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Edge saturation fields and dynamic edge modes in ideal and nonideal magnetic film edges
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This paper describes modeling of the micromagnetic behavior near edges of ferromagnetic thin films when
uniform fields are applied in plane and perpendicular to the edge. For ideal film edges with vertical edge
surfaces, the field required to saturate the magnetization perpendicular to the edge, Hg,, and the frequency of
precession in the localized edge mode are calculated using numerical micromagnetics for a wide range of film
thicknesses. Analysis of the critical state at the saturation field and the full micromagnetic results are used to
develop a simple macrospin model for the edge magnetization. This model predicts both H, and edge mode
precession frequency values that agree well with the micromagnetic results. Three classes of nonideal edges are
also modeled: tilted edge surfaces, diluted magnetization near the edge, and surface anisotropy on the edge
surface. Despite their different physical mechanisms, all three of these defects produce similar reductions in

Hg, and similar dynamic properties of the edge magnetization.
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I. INTRODUCTION

In the study of nanostructured materials it is widely ac-
cepted that many properties of a material are determined by
the surfaces and interfaces, and that the importance of sur-
faces and interfaces grows as grain sizes, particle sizes, or
film thicknesses become small. Similarly, the edges of pat-
terned magnetic thin films are expected to play an important
role in the magnetic behavior of patterned elements.!™

The overall properties of a thin film device may depend
on the edge properties through several mechanisms. For
small structures, the device behavior may depend strongly on
the edge properties simply because all locations in the struc-
ture are close enough to an edge to couple to the edge mag-
netization via exchange and dipole-dipole interactions. In
larger structures, the critical stages in magnetization reversal
often include nucleation or annihilation of vortices at the
edge.*3-13 Because these processes occur at the film edge,
the edge properties play an important role in the reversal.

Despite the demonstrated importance of edge properties
to device behavior, relatively little work has been done to
develop methods for characterizing the magnetic properties
of thin film edges. One recently explored path toward mag-
netic edge characterization involves measurements of the
magnetization dynamics in transversely magnetized, long,
straight stripes. In this configuration, inhomogeneous magne-
tostatic fields localize magnetization precession near the
edge in a trapped spinwave edge mode.'4?!

Figure 1 shows typical static and dynamic properties of a
magnetic stripe in a transverse field as calculated by numeri-
cal micromagnetics.>'~?3 The quasistatic behavior is best de-
scribed in terms of three field ranges. At the lowest fields, M,
is small and the magnetization lies mostly along the stripe
axis in the y direction. Above an indistinct bulk saturation
field indicated by a dashed line in Fig. 1, the center of the
stripe is nearly saturated perpendicular to the stripe axis, but
a significant component of the magnetization remains in the
y direction near the stripe edges.?* At fields above the indi-
cated edge saturation field, H,, the magnetization at the
edge aligns very nearly parallel to the applied field.
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PACS number(s): 75.70.Ak, 75.75.+a, 76.50.+g, 75.40.Gb

The behavior of the magnetization curves is also reflected
in the resonance frequencies of the magnetic normal modes
in the stripes. At the lowest fields where the magnetization
lies nearly parallel to the stripe axis, the normal modes in
similar systems have been described as standing spin waves
propagating perpendicular to the stripe axis with the dynamic
magnetostatic fields creating effective pinning conditions at
edges.!>?27 Near the indistinct bulk saturation field, the
lowest resonance frequency goes through a minimum, and at
slightly higher fields the edge mode (lowest frequency) be-
comes distinct from the bulk modes.'4-17:20:24

For this paper, the primary interest is in the edge mode for
fields near and above Hg,. The edge saturation field H,,
where M, and the edge mode frequency both go to zero, is an
important quantity that characterizes the magnetic properties
of the edge. At H,, the edge magnetization is neutrally
stable and the “softness” of the edge magnetization in this
state is reflected in the zero edge mode frequency. For fields
greater than H,, the equilibrium magnetization is aligned in
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FIG. 1. Static magnetization curves (top) and resonance fre-
quencies (bottom) for a permalloy stripe, 480 nm wide and 12 nm
thick, with “ideal” edges. The center of the stripe is mostly satu-
rated at 24 mT and the indicated critical field H, for edge satura-
tion is 164 mT.
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the x direction. However, there is a dipolar field equal to
—M /2 at the edge surface. For fields between H, and M,/2
then, there is a region of negative field near the edge where
the magnetization is stabilized in the positive direction by
exchange interactions.

