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Ice: A strongly correlated proton system
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We discuss the problem of proton motion in hydrogen bond materials with special focus on ice. We show
that phenomenological models proposed in the past for the study of ice can be recast in terms of microscopic
models in close relationship to the ones used to study the physics of Mott-Hubbard insulators. We discuss the
physics of the paramagnetic phase of ice at 1/4 filling (neutral ice) and its mapping to a transverse field Ising
model and also to a gauge theory in two and three dimensions. We show that H{O and HO™ ions can be either
in a confined or deconfined phase. We obtain the phase diagram of the problem as a function of temperature 7'
and proton hopping energy ¢ and find that there are two phases: an ordered insulating phase which results from
an order-by-disorder mechanism induced by quantum fluctuations, and a disordered incoherent metallic phase
(or plasma). We also discuss the problem of decoherence in the proton motion introduced by the lattice
vibrations (phonons) and its effect on the phase diagram. Finally, we suggest that the transition from ice Ih to
ice XI observed experimentally in doped ice is the confining-deconfining transition of our phase diagram.
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I. INTRODUCTION

Hydrogen bonds (or H-bond) are ubiquitous in physics,
chemistry, and biology. The nature of H-bonds was studied in
great detail by Pauling who predicted the mixed chemistry of
H-bonds,! namely, H-bond shares characteristics of ionic and
covalent bonds. On the one hand, a water molecule has a
large dipole moment due to the electronegative character of
the O atom and therefore water molecules are attracted to
each other. This is the classical aspect of the H-bonding. On
the other hand, the sigma bonding between H and O is
strongly covalent with clear quantum mechanical nature. In
the process of formation of an ice crystal electrons from the
sigma bond can be shared by two water molecules leading to
a strong link between them. Compton scattering experiments
have confirmed the quantum nature of H-bonds in ice
crystals.? It has been clear since the early experiments in
H-bond systems that although the physics of electrons in ice
is important® the protons are actually responsible for the
amazing electrical properties of ice.* The current understand-
ing of the motion of protons in H-bond materials is mainly
based in a few phenomenological models. In this paper we
discuss a qualitative microscopic model which captures the
basic quantum mechanical correlations of the proton system.

We show that the physics of protons in ice is a clear
example of a strongly correlated problem very similar to the
ones discussed in strongly correlated electron systems> remi-
niscent of the physics of Mott insulators.® More specifically,
the motion of protons in ice is hindered by strong constraints
that forbid single proton hopping and only allows for collec-
tive ring-exchange-like motion. This sort of system is known
to be closely related to the physics of gauge theories. As we
will see below, in the phase of ice in which the protons are
ordered, in analogy with the problem of confinement of
quarks in hadronic matter, pairs of defects (anions and cat-
ions) cost an energy which is linear with the separation be-
tween them.
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Although there is vast literature on physics of ice,* we
focus only on the quantum motion of protons. The concepts
introduced here can be easily extended to the study of many
different problems in H-bond materials. Ice shows many dif-
ferent solid phases depending on temperature and pressure.
These phases are essentially controlled by the geometry of
the H-bonds that link different water molecules. Further-
more, a H atom is located asymmetrically relative to the two
O atoms, forming a double well structure in the bond. Thus a
H atom can sit in any of the two sides a bond. Hence we can
think of ice as made out of protons, H*, moving in a crystal
lattice made out of O~ ions. Therefore solids made out of
H-bonds are expected to have peculiar electrical properties.
For example, ice exhibits a high static permittivity compa-
rable with the one of liquid water, and electrical mobility that
is large when compared to most ionic conductors (in fact, the
mobility is comparable to the electronic conduction in met-
als). These are striking properties since in the solid phase
only protons can move in an ice lattice as the electrons form
a band insulator.?

A striking feature of ice is its extensive classical entropy
at low temperatures.* This large entropy implies a macro-
scopic number of classically degenerate states at low tem-
peratures. This is a situation very similar to frustrated mag-
netic systems, which the best representative is precisely
called spin ice model.”® Our study, however, focuses entirely
on the proton motion in ice and not on magnetism. As we
show, the proton motion in ice can be mapped into a problem
with pseudospins, in close analogy to some frustrated mag-
nets.

The most successful explanation for the physical behavior
of ice was given by the phenomenological work of Bernal
and Fowler? in 1933 that gave rise to the so-called Bernal-
Fowler (BF) rules: (i) the orientation of H,O molecules is
such that only one H atom lies between each pair of O at-
oms; and (ii) each O atom has two H atoms closer to it
forming a water molecule. Rule (i) prevents situations in
which a H-bond has two H atoms. Rule (ii) does not allow
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for configurations in which each O has more than two H
close to it. As it was shown by Pauling,' using a classical
counting argument, these rules can account for most of the
entropy measured in the experiments and predict an exten-
sive entropy even at 7=0. A more detailed calculation taking
into account ring exchange of protons in ice crystal brings
this number even closer to the measured value.!® Pauling’s
statistical model has been very successful in explaining the
distribution of protons in ice and has been confirmed experi-
mentally in nuclear magnetic resonance (NMR) and neutron
scattering experiments.'!

Although Pauling’s calculation explains the arrangement
of protons in ice it fails to describe its electrical properties.
The reason for this failure is due to the fact that any motion
of the protons under the BF rules requires an extremely cor-
related behavior.'? In order to explain the electrical behavior
another phenomenological concept was introduced, namely,
the concept of defects. Defects, by definition, are local vio-
lations of the BF rules. The defects associated with violation
of rule (i) are called Bjerrum defects'? and the ones associ-
ated with violations of rule (ii) are called ionization
defects.'* With the concept of defects one is able to explain
most of the electrical properties of ice.*

Protons can move by the rigid rotation of the water mol-
ecule, by thermal activation over an energy barrier from one
side of the H-bond to another, or by quantum tunneling under
the energy barrier between the two sides of the bond. At low
temperatures, the rigid motion of the molecule and thermal
activation are exponentially suppressed and only quantum
tunneling is allowed. Quantum tunneling is possible because
the wave function of the proton is extended from one side to
another in the bond. Although the phenomenological theories
of ice can account for a great part of the experimental data
there are still many experiments that remain unexplained
such as anomalies in the specific heat in pure!> and doped
ice.'® Originally it was proposed by Onsager'’ that these
anomalies could be explained by a ferroelectric transition. It
turns out, however, that there is no evidence for any polar
effect in ice. The BF rules allow for an extensively large
amount of configurations which are nonpolar. In this paper
we show that by a quantum mechanical mechanism of order-
by-disorder, an ordered phase of protons emerge at low tem-
peratures in the absence of longer range interactions. The
melting of this ordered state can account for the specific heat
anomalies.

