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Three different special quasirandom structures �SQS’s� of the substitutional hcp A1−xBx binary random
solutions �x=0.25, 0.5, and 0.75� are presented. These structures are able to mimic the most important pair and
multi-site correlation functions corresponding to perfectly random hcp solutions at those compositions. Due to
the relatively small size of the generated structures, they can be used to calculate the properties of random hcp
alloys via first-principles methods. The structures are relaxed in order to find their lowest energy configurations
at each composition. In some cases, it was found that full relaxation resulted in complete loss of their parental
symmetry as hcp so geometry optimizations in which no local relaxations are allowed were also performed. In
general, the first-principles results for the seven binary systems �Cd-Mg, Mg-Zr, Al-Mg, Mo-Ru, Hf-Ti, Hf-Zr,
and Ti-Zr� show good agreement with both formation enthalpy and lattice parameters measurements from
experiments. It is concluded that the SQS’s presented in this work can be widely used to study the behavior of
random hcp solutions.
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I. INTRODUCTION

Thermodynamic modeling using the calculation of phase
diagrams �CALPHAD� method1,2 attempts to describe the
Gibbs energy of a system through empirical models whose
parameters are fitted using experimental information. These
descriptions allow the extrapolation of a system’s thermody-
namic properties to regions in the composition-temperature
space that have not/cannot be accessed through experiments.
These empirical models, however, are as good as the data
used to fit them and are therefore limited by the availability
of accurate experimental data. This limitation can be over-
come by using theoretical calculations based on first-
principles methods, which are capable of predicting the
physical properties of phases with no experimental input.3

Unfortunately, despite their predictive nature, these methods
are not yet able to calculate the thermochemistry of
materials—especially multicomponent, multiphase
systems—with the precision required in industry.

A natural way of improving the predictive capabilities of
empirical models while maintaining their applicability to
practical problems is by combining first-principles and
CALPHAD techniques. Thanks to efficient schemes for
implementing density functional theory �DFT�,4 the almost-
routine use of first-principles results within the CALPHAD
methodology has become a reality. In this hybrid approach,
the energetics obtained through electronic structure calcula-
tions are used as input data within the CALPHAD formalism
to obtain the parameters that describe the Gibbs energy of the
system.5

The first-principles electronic structure calculations of
perfectly ordered periodic structures are relatively straight-
forward since they usually rely on the use of periodic bound-
ary conditions. Problems arise, however, when attempting to
use these methods to study the thermochemical properties of
random solid solutions since an approximation must be made
in order to simulate a random atomic configuration through a

periodic structure. The usual approaches that have been used
in the past can be summarized as follows.

�i� The most direct approach is the supercell method. In
this case, the sites of the supercell can be randomly occupied
by either A or B atoms to yield the desired A1−xBx composi-
tion. In order to reproduce the statistics corresponding to a
random alloy, such supercells must necessarily be very large.
This approach is, therefore, computationally prohibitive
when the size of the supercell is on the order of hundreds of
atoms.

�ii� Another technique, the coherent potential
approximation6 �CPA� method, is a single-site approximation
that models the random alloy as an ordered lattice of effec-
tive atoms. These are constructed from the criterion that the
average scattering of electrons off the alloy components
should vanish.7 In this method, local relaxations are not con-
sidered explicitly and the effects of alloying on the distribu-
tion of local environments cannot be taken into account. Lo-
cal relaxations have been shown to significantly affect the
properties of random solutions,8 especially when the con-
stituent atoms vary greatly in size and, therefore, their omis-
sion constitutes a major drawback. Although the local relax-
ation energy can be taken into account,7 these corrections
rely on cluster expansions of the relaxation energy of ordered
structures and the distribution of local environments is not
explicitly considered. Additionally, such corrections are sys-
tem specific.

�iii� A third option is to apply the cluster expansion
approach.9 In this case, a generalized Ising model is used and
the spin variables can be related to the occupation of either
atom A or B in the parent lattice. In order to obtain an ex-
pression for the configurational energy of the solid phase, the
energies of multiple configurations �typically in the order of
a few dozens� based on the parent lattice must be calculated
to obtain the parameters that describe the energy of any
given A1−xBx composition. This approach typically relies on
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the calculation of the energies of a few dozen ordered
structures.