While H, is easily obtained from the computational ex-
periments, laboratory experiments may encounter difficulties
in determining Hy, owing to alignment tolerances. Our pre-
vious calculations have shown that for fields applied as little
as 1° away from the x direction, H, becomes indistinct in
the magnetization curves and the edge mode frequency mini-
mum becomes rounded and shifted to higher field.??

The localized nature of the precession in an edge mode
makes the mode sensitive to edge conditions. In transversely
saturated stripes, significant differences have been found be-
tween experimentally measured edge mode frequencies and
the edge mode frequencies predicted for ideal edges.?*?* Fur-
ther evidence for the sensitivity of edge modes to edge con-
ditions has been revealed by time resolved Kerr microscopy
where differences have been observed between the edge
mode frequencies on opposite edges of the same stripe.!'62%
Tilted edge surfaces have been proposed as a possible
mechanism to explain differences between measured edges
and modeled ideal edges.>>>* However, it will be shown be-
low that edge surface tilting is only one of several possible
microstructural conditions that affect the magnetic edge be-
havior in similar ways.

This paper describes computational experiments and mod-
eling designed to determine the magnetic behavior of thin
film edges with different microstructural properties. In Sec.
II, we describe some of the properties of “ideal” edges with
smooth, vertical side walls, uniform intrinsic properties, and
no surface anisotropy. In Sec. I, the effects of three possible
types of edge “defect” on the edge saturation field are sepa-
rately investigated by varying (1) the geometric profile of the
edge surface, (2) the dilution of both the spontaneous mag-
netization M, and exchange stiffness A near the edge, and (3)
the presence of a surface anisotropy on the edge surface.

II. IDEAL EDGES

This section describes some of the properties of ideal
edges as a function of film thickness. We begin by consider-
ing the fields near the edge of a half-infinite film of thickness
t bounded by x>0 and 0<z<t. If the magnetization is as-
sumed to be independent of y, the field inside the film at a
position r=(x,z) is given by

H(r) = H,pp + 2,V M(r)

—_
,_

* Lo - -1
+J dx’J dz’ (c r)(,r l;) “M(r’), (1)
0 0 27r’ —r|

including a uniform applied field, the exchange field, and the
magnetostatic field, respectively. The exchange length, I,
depends on the exchange stiffness A and the saturation mag-
netization M,: I2 =2A/(uyM?). The hat notation indicates a
unit vector, f=r/|r|.
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FIG. 2. Edge saturation fields obtained from micromagnetic cal-
culations (Sec. IT A), including a point from a 3D calculation and
data from Refs. 21 and 22. Curves are from a model based on
analysis of the critical state (Sec. IT C) and a macrospin model (Sec.
11 B). Inset, field dependence of edge mode frequencies. The solid
line is a fit described in the text.

The dynamic behavior of the normalized magnetization
m=M/M; is given by the Landau-Lifshitz-Gilbert equations
of motion,?8-2°

din [ X ] . din 2)

—=- m +am X —,

ar M M
where wy,=yM, with y=2.211X10° m/(As), h=H/M, is
the normalized effective field, and « is the Gilbert damping
parameter.

Making the transformation to unitless coordinates p
=(&,0)=(x,7)/l and 7=1/l,, the normalized field is given
by

h(P) = Happl/Ms + V,Z)Ih(l))

. ” .
T2 -p)p' -p) -1
+f dgf di ; 5 -m(p’).
0 0 2mp’ - pl

3)

For this paper, the magnetic film edge properties are ex-
plicitly calculated for material properties corresponding to
permalloy films. However, from (3) it is clear that the film
thickness enters the equations of motion only in the ratio
7=t/l,,, and that the applied field enters the equations of
motion only in the ratio H,y,/M,. These ratios provide a
method for scaling the permalloy results to obtain ideal edge
properties for films of other magnetic materials.

The following sections describe three models that provide
estimates of H, for ideal edges on films of varying thick-
nesses. The results are collected in Fig. 2.

A. Numerical micromagnetics

Computational experiments were performed using the
OOMMF micromagnetic code®® to model isolated stripes
with  material parameters approximating permalloy
(NigyFe,;); spontaneous magnetization M ;=800 kA/m, ex-
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change stiffness A=13 pJ/m and damping parameter
a=0.01. With these parameters, the exchange length for this
material is [, =(2A4/ poM?)"">~5.7 nm. The boundary condi-
tion at the top, bottom, and edge surfaces is assumed to be
free, i.e., there are no surface torques and consequently, for
surface normal vector i, dM/dn=0.