The classical ice model is defined on a pyrochlore lattice
and its planar representation is the checkerboard lattice. The
planar model is equivalent to the six vertex model that has
been solved exactly by Lieb.!® It is known from these studies
that the phase diagram of the classical planar system has two
phases, an ordered antiferroelectric phase and a line of criti-
cal points with extensive entropy at zero temperature. The
antiferroelectric phase corresponds to a staggered arrange-
ment of proton positions in the H-bonds. Its quantum version
has been studied by Moessner and Sondhi!® as well as in
Refs. 20 and 21.

In this paper, we consider the quantum version of the ice
problem and show that, in the absence of defects or any kind
of long range interactions, quantum fluctuations stabilize the
antiferroelectric phase on the planar model by a mechanism
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of order-by-disorder. We also discuss how in a more realistic
context this mechanism may compete against a classical ori-
gin for the ordering as is the presence of dipolar interactions.
To this end, we use a gauge theory description of the planar
quantum ice problem which can be easily extended to higher
dimensional systems. This gauge theory has also been used
in similar models such as the quantum dimer models on the
square lattice.’ The advantage of our technique over the ones
used in Refs. 19-21 relies also on the fact that the behavior
of ionic defects can be easily understood in terms of matter
particles coupled to the effective gauge degrees of freedom.
The dielectric properties of ice originating from movement
of those ionic defects can then be understood with the con-
cepts of lattice gauge theories.

This paper is organized as follows: In the next section we
discuss the characteristic energy scales of the ice problem
and propose the minimal model for proton motion in ice.
Here we discuss in detail the analogy and connection to frus-
trated quantum magnets. Section III contains the mapping of
the planar ice model to a gauge theory. In Sec. IV we deter-
mine the ground state of the problem in the neutral sector.
Here we show how an ordered state of protons arises from
the order-by-disorder mechanism and how the ionic defects
are confined in the planar model. In Sec. V we discuss the
gauge problem in three dimensions and obtain the phase dia-
gram including thermal effects. We show that the three-
dimensional case has a confining-deconfining transition even
at T=0. In Sec. VI we briefly discuss the effects of lattice
vibrations on the proton motion. We argue that the second
order phase transitions obtained in the case without phonons
can become first order. Section VII contains our conclusions
and the comparison between the theory and the experimental
measurements in hexagonal (Ih) ice.

II. THE MODEL

Consider a lattice with protons living in the bonds and
where each vertex is to be interpreted as an O atom as shown
in Fig. 1. The lattices we are going to discuss in this paper
are the planar square lattice, the cubic lattice, and the pyro-
chlore lattice. The protons can occupy two positions in their
respective link. Let us divide any of those lattices into sub-
lattices 1 and 2, and for each link i define the sites i1 and i2
neighboring a vertex of sublattice 1 and 2, respectively. We
can define the proton occupation number n;,, a=1,2 for
each proton site ia of the system.

The main energy scales in this problem come from the
Coulomb repulsion between the protons: the on-site Cou-
lomb repulsion, Uy (the so-called Hubbard term), the Cou-
lomb repulsion between protons in the same H-bond, Up, and
the Coulomb repulsion between protons around the same O
vertex, U,.?? The physical situation of interest for ice corre-
sponds to the case where Uy> Up>> U,. Notice that this
condition ensures that there is only one proton per lattice
site, only one proton per bond, and for 1/4 filled ice it im-
plies that there are only two protons around the O vertex.
Thus the electrostatic repulsion between the protons leads to
the ice rules.

Since we have considered interactions up to second near-
est neighbors one might wonder whether we should not in-
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FIG. 1. Planar ice model: the vertices are O sites and the dots
are H sites. The symbols are explained in the text.

clude interactions with even longer range. In fact, it is well-
known that the water molecules interact through long-range
dipole forces that in our picture would be represented by
long-range interactions between H* ions. The same problem
arises in the context of spin-ice.?* Monte Carlo simula-
tions?*?3 suggest that, although the effect of dipolar interac-
tions may be strongly reduced by an averaging out over con-
figurations, there is strong indication of the appearance of
long-range order at relatively low energies. In the first part of
our analysis we leave aside the effects of long-range interac-
tions and come to that issue at the end of the paper, when we
discuss the possible competition between these two effects.

The Bjerrum and ionic defects mentioned earlier only oc-
cur if the protons hop from site to site and are expected to be
very few in real experimental situations.?® There are essen-
tially only two types of hopping in this lattice: hopping on
the H-bond with energy 75 and hopping across the O vertex,
to. Because the hopping energy is an exponential function of
the distance it is easy to show that ¢z >>t,. The presence of 75
allows for the hopping of the protons around the O vertices
leading to the creation of ionic defects. The hopping 7., on
the other hand, allows for two protons in the same H-bond
and therefore can lead to Bjerrum defects. The values of 75
and 7, are much smaller than in electronic systems because
of the much larger proton mass. Thus we expect that U, >> g
making the proton motion analogous to the motion of elec-
trons in Mott insulators.

In what follows we consider only ionic defects in the
problem. A generalization to include the presence of Bjerrum
defects should not change our conclusions here. It is also
clear that in this limit the classical ground state obeys the ice
rules and that magnetic phenomena associated with the pro-
ton spin does not play any role. Within the assumption that
the on-site Coulomb repulsion between protons is very large,
we restrain to the case where n;,=0,1, Vi and the proton
spin degrees of freedom can be ignored. The Hamiltonian for
the proton motion on neutral planar ice with just one proton

per bond, that is,
ni1+ni2=l, (21)

is written as
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FIG. 2. A possible configuration of the pseudospins that satisfies
the BF rules. The arrows are drawn pointing from the empty site
towards the site containing the proton.