In the techniques outlined above, there are serious limita-
tions in terms of either the computing power required �super-
cells, cluster expansion� or the ability to accurately represent
the local environments of random solutions �CPA�. Ideally,
one would like to be able to accurately calculate the thermo-
dynamic and physical properties of a random solution with
as small a supercell as possible so that accurate first-
principles methods can be applied. This has become possible
thanks to the development of special quasirandom structures
�SQS’s�.

The concept of SQS was first developed by Zunger et al.10

to mimic random solutions without generating a large super-
cell or using many configurations. The basic idea consists of
creating a small—4–48 atoms—periodic structure with the
target composition that best satisfies the pair and multisite
correlation functions corresponding to a random alloy, up to
a certain coordination shell. Upon relaxation, the atoms in
the structure are displaced away from their equilibrium po-
sitions, creating a distribution of local environments that can
be considered to be representative of a random solution, at
least up to the first few coordination shells.

Provided the interatomic electronic interactions in a given
system are relatively short range, the first-principles calcula-
tions of the properties of these designed supercells can be
expected to yield sensible results, especially when calculat-
ing properties that are mostly dependent on the local atomic
arrangements, such as enthalpy of mixing, charge transfer,
local relaxations, and so forth. It is important to stress that
the approach fails whenever a property depends on long-
range interactions.

The SQS’s for fcc-based alloys and bcc alloys have been
generated by Wei et al.11 and Jiang et al.,12 respectively.
However, to the best knowledge of these authors, there has
been no investigation on the application of the SQS approach
to the study of hcp substitutional random solutions. In the
present work, we propose two SQS’s capable of mimicking
hcp random alloys at 25, 50, and 75 at. %. The paper is or-
ganized as follows.

The proposed SQS’s are characterized in terms of their
ability to reproduce the pair and multisite correlation func-
tions of a truly random hcp solution. Subsequently, the struc-
tures are tested in terms of their ability to reproduce, via
first-principles calculations, the properties of certain selected
stable or metastable binary hcp solutions, namely, Cd-Mg,
Mg-Zr, Al-Mg, Mo-Ru, Hf-Ti, Hf-Zr, and Ti-Zr. To further
analyze the relaxation behavior of the structures, the distri-
bution of first nearest bond lengths as well as the radial dis-
tribution for the first few coordination shells is presented.
Finally, for each of the selected binaries, the calculated and
available experimental lattice parameters and enthalpy of
mixing are compared. Results from other techniques are also
presented where available in order to further corroborate the
present calculations.

II. GENERATION OF SPECIAL QUASIRANDOM
STRUCTURES

In order to characterize the statistics of a given atomic
arrangement, one can use its correlation function.13 Within

the context of lattice algebra, we can assign a “spin value,”
�= ±1, to each of the sites of the configuration, depending
on whether the site is occupied by A- or B-type atoms. Fur-
thermore, all the sites can be grouped in figures, f�k ,m�, of k
vertices, where k=1,2 ,3 , . . ., responds to a shape, point, pair,
and triplet,¼, respectively, spanning a maximum distance of
m, where m=1,2 ,3 , . . ., is the first, second, and third-nearest

neighbors, and so forth. The correlation functions �̄k,m are
the averages of the products of site occupations �±1 for bi-
nary alloys and ±1, 0 for ternary alloys� of figure k at a
distance m and are useful in describing the atomic distribu-
tion. The optimum SQS for a given composition is the one
that best satisfies the condition

��̄k,m�SQS � ��̄k,m�R, �1�

where ��̄k,m�R is the correlation function of a random alloy,
which is simply by �2x−1�k in the A1−xBx substitutional bi-
nary alloy, where x is the composition. We considered SQS’s
of two different compositions, i.e., x=0.5 and 0.75.

Unlike cubic structures, the order of a given configuration
in the hcp lattices relative to a given lattice site may be
altered with the variation of c /a ratio. However, these new
arrangements will not cause any change in the correlation
functions, since one can thus use any c /a ratio to generate
the hcp SQS’s. As a matter of simplicity, the ideal c /a ratio
was considered in order to generate SQS’s.