We performed a number of calculations for stripes of dif-
ferent thicknesses, keeping the width to thickness aspect ra-
tio of the stripe between values of 15 and 240. The stripe
width was kept larger than 300 nm to allow for the fact that
the effects of the edge extend into the bulk. A quasi-two-
dimensional approach was implemented by making the cells
very long in the y direction [along the stripe axis, see Fig.
1(a)]. In the x and z directions a variety of cell sizes were
used. For films thinner than 32 nm thick, 1 nm or 2 nm cells
were used, while for films thicker than 32 nm the thickness
was divided into 16 cells. Although these cells are larger than
the exchange length, they are small enough to yield smooth
static magnetization and mode profiles without large angles
between neighboring spins.

The validity of the two-dimensional (2D) approach was
verified by a much more computationally demanding three-
dimensional (3D) calculation of edge saturation in a 250 nm
wide, 4 um long, 20 nm thick, permalloy rectangle using
4 nm X4 nm X5 nm cells. Relative to the infinite stripes of
the 2D model, the edge saturation transition was broadened
somewhat by the broken symmetry near the ends.

We used a field-pulse process to calculate the dynamic
properties of the stripes.’!=3? First, we used an energy mini-
mization scheme to allow the magnetization to come to equi-
librium in the applied field. The magnetization dynamics
were then excited by a short, spatially uniform field pulse.
The pulse field rotated the magnetization approximately 1°
away from equilibrium with 1.0 T applied for 100 fs in the z
direction. The short duration field pulse is equivalent to a
broadband excitation that is essentially flat to frequencies
much greater than 100 GHz.

Following the field pulse, the magnetization motion was
calculated using the Landau-Lifshitz-Gilbert equations of
motion (2). The resulting time series M,(r;,t) for each mi-
cromagnetic cell i, and the spatial average of the magnetiza-
tion (M,(r)) were recorded. These time series were Fourier
transformed to obtain the frequency response of the stripe.
The Fourier transforms are proportional to the susceptibility
functions x(r;,f) and {x(f)) for the local and spatially aver-
aged magnetization, respectively. Peaks in the imaginary part
of (x(f)) correspond to the peaks one would observe in a
broadband ferromagnetic resonance experiment.

For a resonance in (x(f)) occurring at a frequency f;,
the spatial profile of the corresponding normal mode (or su-
perposition of modes) is obtained from x(r;,f;**).**** These
profiles enable one to identify resonances as bulk or edge
modes, and they show the degree of localization of edge
modes.

For film thicknesses less than roughly 30 nm, {x(f)) ex-
hibits only a few strong resonances, including a single edge
mode and one or two bulk modes as shown in Fig. 1. Typi-
cally, a number of weaker resonances are also detected at
higher frequencies. In films thicker than 30 nm, there are
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multiple edge modes and multiple bulk modes. In these cases
we report only the lowest edge mode frequency. Multiple
edge modes have previously been observed experimentally.'”

The field near one edge of a transversely magnetized
stripe includes a component H°PP from the magnetostatic
charges near the opposite edge. For a stripe with film thick-
ness ¢ and stripe width w, the field due to these charges is
HPP=—M t/(27w) for t<<w. Field values reported below
and in Fig. 2 have been corrected by an amount equal to H°PP
in order to represent fields more characteristic of a single
edge than of a particular finite width stripe.

For fields greater than the edge saturation field, we fit the
computed edge mode frequencies to a Kittel frequency of the
form

f(Happl) = %y[(Happl + Hl)(Happl + HZ)]I/Z- (4)
In Sec. II B, the physical significance of H; and H, is de-
scribed in terms of magnetostatic and exchange fields, but
here they may be regarded simply as fitting parameters. An
example fit is shown in the inset of Fig. 2. We arbitrarily
assign H; <H,. The saturation field is identified as the field
where the precession field drops to zero and the magnetiza-
tion becomes neutrally stable, or Hg,=—H;. For thinner
films, a good fit can be made for fields well above H,. For
the thickest films, good fits were only obtained when the
fitted data were restricted to fields within a few tens of mT of
Hg,. The fit values for Hg, are plotted as points in Fig. 2.