H= UOE (nilnjl + nl‘znjz) - tBE (C;rlciz + HC) (22)
(i) i
We now make use of the constraint Eq. (2.1), and define

pseudospin operators associated to link i as (we use units
such that kz=1="%)

1 . Cod
Si= E(Ci'lc,-z +Hec), S'= E(CZlciz -H.c.),

S?=%(lec;1 — chen), (2.3)
which, due to condition Eq. (2.1), obey the spin algebra
[S;,$71=i6;;S;. In terms of these operators the Hamiltonian
of Eq. (2.2) is written as
H=J2 §i:-T 2 87, (2.4)
(i.j) i
where J=2U, and I"'=2¢,. In the limit of I'=0 the ground
state is highly degenerate because there are many configura-
tions of the pseudospins that give the same energy. One pos-
sible configuration is shown in Fig. 2.

By a duality transformation, in which each link corre-
sponds to a vertex of the square dual lattice, it is easy to
show that Eq. (2.4) describes also the Ising model in a trans-
verse field on a lattice where now the spins are defined on
vertices (see also Ref. 27). Indeed, Anderson had pointed out
that the two-in, two-out condition of the ice rules, and the
ground state of the nearest-neighbor model is, like that of
ice, macroscopically degenerate.”® To clarify further the re-
lation between the proton position and the Ising spins, we
divide the lattice into two sublattices, say A and B. We then
define the Ising spin in a link as an up spin if the correspond-
ing arrow in the link points from A to B, and a down spin if
the arrows goes from B to A. In the case of the planar ice
system, this lattice corresponds to the checkerboard lattice
(see Fig. 3), while for the pyrochlore and cubic lattices one
obtains, respectively, corner sharing tetrahedra and hexades,
i.e., the elementary cells with six corners built by joining the
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FIG. 3. Effective spin lattice for the ice problem in the Mott
regime. The pseudospins interact with an antiferromagnetic ex-
change J.

center of the links in the cubic lattice. It is clear that the
ground state of the Hamiltonian of Eq. (2.4) with I'=0 is an
eigenstate of the operator S°. This state corresponds the pro-
ton localized everywhere in either side of the link. In order to
minimize the energy the distribution of protons is such that
the only contributing configurations have the total magneti-
zation of each vertex equal to zero. For the pyrochlore and
planar lattices, this means that each O has two protons close
to it and two away. For the cubic lattice one would have
three protons close to the O and three away. The number of
configurations that satisfy the ice rules grows exponentially
with the size of the system. Taking the planar case as an
example, there are (4/3)*V? of them.'®

In the checkerboard language (see Fig. 3) a sublattice of
plaquettes contains next-nearest-neighbor interactions
(“crossed plaquettes”). According to the BF rules the plag-
uettes have total $* magnetization equal to 0 as shown in Fig.
4(a). The configurations that contain defects violate the ice
rules as shown in Figs. 4(b) and 4(c). Classically, as it is
well-known, the system without defects corresponds to the
six vertex model [see Fig. 4(a)]. The full classical problem is
a 16 vertex model that, as far as we know, has not been
solved exactly.?

Let us pick, for example, a particular configuration of the
system that satisfies the ice rule and let us flip a single pro-
ton. This creates a pair of +(H;0%) and —(OH") ionic charges
at two neighboring O sites, corresponding to the configura-
tions Figs. 4(c) and 4(b), respectively. Strictly at I'=0, one
can separate the + and — defects along a zigzaglike trajectory
at no extra energy cost. There is, however, an entropic price
for separating such defects that introduces an effective inter-
action between them. These charge defects play the role
similar to holons in quantum dimer models.” Two natural
questions arise in this context. The first one concerns pos-
sible lifting of the degeneracy of the ground states by quan-
tum fluctuations when 75 or I" are finite. The second question
is whether in the presence of these quantum fluctuations the
ionic defects can be separately freely (unconfined) as in the
classical case.
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FIG. 4. (a) Configurations of the pseudospins that obey the BF
rules; (b) ionic defect with charge —(OH™); (c) ionic defect with
charge +(H30™); and (d) ionic defects with charge —2 and +2.

To answer the first question, let us consider the operator P
that projects into the subspace of states that satisfy the ice
rules. Let PHP denote the Hamiltonian of Eq. (2.4) projected
onto the ice rules sector, and let us treat the effects of finite I"
in perturbation theory. The effective Hamiltonian, for the
planar and cubic lattices, to the lowest nonvanishing order is
obtained at fourth order (S=a/2):

Hopp=~ > (0030507 + He.), (2.5)
0

where ij denote the links belonging to a crossed plaquette.
Note that ¢ should not be confused with the proton hopping
terms 7, and 7z mentioned before. To lowest order we find
t~T*/J3. For the pyrochlore lattice, the lowest nonvanishing
order effective Hamiltonian is obtained at sixth order in per-
turbation theory:

H,p=—1 > (O’;}(T;kO'ZIO'I_mO'+ o, +H.c.), (2.6)

mn* ni
ijklmn

where now the interaction is around a hexagonal plaquette
corresponding to the smallest loop in the pyrochlore lattice,
and t<I"%/J3. The planar lattice with the Hamiltonian of Eq.
(2.5) has been studied at zero temperature T=0."" It can be
mapped onto a height model in which quantum fluctuations
select the ordered flat state corresponding to a Néel order in
the checkerboard model. It is worth mentioning that the ef-
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fective Hamiltonian of Egs. (2.5) and (2.6) also describe tun-
neling within the low energy manifold of the XXZ spin 1/2
model on the checkerboard. To see that, we start by writing
the XXZ Hamiltonian:

H=2 (JZSij - J—;X(S;“SJT - S;S;)) : (2.7)
(ij)

where (ij) stand for all the couple of links belonging to the
checkerboard lattice. We assume J,, <J.. At zeroth order in
J,, the ground state manifold is identical to the one men-
tioned before, with total S° magnetization per crossed
plaquette equal to zero. The XY term corresponds to the si-
multaneous flip of an up and a down spin. As for the proton
tunneling it can be treated in perturbation theory projecting
to the subspace of the ground state of the Ising part. The first
nonvanishing order in perturbation theory leads to Eq. (2.5)
with tOCJJZQ,/ J, and Eq. (2.6) with tOCJ?W/Ji, respectively.