In the present work, we used the alloy theoretic automa-
tion toolkit �ATAT�3 to generate special quasirandom struc-
tures for the hcp structure of 8 and 16 sites. The schematic
diagrams of the created special quasirandom structure with
16 atoms are shown in Fig. 1 and the corresponding lattice
vectors and atomic positions are listed in Table I.

The correlation functions of the generated 8- and 16-atom
SQS’s were investigated to verify that they satisfied at least
the short-range statistics of an hcp random solution. As is
shown in Table II, the 16-atom structures satisfy the pair
correlation functions of random alloys up to the fifth and
third nearest neighbor for the 50 at. % and the 75 at. % com-
positions, respectively. On the other hand, Table II shows
that the SQS-8 for 75 at. % could not satisfy the random
correlation function even for the first-nearest-neighbor pair.
Thus, SQS’s with 16 atoms are capable of mimicking a ran-
dom hcp configuration beyond the first coordination shell.

It is important to note that in Table II, and contrary to
what is observed in the SQS for cubic structures, some fig-
ures have more than one crystallographically inequivalent
figure at the same distance. For example, in the case of hcp
lattices with the ideal c /a ratio, two pairs may have the same
interatomic distance and yet be crystallographically in-
equivalent. In this case, despite the fact that the two pairs
�0,0,0� and �a ,0 ,0�; �0,0,0� and � 1

3 , 2
3 , 1

2
�, have the same in-

teratomic distance a, they do not share the same symmetry
operations. This degeneracy is broken when the c /a ratio
deviates from its ideal value.

For the sake of efficiency, the initial lattice parameters of
the SQS’s were determined from Vegard’s law. By doing so,
the c /a ratio was no longer ideal. Afterwards, we checked
the correlation functions of the new structures and found that
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they remained the same as long as the corresponding figures
were indentical.

The maximum range over which the correlation function
of an SQS mimics that of a random alloy can be increased by
increasing the supercell size. As the size of the SQS in-
creases, the probability of finding configurations that mimic
random alloys over a wider coordination range increases ac-
cordingly. The search algorithm used in this work consists of
enumerating every possible supercell of a given volume and
for each supercell, enumerating every possible atomic con-
figuration. For each configuration, the correlation functions
of different figures, i.e., points, pairs, and triplets, are calcu-
lated. To save time, the calculation of the correlations is
stopped as soon as one of them does not match the random
state value. This algorithm becomes prohibitively expensive
very rapidly. The generation of a larger SQS could be accom-
plished by using a Monte Carlo–like scheme �e.g., Abrikosov
et al.14�, but this is beyond the scope of present work. In fact,
the authors could generate a 32-atom SQS’s, and the average
total energy difference between 16-atom SQS’s and 32-atom
SQS’s in the Cd-Mg system was around 2 meV per atom.
The authors maintain a focus on 16-atom SQS, because this
size represents a good compromise between accuracy and the
computational requirements associated with the necessary
first-principles calculations.

It is also important to note that finding a good hcp SQS is
more difficult than finding an SQS of cubic structures with
the same range of matching correlations due to the fact that,

for a given range of correlations, there are more symmetri-
cally distinct correlations to match. Additionally, the lower
symmetry of the hcp structure implies that there are also
many more candidate configurations to search through in or-
der to find a satisfactory SQS. Thus, the number of distinct
supercells is larger and the number of symmetrically distinct
atomic configurations is larger, in comparison to fcc or bcc
lattices.

TABLE I. Structural descriptions of the SQS-N structures for
the binary hcp solid solution. Lattice vectors and atomic positions
are given in fractional coordinates of hcp lattice. Atomic positions
are given for the ideal, unrelaxed hcp sites.