We suspect that part of the problem in fitting the thick
film edge resonance frequencies lies in the fact that the equi-
librium state is field dependent in the thicker films. For films
thicker than a few exchange lengths, the equilibrium state
includes a spreading of the magnetization direction near the
edge surface, with a significant z component of the magne-
tization on the top corner and an oppositely directed z com-
ponent on the bottom corner.'® The degree of spreading in
the ground state depends on the applied field, vanishing in
the limit of infinite applied field. This effect is smaller in the
thinner films where exchange interactions force magnetiza-
tion near the top and bottom surfaces to lie parallel.

B. Macrospin model

This section describes a simple macrospin model of the
edge magnetization. Equation (4) was used above to fit edge
mode frequencies, but it is also identical to the expression
one would use to describe the resonance frequency of the
magnetization in an ellipsoid-shaped sample. The macrospin
model is based on determining the effective ellipsoid with
the behavior that most closely matches the micromagnetic
results.

A rigorous treatment of the edge dynamics using the field
given in (1) would require solution of an integro-differential
equation.'®!7-19:2627 To obtain a simpler analytical result, we
assume that for applied fields greater than the edge saturation
field, the magnetization lies primarily in the x direction with
small deviations m,=M /M and m,=M /M. The effective
field includes the applied field H,p,, exchange fields H.,
arising from exchange coupling between the edge region and
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FIG. 3. (a) 10 GHz edge mode precession profiles determined
by numerical micromagnetics for 4 nm and 100 nm films. (b) Ge-
ometry of the macrospin model showing precession confined to a
region bounded by an elliptical cylinder near the edge. (c) In the
elliptical region the magnetostatic field differs from the field in a
free elliptical cylinder because of the attached sheet film. (d) Values
of H, from fits of the micromagnetic edge mode frequencies
(squares) compared with the prediction of the macrospin model.

the bulk of the film and magnetostatic fields given by effec-
tive demagnetization factors N, N;’,ff, and N,

Hx=Happ1_N§-fstv (5)
H,=—Hgm,-N5"Mgn,, (6)
H,=—Hm,—N"Mn.. (7)

Using this expression for the field in the precession region,
the precession frequency obtained from (2) has the form of
(4) with

Hl =Hex+(N;ff_N)ecff)Ms» (8)

Hy=Hee + (N = NOM,. ©)

The exchange field and the effective demagnetization fac-
tors are expected to depend on the spatial profile of the edge
mode, characterized by a localization length scale d, that
describes the depth that the edge mode extends into the bulk
of the film. Figure 3(a) shows that edge mode profiles are
relatively insensitive to thickness at 10 GHz. Despite the fact
that the thicknesses differ by well over an order of magni-
tude, the edge mode precession extends approximately the
same distance into the film. The very weak dependence of
the edge mode depth on the film thickness is also confirmed
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in Sec. II C, below. Because the edge mode depth d, is only
weakly dependent on film thickness, we make the approxi-
mation that d, is independent of thickness.

Next, approximate expressions for the effective demagne-
tization factors are developed, assuming that the precession
is confined to a region that is an elliptical cylinder lying
along the film edge with primary axes equal to the thickness,
t and the edge mode depth d,. See Fig. 3(b).

As shown in Fig. 3(c), for a free-standing elliptical cylin-
der magnetized in the x direction, positive and negative mag-
netostatic surface charges on opposite “sides” of the ellipse
give rise to a demagnetization field H*™&=-N M, with
N,=t/(t+d,). However, the negative charges on the concave
surface of the film edge exactly cancel the positive charges
on the right half of the ellipse in Fig. 3(c). Since only half of
the charges remain, we take one-half of the demagnetization
factor for the free standing cylinder as an approximate de-
magnetization factor for the cylinder embedded in the film
edge;

ff=l t
Y 2t+d,’

(10)

The magnetization in the bulk of the film does not con-
tribute to fields in the y or z directions. The remaining de-
magnetization factors are therefore,

N=0, (11)
d
Nﬁff:t:d ' (12)

With these effective demagnetization factors, the mac-
rospin model of the edge saturation field is
M

Hsat=_H1=_Hex+7xt+de‘

(13)

Values for H,, and d, were determined by fitting (13) to
the micromagnetic saturation fields (i.e., the black squares in
Fig. 2). The fits yield essentially zero for H.=(
—1.0+£11) mT and d,=(26+3) nm or d,=(4.6+0.6) ... The
fit is shown as a solid line in Fig. 2(a). Note the excellent
agreement between the approximate macrospin model and
the full micromagnetic result over 3 orders of magnitude
variation in stripe thickness.