III. MAPPING OF THE PLANAR QUANTUM
MODELTO A LATTICE GAUGE THEORY

In this section we map the ice problem onto a gauge
theory.3%3! Consider the O lattice which is shown schemati-
cally in Fig. 1. The H-bonds form links between the O atoms
and to each link we can assign a value given by the pseu-
dospin defined in the previous section. Associated with these
links we can assign states corresponding to the two configu-
rations of the protons in each link which we will denote as
[+1/2) and |~1/2). The ice rules imply

> =0,

ied

(3.1)

where o.|+1/2)=+|+1/2). This Ising gauge theory is
equivalent to the one considered in Ref. 32, and as in that
case, it has a local U(1) symmetry generated by the unitary
operator

U, =1 e, (3.2)
aU

with each «a, associated to the vertex v being arbitrary. This
approach has been applied with success in the case of the
quantum dimer model.??

There is an alternative and complementary approach
which works in an enhanced Hilbert space and that was ap-
plied originally to the quantum dimer model as well.>3? Let
us consider a square lattice is spanned by vectors r=(ne,
+me,)a where n and m are integers, €, =X, e,=y, and a is the
lattice spacing. On each link (i.e., H-bond) we define a vari-

able Fu(r) with w=1,2 which can be —1/2 or 1/2, which

transfer like a vector: €. _u(r+e M):—? «(r). If we chose a ref-
erence frame in which the positive directions are upward for
vertical links and rightwards for horizontal links, then the
¢ ﬂ(r) tell us if the arrow associated to a particular bond has
the same or opposite orientation with respect to this refer-
ence frame. It will be convenient to define a new variable
€M={7M+ 1/2 which can take values of 0 or 1. Let us denote
by A u the discrete derivative,
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AL (r)=1C,(r+e,)—€,(r). (3.3)

It is easy to see that the ice rules are equivalent to impose the
condition that

(3.4)

Only configurations of the form Fig. 4(a) are allowed for 3 -
Therefore Eq. (3.4) reflects the BF rules.

Equation (3.4) has the form of Gauss law in electrody-
namics without external charges, V-E=0. We will then as-
sign to violations of the ice rules, such as those in Fig. 4(c),
the condition of =,,_; A, €,(r)=+1 for the formation of a
H3O and 2,,_; ,A € ,(r)=—1 for the formation of HO™. Thus
if we allow violations of the ice rules by formation of ion-
ization “defects” we must have X ,_; ,A €, (r)=0 where Q
plays the role of the “effective” charge of the defect. In the
quantum theory we define a Hilbert space of states |€,(r))
which are the eigenstates of the operator E,(r):

E,(1)|€,(r)) = €,(r)[,,(r)).

In the quantum theory Gauss law is a constraint in the space
of state:

(3.5)

> A E,(r)[Phys.) =0,
u=1,2

(3.6)

which defines the physical states of the system. Let 6, be the
operator canonically conjugated to £,

[0r"),E ()] =06 116, (3.7)

Thus we see that £, plays the role of the electric field while
60, plays the role of the vector potential in electrodynamics.

Let us now define a ring exchange operator such that it
maps configuration of electric fields satisfying the ice rule
conditions. In this context this amounts to requiring that
these operators, when acting on a plaquette, change the con-
figuration in a manner consistent with Eq. (3.6). For each
plaquette p we define the operator ¢'®?) where

D(p)= 2 6,(r).

r,uep

(3.8)

This operator is gauge invariant in the sense that it commutes
with the generator of gauge transformations, A, E,,(r). When
acting on the links one gets

D1 (0) = [€,(r) % 1), (3.9)

We are now going to relax the constraint that €,(r) can be
0 or 1 by enlarging the Hilbert space to all integer values of
€,(r). However, we will penalize energetically the values of
¢,(r) that are not 0 or 1 by adding an extra term to the
Hamiltonian of the form

2
T

T

(3.10)

It is obvious that when g—0 €,(r) can only be O or I.
Together with the constraint of Eq. (3.6), Eq. (3.10) defines
the classical problem and the BF rules. Note that, for ex-
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ample, the Néel state corresponds to a configuration of elec-
tric fields in which the links (horizontal and vertical) form a
staggered configuration of flux 0 and 1. These fluxes form
stairlike lines (right-up-right-up...) winding around the sys-
tem. We also note that if the 1/2 term in the kinetic energy
Eq. (3.10) were not present, this problem would be equiva-
lent to compact electrodynamics with matter fields studied in
Refs. 30 and 31. The quantum kinetic energy of this problem
is given by

H;=~-12, cos ®(p),
P

(3.11)

which is analogous to the magnetic energy in compact elec-
trodynamics.