x=0.5 x=0.75

Lattice vectors Lattice vector

� 0 − 1 − 1

− 2 − 2 0

− 2 1 − 1
� � 1 1 1

− 1 0 1

0 − 4 0
�

Atomic positions Atomic positions

−2 1
3 −1 2

3 −1 1
2 A − 1

3 −2 2
3 1 1

2 A

−1 −1 −1 A − 1
3 −1 2

3 1 1
2 A

−2 0 −1 A 0 −3 2 A

−1 1
3

2
3 −1 1

2 A 0 −3 1 A

−3 −2 −1 A 0 −2 2 B

SQS-16 −2 1
3

2
3 −1 1

2 A 0 −1 2 B

−4 −2 −2 A 0 0 2 B

−3 1
3 −1 2

3 −1 1
2 A − 1

3 − 2
3 1 1

2 B

−2 −2 −1 B − 1
3

1
3 1 1

2 B

−1 1
3 −1 2

3
1
2 B − 1

3 −3 2
3

1
2 B

−3 −1 −1 B 0 −2 1 B

−2 −1 −1 B − 1
3 −2 2

3
1
2 B

−1 1
3

2
3

1
2 B 0 −1 1 B

1
3

2
3

1
2 B − 1

3 −1 2
3

1
2 B

−2 1
3 −1 2

3
1
2 B 0 0 1 B

−3 −1 −2 B − 1
3 − 2

3
1
2 B

Lattice vectors Lattice vectors

�− 1 1 1

1 − 1 1

1 1 0
� � 1 1 − 1

0 − 1 − 1

− 2 2 0
�

Atomic positions Atomic position

SQS-8 1
3

2
3

1
2 A −1 1 −1 A

1
3

2
3 1 1

2 A − 2
3

2
3 − 1

2 A

1 0 1 A −1 2
3 1 2

3 − 1
2 B

1 1 2 A −1 1 −2 B

0 1 1 B − 2
3

2
3 −1 1

2 B

1 1 1 B 0 0 −1 B

1 1
3

2
3

1
2 B 0 0 −2 B

1 1
3

2
3 1 1

2 B 1
3 − 1

3 −1 1
2 B

FIG. 1. Crystal structures of the A1−xBx binary hcp SQS-16
structures in their ideal, unrelaxed forms. All the atoms are at the
ideal hcp sites, even though both structures have the space group
P1. �a� SQS-16 for x=0.5. �b� SQS-16 for x=0.75.
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In order to verify the proposed 16-atom SQS’s are ad-
equate for the simulation of hcp random solutions, the au-
thors calculated other SQS’s at 75 at. % which have random-
like pair correlations up to the third nearest neighbor but that
have slightly different correlations for the fourth nearest
neighbor. The pair correlation function at 75 at. % of a truly
random solution would be �2�0.75−1�2=0.25 and therefore
the four SQS’s in Table III are worse than the one used in the
present work. These structures were applied to the Cd
25 at. % –Mg 75 at. % system and, as can be seen in Table
III, the associated energy differences are negligible. This is
due to the fact that the energetics of this system are domi-
nated by short-range interactions. Thus, as long as the most
important pair correlations �up to the third nearest neighbors
in hcp structure with ideal c /a ratio� are satisfied, the SQS’s
can successfully be applied to acquire properties of random
solutions in which short-range interactions dominate.

III. FIRST-PRINCIPLES METHODOLOGY

The selected hcp SQS-16 structures were used as geo-
metrical input for the first-principles calculations. The Vi-
enna Ab initio Simulation Package15 �VASP� was used to per-
form the density functional theory electronic structure

calculations. The projector augmented wave method16 was
chosen and the general gradient approximation17 was used to
take into account exchange and correlation contributions to

TABLE II. Pair and multisite correlation functions of SQS-N structures when the c /a ratio is ideal. The

number in the square bracket next to �̄k,m is the number of equivalent figures at the same distance in the
structure, the so-called degeneracy factor.