The small value of H,, obtained from the fit to the micro-
magnetic Hg, data is somewhat surprising. Given an edge
mode depth of d,~?26 nm that is consistent with the edge
mode profiles shown in Fig. 3(a) and Fig. 4 below, the cor-
responding direct estimate is He, ~2A/(Md*) =48 mT.

The macrospin model also provides an estimate of the
edge mode frequency for an ideal edge. Using the approxi-
mate expressions (12) and (10) above for the demagnetiza-
tion factors N;’“ and Ni”, one can derive a relationship be-
tween H; and H,,

H2=MS+3H1_2HCX' (14)
This relation is plotted as a solid line in Fig. 3(d) using

H.=0 and uyM,;=1.0 T. Pairs of H; and H, values obtained
from micromagnetic calculations are also plotted for com-
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FIG. 4. Zero frequency edge mode profiles at H,,,=Hg, 0b-
tained by solution of (16). A few mode profiles are shown above
and selected contours for a large set of solutions are shown on the
base. The profile of the magnetization tilting in the zero frequency
edge mode does not depend sensitively on the film thickness.

parison. Note that the micromagnetic data points fall very
close to the macrospin model line, consistent with H,, ~0.
Using values of H; and H, from (13) and (14), respectively,
an estimate of the edge mode frequency is given by (4).

C. Critical state analysis

This section contains an analysis of the behavior of the
magnetization at the saturation field. The results of this
analysis include a third estimate of the edge saturation field
and confirmation of the weak dependence of the edge mode
depth on the film thickness. The stripe is assumed to be
nearly uniformly magnetized in the x direction, with a small
deviation m,(x)=M(x)/M,. The magnetostatic field is the
field due to the uniform sheet of magnetic charges on the
edge surface. The field inside the film is approximated by
considering only the field along the center plane of the stripe
at z=t/2.

1 t
H,(x)=- ;M‘Y arctan(a), (15)

where 7 is the thickness, x is the distance from the edge, and
M, is the saturation magnetization. As in Sec. II, the dis-
tances in the equation are normalized by the exchange length
I so that é=x/1., and 7=t/l.,. In equilibrium, the net torque
on each moment is zero,

d? H 1
%—{ﬁ—;aretan(z—;ﬂm}:o. (16)

The first term in Eq. (16) is the torque due to exchange
interactions and the second term is the torque on the magne-
tization due to the local field in square brackets.

The boundary conditions are determined by considering
the effect of a surface torque applied at £=0. For applied
fields greater than H,, a small static torque applied at the
edge surface will create a small, static tilting of the magne-
tization. In this state, the external torque applied to the sur-
face magnetization is balanced by an exchange torque arising
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from the magnetization bending near the edge surface,
dm,/d&+ 0.3 For an applied field equal to the saturation
field, m, will be neutrally stable so that a finite m, can exist
when there is zero torque applied at the edge surface, and
therefore no magnetization bending at the interface. There-

fore, when H,,, = Hyy, the following boundary conditions ap-

ply:
dm
— =0, 17
(my)gﬁmz(). (18)

The second boundary condition ensures that the edge effects
do not extend deep into the film. We find values of H, that
satisfy these boundary conditions by integrating (16) from
£=0 to a large value of & (x=3001,, in this case) and we use
a Newton’s method solver to find values of H,,, that give
my=0 at the end of the integration.

For each film thickness, we obtain a value for H, and a
solution for m,, which is a profile of the edge mode at zero
frequency. The saturation field calculated in this way is plot-
ted vs the film thickness in Fig. 2.

Profiles of the zero frequency edge mode at H,,, = Hy, are
shown in Fig. 4. Note that the static magnetization tilting
profile is relatively insensitive to the film thickness. The
depth of the mode profile as determined by the m,=0.5 con-
tour varies by just over a factor of 2 as the thickness spans
three orders of magnitude.

II1. NONIDEAL EDGES

This section explores the behavior of the edge saturation
field when the edges are made nonideal. The discussion is
limited to edges that are uniform along the length of the
edge. Edge roughness is certainly an important edge
characteristic,!~>7~? but it is not addressed explicitly here. In
the following sections micromagnetic models of three types
of nonideal edges are described. The behavior of the edge
saturation field H, is compared for the three types of edges
on 12 nm thick films. This thickness corresponds to an ideal
edge saturation field of 164 mT that lies roughly midway
between the maximum and minimum values plotted in Fig.
2(a).