In order to introduce ionic “defects” one has to introduce
the charge Q into the problem. Associated with Q one defines
the quantum operator n(r), which counts the number of de-
fects at each vertex, and its conjugate ¢(r) such that

[¢(rl)’n(r)] = i(sr’,r’

where n(r)=0,+1,«2,.... The Hamiltonian for the “matter”
field ¢ contains a term for the energy required to create any
one of these charges. For instance, one could write

Hy=E, > n’(r),
r

(3.12)

(3.13)

where E| is the energy required to create a OH™-H3O pair.
Observe that Eq. (3.13) tends to suppress defects. The mo-
tion of the defects is given by a kinetic energy term which is

He= A cos[A ,¢(r) = 0,(r)], (3.14)
rp

where N ~T is the coupling constant. This kinetic energy is
gauge invariant since it commutes with the generator of local
gauge transformations

U=l 2, “60), (3.15)

where

G(r)= X ALE,(r)-n(r).

u=1,2

(3.16)

The gauge theory of the ice problem is described by the
Hamiltonian H=Hy+H;+Hy+H  defined by Egs. (3.10),
(3.11), (3.13), and (3.14). The first term arises from the ex-
tension of the Hilbert space and must penalize originally
unphysical configurations. The second term corresponds to
the fluctuations arising from the cooperative proton move-
ment while the last two terms deal with ionic defects and
play no role in the selection of the ground state. In the next
section we are going to study the ground state of such a
theory in the neutral sector.*

IV. GROUND-STATE SELECTION IN THE NEUTRAL
SECTOR AND CONFINEMENT

It is interesting to consider the analysis of the U(1) lattice
gauge theory of quantum dimer models given in Refs. 5 and
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FIG. 5. Background field Blﬁ’.

33 in the context of our calculation. In the neutral sector,
since the electric field has zero divergence, it can be written
as

E,(r)=€,[AS(r)+B,r)], 4.1)

where § is an integer valued function defined on the dual
lattice with periodic boundary conditions and B, is defined
on the links of the dual lattice. Since the Gauss law tells us
that

GM,,AMB,, =0,

only nontrivial topological configurations of B, have to be
considered. Let us choose, in particular, BIIY constructed in
the following way: let us define BZ’ for u=2 to take the
alternating values O and 1 on vertical links from row to row.
For horizontal links with u=1, Bf: will alternate from O and
—1 in such a way that each positive oriented arrow in the
vertical direction meets a negative oriented arrow in the hori-
zontal direction (see Fig. 5). By choosing such a B]X and
choosing $=0 on the dual sites one gets for £, one of the
two Néel configurations (the other configuration being ob-
tained by assigning a 0,1 staggered value to S).

We can now write the path integral representation in dis-
crete imaginary time in the form of the 3D discrete Gaussian
model:

> [ASr,) -SHP,

r.j,u=1,2

1 €
S=—2 [AS(r )P+ —
2te; 2

(4.2)

where j is the discrete time coordinate (e and A, are the
“lattice spacing” and the discrete derivative in the imaginary
time direction, respectively), and S is a staggered configu-
ration alternating between O (in say, sublattice “A”) and 1/2
(in sublattice “B”). The origin of this alternating background
field comes from the choice of B]/\L’ depicted in Fig. 5. While
a nonzero ¢t allows for fluctuations of the field S, only some
kind of fluctuations can be made without paying the energy
of the huge “surface tension” 1/g. More precisely, if at some
point of sublattice “A” the value of S is 0, then the neigh-
boring values of S (belonging to sublattice “B”) can fluctuate
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between the values —1 and 0 with no cost in surface tension.

Imagine now that we consider the most general situation
for the electric field Eq. (4.1) in which the vector field B,, has
a nontrivial winding. The action for the discrete Gaussian
model becomes:

- S ASEIP D (AL -5 BT
r.j

2te’,, 8rju=12

(4.3)

Let us also assume that we choose the configuration for B,
with the minimal number of links where it is nonzero. One
can show that, for any configuration with nonzero B, either
there is no configuration of the S degrees of freedom that
minimizes the surface tension term at each point, or at each
point connected to a link where B, is nonzero, there is a
unique value for the field S(r,j) (modulo a global constant)
that satisfies both periodic boundary conditions and a mini-
mal surface tension. In the limit g— O the values of the field
S associated to those points are not allowed to fluctuate.
Then, the computation of the partition function of a discrete
Gaussian model in a topological sector having nonzero B, is
penalized by the surface tension term or gives rise to the
freezing of some of the plaquette degrees of freedom S(r, )
which gives a smaller contribution than the sector B,=0
(since the configuration space of the former is a subset of the
later). Keeping in mind these arguments, from now on, we
are going to consider only the sector B, =0.

To deal with the discrete variable S we make use of the
Poisson summation formula:

émf(n) = mE f dpe™™f(¢), (4.4)
and write the partition function:
zZ~ % D exp[S(m, ¢)], (4.5)
where
S= E] {izwm(r,jm(r,j) - %E[Aoﬁb(r’j)]z
- 52 [A((r.j) - sO)]z} . (4.6)

We redefine: ¢=p—S°, and write ¢ as ¢, and ¢y for sub-
lattices A and B, respectively. Following Ref. 35, we work on
the dilute gas approximation and keep only “monopoles” of
charge +1. In this case one finds an effective action of the
form

- - 1 ~ ~
S= 2 {2£(¢A - ¢3)2 + _([A0¢A]2 + [A0¢B]2)
I g 2te

—zcos(2my) + 2 cos(27r<7>3)} , (4.7)

where z is the monopole fugacity. In order to take the con-
tinuum limit, we write

PHYSICAL REVIEW B 74, 024302 (2006)

Ga=x1+X2» P5=X1— X (4.8)

x1 and x, correspond, respectively, to the average height and
to the difference in height between sublattices A and B. Note
that a nonzero expectation value for y, corresponds to the
two Néel orders depending on the sign of (x,) while {x,)
=0 corresponds to a disordered state. Expanding in deriva-
tives of the fields we get a continuum action of the form

1
S=fdz?d{E[Kx(Vxl)z-'-KT(&TXI)Z_" QX%]

+ \ sin(2ry,)sin(2mx,) [, (4.9)
where V is the spatial two-dimensional gradient, K, K, «,
and N are the parameters of the effective coarse grained
model that in principle, but with a large amount of effort,
could be calculated from the microscopic theory. Here the
continuum limit has been taken with the prescriptions:

A()X(I',j) - eﬁ.,)((r,r) + 0(62)7

x(r +ae,.j) — x(r,7) +ae, - Vx(r,7) + 0(a?),

Ee—>jdr and Eazefdzr,
J r

where a is the lattice spacing. We have not written the time
and space variations of the field y, because this field is mas-
sive and therefore the low energy physics is dominated by
the X% term. Because of that we can integrate out the y, term
in perturbation theory in N\ in order to generate an effective
field theory for the field y;. In this case we obtain a relativ-
isticlike field theory of the form