Random
x=0.5

SQS-16 SQS-8 Random
x=0.75
SQS-16 SQS-8

�̄2,1�6	 0 0 0 0.25 0.25 0.16667

�̄2,1�6	 0 0 0 0.25 0.25 0.33333

�̄2,2�6	 0 0 0 0.25 0.25 0.33333

�̄2,3�2	 0 0 0 0.25 0.25 0

�̄2,4�12	 0 0 0 0.25 0.25 0.16667

�̄2,4�6	 0 0 −0.33333 0.25 0.45833 0

�̄2,5�12	 0 0 −0.33333 0.25 0.33333 0.33333

�̄2,6�6	 0 −0.33333 0.33333 0.25 0.16667 0.33333

�̄2,7�12	 0 0 0 0.25 0.25 0.5

�̄2,8�12	 0 0 0 0.25 0.1667 0.33333

�̄3,1�12	 0 0 0.33333 0.125 −0.08333 0.16667

�̄3,1�2	 0 0 0 0.125 0.25 0.5

�̄3,1�2	 0 0 0 0.125 0.25 0.5

�̄3,2�24	 0 0 0 0.125 −0.04167 0

�̄3,3�6	 0 0 0 0.125 −0.08333 0.16667

�̄3,3�6	 0 0 0 0.125 −0.08333 −0.16667

�̄4,1�4	 0 0 0 0.0625 0 0.5

�̄4,2�12	 0 0 −0.33333 0.0625 −0.16667 −0.16667

�̄4,2�12	 0 0 0 0.0625 0 0

�̄4,3�6	 0 0.33333 0.33333 0.0625 −0.16667 0

TABLE III. Pair correlation functions up to the fifth and the
calculated total energies of other 16 atoms SQS’s for Cd0.25Mg0.75

are enumerated to be compared with the one used in this work
�SQS-16�. The total energies are given in unit’s of eV/atom.

a b c d SQS-16

�̄2,1�6	 0.25 0.25 0.25 0.25 0.25

�̄2,1�6	 0.25 0.25 0.25 0.25 0.25

�̄2,2�6	 0.25 0.25 0.25 0.25 0.25

�̄2,3�2	 0.25 0.25 0.25 0.25 0.25

�̄2,4�12	 0.20833 0.16667 0.16667 0.08333 0.25

�̄2,4�6	 0.5 0.5 0.5 0.16667 0.45833

�̄2,5�12	 0.5 0.16667 0.33333 0.33333 0.33333

Symmetry
preserved

−1.3864 −1.3882 −1.3886 −1.3886 −1.3869

Fully
relaxed

−1.3874 −1.3887 −1.3889 −1.3893 −1.3883
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the Hamiltonian of the ion-electron system. A constant en-
ergy cutoff of 350 eV was used for all the structures, with
5000 k points per reciprocal atom based on the Monkhorst-
Pack scheme for the Brillouin-zone integrations. The k-point
meshes were centered at the � point. The convergence crite-
rion for the calculations was 10 meV with respect to the 16
atoms. Spin-polarization was not taken into account. The
generated SQS’s were either fully relaxed, or relaxed without
allowing local ion relaxations, i.e., only volume and c /a ratio
were optimized. As will be seen below, the full relaxation
caused some of the SQS’s to lose the original hcp symmetry.

IV. RESULTS AND DISCUSSIONS

A. Analysis of relaxed structures

The symmetry of the resulting SQS was checked using
the PLATON code18 before and after the relaxations. Both
SQS’s have the lowest symmetry of P1, although all the at-
oms are sitting on the lattice sites of hcp. The procedure was
verified by checking the symmetries of the generated unre-
laxed SQS. Once all the sites in the SQS were substituted
with one single atomic species, PLATON identified SQS’s as
perfect hcp structures. All the atoms of the initial structures
are on their exact hcp lattice sites. However, upon relaxation
the atoms may be displaced from these ideal positions. Ac-
cording to the definition of an hcp random solution, all the
atoms, in this case two different type of atoms, should be at
the hcp lattice points—within a certain tolerance—even after
the structure has been fully relaxed. The default tolerance of
detecting the symmetry of the relaxed structures allowed the
atoms to deviate from their original lattice sites by up to
20%.

In principle, relaxations should be performed with respect
to the degrees of freedom consistent with the initial symme-
try of any given configuration. In the particular case of the
hcp SQS’s, local relaxations may in some cases be so large
that the character of the underlying parent lattice is lost.
However, within the CALPHAD methodology, one has to
define the Gibbs energy of a phase throughout the entire
composition range, regardless of whether the structure is
stable or not. In these cases, it is necessary to constrain the
relaxations so that they are consistent with the lattice vectors
and atom positions of an hcp lattice. Obviously, the energetic
contributions due to local relaxations are not considered in
this case. The results of these constrained relaxations can
therefore be directly compared to those calculations using
the CPA. In most cases, local relaxations were not signifi-
cant. However, in a few instances, it was found that the
structure was too distorted to be considered as hcp after the
full relaxation. However, this symmetry check was not suf-
ficient to characterize the relaxation behavior of the relaxed
SQS. Furthermore, in some of the cases it may be possible
for the structure to fail the symmetry test and still retain an
hcp-like environment within the first couple of coordination
shells, implying that the energetics and other properties cal-
culated from these structures could be characterized as rea-
sonable, although not optimal, approximations of random
configurations.