A. Edge geometry

One way that real edges may differ from the ideal is in the
geometric profile of the edge surface.?>?* Faceting may oc-
cur during chemical or plasma etching processes, or edges
with tapered thickness may be formed by deposition through
a shadow mask. As an initial model of these geometric ef-
fects, we introduce tilting of the edge surface by an angle .
See the inset of Fig. 5(a). Values of Hg, for a range of tilt
angles ¢ are given in Fig. 5(a), showing that edge surface
tilting tends to reduce H,.

The x component of the internal field for a 45° edge pro-
file is shown in Fig. 6(a). Different edge defects will create
different distributions of magnetostatic charge. To facilitate
comparison between different types of defects, the x axis in
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FIG. 5. Edge saturation field for 12 nm thick permalloy stripes
with various edge properties. (a) Hg, as a function of the edge
surface angle. (b) Hg, as a function of the width of a diluted region
at the edge. The magnetization M, drops linearly to zero over the
distance D, and the exchange stiffness is set proportional to M?. (c)
Hg, as a function of surface anisotropy energy on the edge surface.

Fig. 6 is the horizontal distance from the magnetostatic
charge center.

For a 12 nm thick film, saturated in the x direction, the
magnetostatic edge charges are distributed uniformly over
the edge surface extending from x=0nm, z=0nm to
x=12 nm, z=12 nm. The charge center is therefore located at
x=6 nm. The field values shown are taken from the midplane
of the stripe, z=#/2 for x>12 nm and z=x/2 for x<12 nm.
The internal field for the tilted edge begins to differ notice-
ably from ideal edge case near 6 nm away from the charge
center, approximately coincident with the location of the top
end of the charged edge surface.

The large increases in the internal field that are observed
to the left of the charge center occur because some charges
are located further from the edge than the observation point.
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FIG. 6. (a) Profiles of the x component of the internal field at the
midplane for 12 nm thick stripes of permalloy with different edge
properties. The internal field for the edge with surface anisotropy is
identical to the field for an ideal edge. (b) Thickness-averaged edge
mode precession amplitude profiles at H,,;=0.3 T for various edge
conditions.
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Right at the knife edge of the taper, where the edge surface
meets the bottom surface in Fig. 5(a), the field due to the
surface charges actually adds to the applied field, for a net
field greater than the applied field of 0.3 T. The net effect is
that tilting of the edge surface reduces the saturation field by
reducing the magnitude of the magnetostatic field in the
neighborhood of the edge.

B. Edge dilution

In films patterned by focused ion beam (FIB), the edges
will be doped with Ga atoms, and this is known to “poison”
the magnetization near the edge. To model this phenomenon,
a vertical edge surface is assumed and the saturation magne-
tization is decreased linearly over a distance D from its bulk
value to zero at the physical edge of the sample. Simulta-
neously, we modify the exchange stiffness A in this region to
be proportional to M(x)?. See the inset of Fig. 5(b). This
choice is motivated by the spin-spin nature of the exchange
interaction, and that the exchange energy might therefore be
expected to depend quadratically on the magnitude of the
spins. Setting A proportional to M(x)? has the interesting
additional feature that the exchange length remains constant
through the diluted region.

Edge dilution distributes the magnetostatic charge evenly
over a volume between x=0 and x=D, so the charge center is
located at x=D/2. Similarly to the preceding tilted edge ex-
ample, spreading of the magnetostatic charges into the bulk
creates a region at the geometrical edge where the demagne-
tization field actually adds to the applied field. The net effect
is that magnetization dilution at the edges will reduce H,, as
shown in Fig. 5(b).

C. Surface anisotropy

The presence of surface anisotropy on the edge surfaces
has been recognized as a possibly important parameter for
the switching behavior of small magnetic elements.® The sur-
face anisotropy energy density is typically written in the
form —(rxmi. Typical values for surface anisotropy measured
in permalloy films are positive and are in the neighborhood
of o,~0.1 mJ/m?.° Because the surface anisotropy energy is
minimum when the magnetization points normal to the sur-
face, the surface anisotropy will favor magnetization normal
to the edge surface and it will therefore reduce H,.