Seff=fd2;d7{§[(v)(1)2+ (0.x1)*1- 7005(47TX1)},
(4.10)

where K is the stiffness, and y=m\?/(2a) (we have set the
velocity of propagation of the field equal to one, for simplic-
ity). Equation (4.10) describes a sine-Gordon problem in 2
+1 dimensions. Notice that in 2+1 dimensions the stiffness
has dimensions of energy and, since the only energy scale in
this problem is the hopping ¢ (since g—0), one concludes
that K ¢.3¢ Since we have assumed that y< 1 we can study
this problem using a renormalization group argument,’’-38
that is, we study the relevance of the cosine operator pertur-
batively by integrating high energy modes in a shell between
A and A+dA where A is the ultraviolet cutoff of the theory.
In doing that the coupling 7y renormalizes as®73

dy
e~ 7

where d€ =dA/A. Hence 7 is a marginally relevant coupling
indicating that the field x,; is “frozen” at the minima of the
potential in Eq. (4.10), that is, at {x,)=+1/4 and a gap opens
in the spectrum of y; (thus both y; and x, are massive). The
above result could be also derived directly from Eq. (4.9) by

(4.11)

024302-7



CASTRO NETO, PUJOL, AND FRADKIN
minimizing the potential energy in order to find

(= 7145 (o)== cosml). (1)

Thus the energetic cost of instanton configurations in this
systems forces it to freeze on one of the configurations that
minimizes the potential. As mentioned before, the resulting
ground states present the Néel order. Thus we have shown by
a mechanism of order-by-disorder that the classical degen-
eracy is lifted by quantum fluctuations and selects a state
with Néel order. This conclusion is consistent with numerical
simulations.?%-?!

To understand what is the effect of a finite temperature, it
is better to come back to the discrete action (4.9). We first
notice that the coarse grained system has effective Z,
®U(1) symmetry, corresponding to changing x, ——yx, and
X1— X1+n/2 (where n is an integer). The ground state oc-
curs with the simultaneous breaking of the two symmetries
leading to a flat configuration of the fields. As the tempera-
ture is increased we expect the restoration of the Z, symme-
try and a rough phase with algebraic correlations for the y;
field. As it is standard in statistical mechanics, in the classi-
cal limit, only the zero value of the Matsubara frequencies
survive. The dependence in temperature of the fields is then
suppressed. The effective two-dimensional action at finite
temperatures has the form

S=p f dzfdf{%[K(Vxl)z +a(xy)’]

+ N\ sin(2my;)sin(2my,) — 7cos(4'n')(1)} , (4.13)

where B=1/T is the inverse temperature. Clearly, the phase
transition from a disordered high temperature phase to the
ordered low temperature phase occurs with the breaking of
the Z,® U(1) symmetry. As usual, the critical temperature,
T,, is proportional to the stiffness K and therefore 7.« K «f,
consistent with the statement that ¢ is the only physical en-
ergy scale in this problem.

Equation (4.10) also allows us to see explicitly how de-
fects that are created over such a ground state are confined
by following Polyakov’s argument.’” While this is a result
that one could easily anticipate from the nature of the ground
state itself, its description in terms of a gauge theory will be
useful in higher dimensional models discussed in the next
section. As we argued above, and as also considered in simi-
lar systems in Ref. 35, we look for an effective action of the
field y; which couples to the matter field (the defects). Inte-
grating over the massive field x, and expanding Y=y,
—(x1) in Eq. (4.10) we obtain the effective action:

S= f d?df{g[(V)'Z)2+(575(")2]+m25(’2}, (4.14)

where m?>=~2m?y. These fluctuations are then massive and
decay over a length scale ~1/m reflecting the fact that two-
component Coulomb gas has Debye screening. This is also
the confinement scale which defines the string tension o of
the defects, that is, the confining potential has the form
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V(R)=0R where o~ m. This argument follows from Polya-
kov’s analysis®’ of the standard compact QED in 2+1 di-
mensions which gives the same effective action as in Eq.
(4.14). At finite temperature, as long as the system remains in
the flat phase, the ionic defects will be confined. Increasing
further the temperature will make the system enter the rough
phase, at which the effective theory can be described by a
massless theory for the field y; with U(1) symmetry.'® Cre-
ation operators of ionic defects correspond to vertex opera-
tors of the dual fields (or dislocations in the surface rough-
ening language) which now have algebraic decaying
correlation functions.

V. THREE-DIMENSIONAL MODELS

In 3+1 dimensions the situation is more interesting since
there is a confining-deconfining transition in the normal
compact QED at T=0. It is then in the cubic and pyrochlore
lattice where we do have a chance to see deconfined ionic
excitations even at 7=0. This argument has been used re-
cently by Hermele et al. in the context of the spin ice on the
pyroclore lattice.>® The simplest three-dimensional lattice
where we can apply this description is the cubic lattice. On
this lattice, we can in fact write the Hamiltonian with pre-
cisely the same form as in 2+1 dimensions. The main dif-
ference with the standard QED is again the term in Eq. (3.10)
which penalizes configurations with £,#0,1. In Ref. 39,
numerical evidence is provided that due to this term in Eq.
(3.10) the defects are deconfined, which is to say that the
current model corresponds to a quantum disordered phase of
ice (proton liquid). However, this analysis is based on a “na-
ive” continuum limit of a lattice model and therefore is only
applicable deep in the deconfined phase. It is known from
early studies of compact QED in 3+1 dimensions that this
theory has a deconfinement-confinement quantum phase
transition at a critical value of the coupling constant ¢, the
resonance amplitude.***! Qualitatively this phase transition
is driven by the proliferation of “monopole loops.” Notice
that the theory described here, being perturbative in ¢, cannot
describe the details of the quantum critical point that occurs
at finite values of 7. Nevertheless, these general arguments do
predict the existence of a deconfinement-confinement quan-
tum transition at finite r=¢, and T=0.%' The actual location of
this quantum critical point may be controlled by additional
operators not included here, such as the short-range part of
the dipole interaction, which affect the “electric” terms but
leave the “magnetic” (flip) terms untouched. Note that the
description in terms of a gauge theory of the ice rules is also
indicative that the short range interactions treated here are
enough to produce long-range dipolar correlations, as was
noted in earlier work on spin ice.* The question on why
long-range dipolar interactions seems to produce no effect
against the short-range ice constraint in a huge temperature
scale is then understood in terms of the correlations naturally
generated in the context of a gauge theory. It is likely that the
model we are considering here, which has a single coupling
constant ¢, with the electric terms playing the role of a con-
straint, may be in the deconfined (or “Maxwell”) phase.

