the simulation. This quantity is a mea-
sure of the degree of collinear spin-nematic order. It is zero
for randomly oriented spins and increases as one approaches
and enters the ordered phase, taking the value one in the
well-ordered limit. It is thus a good quantity for doing a
finite-size scaling analysis of the phase transition, as we
show below. Note that the average value of the third power
TrQ3 of the order parameter does not vanish in this model.
This reflects the fact that its Landau theory has a cubic term
and thus the phase transition is expected to be of first order,
just as in the case of the isotropic-to-nematic transition in 3D
liquid crystals.

C. Phase diagram and the order of the transition

We first establish the existence of the ordered phase. We
simulate the system with sizes Nt=8, Nx=4,5 ,6 ,7 for K0
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=3 and K1=10.1 or K1=10.2. In the process, for every con-
figuration in the run, we save the “action” S0 due to the
couplings along the imaginary time direction and S1 due to
the space direction. This allows us to obtain estimates of q3
for not only the values of the couplings simulated, but also
for nearby values of the couplings by giving each spin con-
figuration its Boltzmann weight eK0S0+K1S1 in calculating the
averages of q3.

The results for q3 for K0=3 and a range of K1 near the
phase transition are shown in Fig. 6. A crossing of the curves
for the different sizes is clearly seen at the estimated “criti-
cal” value of K1c�10.20.

Next we find how the order parameter scales with the size
of the system. We rescale �K1−K1c�→ �K1−K1c�Nx

1/� and
tune � to see when the curves of q3 for different sizes align.
We find that they align well for �=1/3, as shown in the inset
to Fig. 6. Thus we can write q3= f	�K1−K1c�Nx

d
 where d
=3 is the dimension of the system. This is the scaling ex-
pected for a first-order phase transition.

To give further evidence for the first-order phase transi-
tion, we calculate the furthest point correlation function de-
fined as follows

3

2
��n� t,x,y,z · n� t+Nt/2,x+Nx/2,y+Ny/2,z+Nz/2

�2� −
1

2
�27�

where the average is over all spins at one instant during the
simulation. If the transition were first order, the finite size
system at the transition point would jump back and forth
between the ordered and disordered phase. Thus if we plot
the histogram of these correlations we should see two peaks.
These should get sharper as we increase the size of the sys-
tem. The numerical results are shown in Fig. 7 where we
indeed see two peaks, which are getting sharper with increas-
ing size. These results, combined with our expectations from
the Landau theory and the finite-size scaling of q3 give
strong evidence that the transition is first order. The place

where we are showing this corresponds to a g near the maxi-
mum of Tc, but we expect this first-order character will also
remain elsewhere on the phase boundary, including at the
T=0 quantum phase transition at gc.

Now that we have explored one point in the phase dia-
gram, we would like to look at more of them and find the
shape of the phase transition curve. In order to simplify the
calculations we will look only for one size Nx=5, Nt=8 and
say that the point is a point of phase transition if its q3 value
is the same as that at the crossing point in Fig. 6. Finding a
point sufficiently close to the phase transition curve we re-
weight configurations as described above to find a point with
this value of q3. The results are shown in Fig. 8. The range
that is readily accessible to our numerical simulations corre-

FIG. 6. �Color online� The values of q3 for
sizes Nx=4,5 ,6 ,7 �as Nx increases, the curves
become steeper�. The curves cross at one point,
which is the estimated location of the phase tran-
sition. The inset shows q3 plotted vs the scaling
variable �K1−K1c�Nx

3 appropriate for a first-order
transition.

FIG. 7. Probability distributions of the furthest-point correlation
function for Nt=8, K0=3 at the values of K1 where the two peak
heights match. The peaks become sharper and the minimum in be-
tween deeper with increasing system size, as expected for a first-
order transition.
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sponds to the higher temperature part of the phase boundary.
We see that it has qualitatively the same shape as that of our
single tetrahedron crossover diagram, and in particular it
shows the reentrant behavior on varying g at a fixed T �in
practice this is varying K0 at a fixed K1�. The strong reen-
trance also seen at low T on the high g side of the phase
diagram is likely an artifact of the very coarse imaginary
time slicing that is done there with these parameters. We note
that the transition temperature is very low, its maximum
value is roughly �0.012J �J=1 in this paper�; this low value
is another manifestation of the strong frustration in this sys-
tem.

V. LARGE n ANALYSIS

Our primary focus in this paper has been the physics of
ordering via quantum fluctuations. As we have seen, this is a
delicate effect which exists in a small corner of the �g ,T�
plane and one that goes away as n→�.