For the micromagnetic calculations with cell size A, the
surface anisotropy was implemented by including a uniaxial
anisotropy energy density K;=o0,/A, only in those cells hav-
ing boundaries on the edge surface. The effect of surface
anisotropy on Hg, is shown in Fig. 5(c).

D. Edge diagnostics

The previous three sections demonstrate that there are a
variety of edge conditions that may cause real edges to be-
have differently from the ideal edges described in Sec. II.
The three specific defects shown here all tend to decrease
H,, but other types of edge conditions, including negative
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FIG. 7. Mode frequencies for a stripe with ideal edges and for
three stripes with different edge properties adjusted to produce ap-
proximately the same saturation field.

o, and/or thickening of the film near the edge may be ex-
pected to increase Hg,.

Given that there are a number of conditions that lead to
nonideal edge behavior, it would be desirable to develop
magnetic techniques to identify the conditions that are re-
sponsible for nonideal edge behavior in a particular sample.
In Ref. 22 it was recognized that the edge tilting breaks the
symmetry through the z=¢/2 plane, causing splitting of the
edge mode resonances as the applied field and equilibrium
magnetization are rotated out of plane. In contrast, edge di-
lution and surface anisotropy do not break the z symmetry.

To explore other possible differences in behavior between
edges with different types of defects, we model three edges
with different edge properties but roughly the same value of
Hg,.. We have chosen three edges in 12 nm thick permalloy
with (1) 45° edge surface tilting, (2) magnetization dilution
over 6 nm, and (3) 0.3 mJ/m? surface anisotropy. All three
of these conditions produce a value of H,,~0.11 T.

The internal field profiles (discussed above) and the pro-
files of the edge precession amplitude for these three edges
are plotted in Fig. 6. The precession amplitude profiles are
different enough to be distinguishable, but measurement on
the time scales and length scales involved would be a daunt-
ing technical challenge.

Instead, we look for differences in the edge mode fre-
quency, which can be detected by ferromagnetic resonance
and Brillouin light scattering. Figure 7 plots the lowest reso-
nance frequency as a function of applied field. The field di-
rection is in the sample plane, perpendicular to the long axis
of the stripe. In each curve, there are two minima; the
rounded, low-field minimum corresponding to the near satu-
ration of the center of the stripe and the sharp minimum
corresponding to the saturation of the edge. It is clear from
this figure that although the saturation field has been modi-
fied by three different mechanisms, the applied field depen-
dences of the edge mode frequencies are nearly identical.

Figure 8 shows the edge mode frequencies for stripes with
these three different edges as a function of applied field di-
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FIG. 8. Mode frequencies as a function of the direction of the
in-plane applied field. Results are plotted for three stripes with dif-
ferent edge properties adjusted to produce approximately the same
saturation field. The applied field magnitude is 0.3 T.

rection as the applied field of 0.3 T is rotated away from the
x direction in the x-y plane. The angular dependence of the
edge mode frequencies is nearly identical for the three dif-
ferent edge conditions. The lines for the 6 nm wide dilution
region and for the 0.3 mJ/m? surface anisotropy are nearly
superimposed in this plot.

From the standpoint of potential diagnostic measure-
ments, it appears that for a given edge saturation field, nei-
ther the field dependence nor the in-plane angular depen-
dence of the edge mode frequency will differentiate between
possible mechanisms for deviations from ideal edge behav-
ior. While the presence of top-bottom asymmetry can be re-
vealed by out-of-plane angular dependence of the edge mode
frequency,? the effects of surface anisotropy and edge dilu-
tion are effectively identical.

IV. DISCUSSION

The primary results of this paper are threefold. First, the
edge saturation field is identified as a measurable quantity
that characterizes an edge. Second, three models are devel-
oped to describe the thickness dependence of the edge satu-
ration field and the edge mode frequency in ideal edges.
Numerical micromagnetics and analysis of the equilibrium
condition at the saturation field both reveal that the edge
behavior extends into the film on the order of five exchange
lengths, a distance that is only weakly dependent on the film
thickness. This behavior is incorporated into a simple mac-
rospin model of an ideal edge that is in good agreement with
the full micromagnetic results. Third, three classes of non-
ideal edges are modeled, different nonideal edge conditions
produce similar effects on the edge saturation field and on
the edge mode dynamics.

Despite the fact that coercivity depends on many different
microstructural features and mechanisms, it is a useful quan-
tity for characterizing magnetic materials. Analogously, we
regard the edge saturation field as a useful quantity for char-
acterizing magnetic thin film edges.
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