The proton phases of ice are characterized by the energy
required to separate two defects with opposite sign. In the
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FIG. 6. Phase diagram for protons in neutral ice. (a) Planar ice
and (b) three-dimensional ice.

confined phase (the ordered phase of ice) the energy grows
linearly with the separation between the ions. Therefore in
this phase it is not possible to separate the H;O* and HO™
ions at arbitrary distance with the application of an external
electric field. This state is a dielectric with a finite polariz-
ability and it is an insulator. However, in the deconfined
phase the effective interaction between the ions obeys V(R)
o« /R and therefore decreases with the distance between the
ions. Thus in this case an applied electric field can separate
the two H;O and HO™ ions at arbitrary distance leading to a
conducting state. Hence the phase transition is a metal-
insulator transition® and therefore the conductivity of ice
should behave quite different in the two different sides of the
transition. We should note that in the metallic phase the con-
duction is due to the collective motion of protons since any
charge transport must be done by a large amount of local
rearrangement of protons. This is a correlated metal. Such
kind of confinement-deconfinement transition for defects is
also present in similar quantum constrained models as quan-
tum dimer models.>**

In Fig. 6 we depict the phase diagram of ice as a function
of temperature and the proton hopping energy . In Fig. 6(a)
we show the phase diagram for planar ice (2+ 1 dimensions)
for which we have shown that there is no deconfining tran-
sition as a function of ¢ at 7=0. As we argued in the last
section, there will be, however, a phase transition at finite
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temperature T, (T,.oct for t—0) between the disordered me-
tallic phase and the ordered insulating phase. In the case at
hand, the arguments presented above indicate the presence of
a line of second order phase transition.*> As we are going to
see in the next section, the coupling to phonons can change
the transition to first order. In the case of the pyroclore or
cubic lattice (3+ 1 dimensions) we have argued that there is a
confining deconfining transition as a function of ¢, as shown
in Fig. 6(b). In this case, there is a quantum critical point
(QCP) at some value of ¢ (say, ¢,).

VI. COUPLING TO LATTICE VIBRATIONS

So far we have not discussed the problem of lattice vibra-
tions in ice. At finite temperatures one expects the thermal
motion of the O atoms to affect the properties of the H at-
oms. Vibrations must be important since the mass of the H
atoms are just 16 times smaller than the O atoms and there-
fore the Born-Oppenheimer approximation is not guaranteed.
In order to incorporate the recoil of the O atoms due to the H
motion we assume that the phonon coordinates are coupled
to the local proton density. In this case, one has to add an
extra term to the Hamiltonian of the form

(Piza,a + Mwi,uqiz,a,a>
2M 2 ’

HP =— K E ni,a,(rqi,ﬂé,a + 2

i,a,0 i,a,a

(6.1)

where g, , , are the local phonon coordinates, P; , , their ca-
nonical momentum, w;, are the phonon frequencies, and M
the ion mass. Equation (6.1) can be reduced to the two level
system in the same way Eq. (2.2) is reduced to Eq. (2.4).
Using Eq. (2.3) and defining the relative and center-of-mass
coordinates:

_4itat9i2a

Xia=qitla=biras Xia= 5 , (6.2)

the Hamiltonian equation (6.1) reduces to
2 2 2 2
z Pig Mo x;, 11, MwiaXia)
H=_ S~"+ _’+é+_’+$,
P KE le,a E ( M 8 4M 4
(6.3)

i,a ia

where p; is conjugated to x; and II; is conjugated to X;. No-
tice that the center-of-mass coordinate decouples from the
proton motion in this case.

It is interesting to rewrite the full Hamiltonian of the
problem in terms of the pseudospin operators and standard
creation b,T and annihilation b; operator for the phonons
([b,-,b;]:@-]-). Using Eq. (2.4) and proton-phonon coupling
term Eq. (6.3) we find

H= JE Slef - FE S;\ + 2 )\i,uszg(bi,a + bia) + 2 wi,abiabi,w
(i.j) ! i ia ia

(6.4)

where \;,=«k/VMuw;,. Equation (6.4) describes an Ising

model in a transverse field coupled to a dissipative environ-
ment @ la Caldeira-Leggett.* This model has been studied
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recently in the context of quantum phase transitions in me-
tallic magnetic systems*®*” and has very interesting proper-
ties.

Let us consider the classical case of I'<J when the ice
rules are obeyed. In this case the problem can be solved in
the basis of §: §j|0)=0;|07). It is easy to see that the prob-
lem can be diagonalized by shifting operators:

N O . N O
Bj,a=bj,a+_.£[7 Bj’.azbj‘,a_i__.&o.-l’ (65)
Jsa ia
and the energy of the problem is given by
1 )\l'zll
El{on}]=J2 U'ia'j+2 Wi\ Nig+ == |,

(i) ia 2] wy,

(6.6)

where the first term is just the energy of the classical state
and n;, is the phonon number. So, the phonon frequencies
remain the same but the atoms positions are shifted by
ox; < kol (M wia). Since there is no proton order when I'
=0 the average lattice shift is zero. However, for a small
value of I' we see from Fig. 6 that o; acquires an average
expectation value leading to an overall shift in the atom po-
sitions. At finite temperature this shift will lead to a discon-
tinuity in the specific heat as it is well-known in the case of
cooperative transitions of this sort.*® Thus the phase diagram
second order phase transition of Fig. 6 can be modified sub-
stantially. In 2+1 dimensions the finite temperature phase
transition can change completely to first order while in 3
+1 dimensions a tricritical point must appear at some tem-
perature 7" so that for T<<7T" the phase transition is second
order and for T>T" the transition becomes first order.