This last observation suggests that in order to compute the
properties of the system away from the region of ordering it
is useful to resort to the large n approach. Indeed this obser-
vation has already been used in the classical limit, where
ordering is absent for all n�3, to obtain a very accurate
theory of the spin correlations.6,21 We will now extend this
analysis to the quantum problem.

A brief recap of the analysis: We write the partition func-
tion as a path integral and impose the fixed length constraint
by introducing a Lagrange multiplier field. The resulting ac-
tion is quadratic in spins which can then be integrated out to
obtain an effective action for the Lagrange multiplier field
with an overall coefficient of order n which thus enables a
saddle point treatment. The saddle point condition, which is
all we need to solve to find the n=� correlations, takes the
form

1

2N
�
q,�

�g/2

��q
� + �

coth��g/2

2T
��q

� + �
 = 1 �28�

where � is the uniform, saddle point value of the Lagrange
multiplier field, � runs over the four bands of the pyrochlore

lattice and �q
� are the eigenvalues of the adjacency �interac-

tion� matrix for a lattice of N sites. As the lowest two bands
are flat, with �� independent of q, this equation has a solu-
tion with ��0 for any nonzero value of g and T. Hence the
system is always disordered at n=�, consistent with our ear-
lier considerations.

We will not write the resulting correlations of the spins
explicitly. Instead it is instructive to write the correlations of
the field that is obtained from them as follows. Let n� , defined
at any site, be a vector pointing from one tetrahedron to the
other �this can be chosen consistently as the tetrahedra sur-
round sites of the bipartite diamond lattice�. Then, for each

component of the spin S, define the vector field B� a�x�
=n��x�Sa�x�. The significance of this field lies in the fact that
it has zero lattice, and thus coarse-grained, divergence in the
classical ground state manifold. As discussed in Ref. 6 this
field exhibits dipolar correlations in the T→0 limit in the
classical problem. In our more general problem, at small g, T
and q, we find that the retarded ground state correlations are

�Bi
a�q,��Bj

b�− q,− ���R

= �ab��ijq
2 − qiqj

q2

g

− �2 + ��g
+

qiqj

q2

g

− �2 + g��� + q2�
 ,

�29�

where we have ignored, for simplicity, numerical factors that
appear in front of g and �� �=�−1�. From the saddle point
condition for T�g�1, ���g and for g�T�1, ���T. The
crossover occurs at T�g. We expect that this formula de-
scribes the correlations away from very small g and T in the
disordered phase rather well. We should emphasize that this
covers the bulk of the strongly correlated or cooperative
paramagnetic regime, T ,g�J=1, where the correlations be-
tween the rotors are significant although the system is still
disordered.

These forms reduce at equal times and g=0 to the dipolar
forms derived in Ref. 6 At zero T and nonzero g we see that
the correlations decay exponentially in space with a correla-

FIG. 8. The estimated phase transition curve
for the Nt=8, Nx=5 system. The strong reen-
trance at low T on high g side of the phase dia-
gram is likely an artifact of the very coarse
imaginary time slicing that is done there with
these parameters.
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tions length of order g−1/2 and exponentially in time with a
gap of order g. Observe that the n=� problem does not
contain any trace of the nematic ordering that exists at finite
n. Individual terms in the 1/n expansion for the correlation
function can be seen to be well behaved22 and so while they
can be used to obtain a more accurate treatment of the coop-
erative paramagnetic regime, it will take an analysis of the
series to reproduce the instability that we have obtained ear-
lier. This is a challenge for future work.

VI. CONCLUSIONS

We have fully explored the local ordering of a single tet-
rahedral unit of four neighboring rotors. They order col-
linearly, with two rotors pointing along one direction and the
other two in the opposite direction. Thus an axis of ordering
is chosen, and since in the full pyrochlore lattice this tetra-
hedron shares one rotor with each of its neighbor tetrahedra,
this axis of ordering is uniform throughout the lattice in the
ordered phase, which thus has spin-nematic, or collinear or-
der. We have demonstrated this spin-nematic ordering within

a quantum Monte Carlo simulation. There might also be
long-range order in which rotors point in which direction
along this axis, and/or in which pairs of rotors are parallel or
antiparallel. We have not yet been able to determine whether
our ordered phase has any of these latter types of sublattice
order in addition to its collinear order. We find that the col-
linear order shows up quite robustly in our quantum Monte
Carlo simulations, while any other long-range correlations
that might be present appear to be much weaker and difficult
to detect, if they are indeed there.

We note that the considerations outlined here apply
straightforwardly to the two-dimensional checkerboard lat-
tice which is the planar analog of the pyrochlore lattice. By
contrast an analysis of the rotor models on the kagome lattice
will require a fresh analysis.
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