VII. CONCLUSIONS AND EXPERIMENTAL
REALIZATIONS

In this paper we have considered the phase diagram of
protons in ice. We have given a detailed picture of two-
dimensional ice and provide a qualitative picture of the
three-dimensional problem such as the pyrochlore lattice. We
have studied the order-by-disorder effect and ground-state
selection by quantum fluctuations, which in this case is the
tunneling of protons between the two sites in a hydrogen
bond.

In the absence of quantum tunneling, the number of low
energy states grows exponentially with the size of the system
and the entropy of the system is macroscopic. In this classi-
cal background, excited states corresponding to ionic defects
can be created and separated without further cost in energy.
As we showed, the presence of quantum fluctuations change
considerably this scenario. The degeneracy of the system is
lifted by the order-by-disorder mechanism leading to a well-
defined ground state. The technique used to understand the
role of quantum fluctuations is based on a mapping of the
lattice problem onto a gauge theory.

Within the gauge theory one can describe the behavior of
ionic defects as confined or deconfined depending on
whether the ground state of the system is ordered or disor-
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dered, respectively. In a deconfined state the ionic defects
behave like as in a correlated metal, while in the confined
phase the system behaves as in an insulator. For the two-
dimensional model, quantum fluctuations select a twofold
degenerate antiferroelectric ground state over which ionic
excitations are confined. The situation is different in the
three-dimensional case where topological excitations can
lead to a deconfined disordered state even at T=0. In such a
case, the interplay of quantum fluctuations and the tuning of
the microscopic tunneling parameter is expected to give rise
to a confinement-deconfinement transition for ionic defects,
with their corresponding dramatic effects in the dielectric
properties of the material.

Furthermore, we have argued that at finite temperatures
there will be a phase transition between ordered (confined)
and disordered (deconfined) ice. The nature of this phase
transition depends on the fugacity associated with the topo-
logical defects (monopoles) and can be either first or second
order. In the pyroclore lattice the most likely scenario is that
there is a tricritical point separating a first order from a sec-
ond order phase transition [see Fig. 6(b)] that should be ob-
servable. While similar problems have already been ad-
dressed in terms of spin models,'?" the ice scenario brings a
new perspective to this kind of phenomenology due to the
different experimental possibilities than in frustrated spins
systems.*

It is clear from Fig. 6(b) that the way to tune the phase
transition is by changing the value of the proton hopping
energy t. The value of ¢ depends on the overlap of the proton
wave function between the two sites in the hydrogen bond.
Since the mass of the proton is large its wave function is
more localized than in the electronic case and we expect that
t is exponentially sensitive on the changes in the distance
between O atoms. One clear way to experimentally change ¢
is then by applying hydrostatic pressure P to an ice crystal at
fixed temperature 7, starting from the disordered phase, and
measuring the ice conductivity or dielectric response as a
function of pressure. One expects that the proton ordering
discussed here occurs at lower pressures than the well-known
structural phase transitions of ice.* We expect the proton or-
dering transition due to pressure to happen in a range were
this structural phase transition is also occurring.

Another way to change the O-O distance is by using
“chemical pressure.”® One can dope water with salts like
KOH that while in solution become K* and HO™. When in
the solid phase the K* ion becomes trapped into the “cages”
of O atoms while the HO™ ions are assimilated into the ice
lattice. Thus, in this case, doping also introduces charges into
the lattice structure and the ground state is no longer neutral.
Furthermore, since the K* ions spread randomly over the ice
lattice, this kind of doping also introduces disorder in the
system. The attractive interaction between the positive K*
ions and the negative O~2 atoms of the ice structure lead to a
local decrease of the volume of ice “cages,” to an average
decrease in the H-bond distance, and to an average increase
in ¢. So, in first approximation the introduction of KOH is
somewhat equivalent to the horizontal axis in Fig. 6. How-
ever, because there is introduction of charges and disorder in
the system, the horizontal axis in Fig. 6 is only roughly the
concentration of KOH.
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Doping experiments with KOH have been performed
more than 20 years ago>® in order to understand the famous
72 K anomaly observed in the temperature dependence of
the specific heat of undoped ice.’' The specific heat of pure
ice at low temperatures increases with temperature as T°
which is the characteristic of phonons in the material. How-
ever, it has been known for a long time that hexagonal ice
(ice-Ih) has a bump in the specific heat at T=~72 K that was
a theoretical mystery.!” By doping pure ice with KOH it was
shown by Kawada in the 1970s that the specific heat bump is
actually a very slow phase transition into an ordered proton
state that was called ice XI1.°? Permittivity experiments in
doped ice have confirmed this scenario.’® Specific heat mea-
surements in KOH doped ice showed a strong and highly
hysteretic first order phase transition with a substantial loss
of entropy in the low temperature phase.’' Neutron scattering
experiments on single crystals of ice have confirmed the or-
dering transition®*> and density functional theory calcula-
tions predict an ordering transition at 98 K.>® While the criti-
cal temperature is weakly dependent on the amount of KOH,
the loss of entropy is dependent on the KOH concentration.
Furthermore, in accordance with our discussion in the previ-
ous section, the first order phase transition is associated with
lattice distortions as seen in recent neutron scattering
experiments.’’
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Hence our theory provides a possible theoretical explana-
tion for the phase transition between ice-Ih and ice-XI. We
believe that the first order phase transition observed in the
experiments is the one described in Fig. 6(b) and it would be
very interesting to find out whether the quantum critical
point can be studied by further doping of KOH or by appli-
cation of pressure. Our theory indicates that at 7—0 and ¢
<t. the protons in ice-Ih would make a unique state of mat-
ter, namely, a quantum proton liquid, with deconfined ion
excitations.
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