1. Radial distribution analysis

In order to investigate the local relaxation of the fully
relaxed SQS, their radial distribution �RD� was analyzed.
Through this analysis, the bond distribution and coordination
shells were studied to determine whether the relaxed struc-
tures maintained the local hcp-like environment they were
supposed to mimic in the first place. Additionally, this analy-
sis permitted us to quantify the degree of local relaxations up
to the fifth coordination shells.

The RD of each of the fully relaxed structures was ob-
tained by counting the number of atoms within bins of
10−3 Å, up to the fifth coordination shell. In order to elimi-
nate high frequency noise, the raw data was scaled and
smoothed through Gaussian smearing with a characteristic
distance of 0.01 Å. Pseudo-Voigt functions were then used to
fit each of the smoothed peaks and the goodness of fit was in
part determined through the summation of the total areas of
the peaks and comparing them to the total number of atoms
that were expected within the analyzed coordination shells.
The relaxation of the atoms at each coordination shell is
quantified by the width of the corresponding peak in the
fitted RD.

The RD results of selected SQS’s are given in Fig. 2. The
unrelaxed, fully relaxed, and nonlocally relaxed structures
are compared in each case as well as the smoothed bond
distributions and their fitted curves. These results are repre-
sentative of the RD’s obtained for the seven binary systems
at the three compositions studied.

Figure 2�a� shows the RDs for the Hf-Zr SQS at the
50 at. % composition. As can be seen in the figure, the RDs
for the unrelaxed and nonlocally relaxed SQS are almost
identical, implying that in this system Vegard’s Law is
closely followed. Furthermore, the RD for the fully relaxed
SQS in Fig. 2�b� shows a rather narrow distribution around
each of the the bondlengths corresponding to the ideal or
unrelaxed structure. The system therefore needs to undergo
very negligible local relaxations in order to minimize its en-
ergy.

In the case of the Cd-Mg solution at 50 at. % �Fig. 2�c�	,
the RDs of the unrelaxed and nonlocally relaxed SQS are
more dissimilar. Even in the nonlocally relaxed calculation,
the original first coordination shell �corresponding to the six
first-nearest neighbors� has split into two different shells �of
4 and 2 atoms� and the position of the peak is noticeably
shifted. The first two well defined coordination shells of the
unrelaxed structure have merged into a single, broad peak at
3.14 Å upon full relaxation, as shown in Fig. 2�d�. This peak
now encloses 12 first nearest neighbors. As shown in Table

II, �̄2,1 and �̄2,4 have two differnet types of pairs. However,
since they have the same correlation functions, they cannot
be distinguished. In Fig. 2�d� it is also shown how the fourth
and fifth coordination shells merge at 5.40 Å, enclosing 18
atoms. It can be expected that if the c /a ratio of a relaxaed
structure is close to ideal and the broadening of nearby shells
are wide enough that they merge, then the structure has al-
most the same radial distribution of an ideal hcp structure,
albeit with a large peak width.

Figure 2�e� shows the RD for the Mg50Zr50 composition.
Among the three RD’s presented in Fig. 2, this one is clearly
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the one that undergoes the greatest distortion upon full relax-
ation. Even in the nonlocally relaxed structures there is a
broad bondlength distribution around the peaks of the unre-
laxed SQS. With respect to the fully relaxed SQS, it can be

seen how the peaks for the fifth and sixth coordination shells
have practically merged. In this case, the local environment
of each atom within the SQS stops being hcp-like within the
first couple of coordination shells. Although the two end

FIG. 2. Radial distribution analysis of selected SQS’s. The dotted lines under the smoothed and fitted curves are the error between the two
curves. �a� RD of Hf50Zr50 ��Hmix
0�. �b� Smoothed and fitted RD’s of fully relaxed Hf50Zr50. �c� RD of Cd50Mg50 ��Hmix�0�. �d�
Smoothed and fitted RD’s of fully relaxed Cd50Mg50. �e� RD of Mg50Zr50 ��Hmix�0�. �f� Smoothed and fitted RD’s of fully relaxed
Mg50Zr50.
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members of this binary alloy have an hcp as the stable struc-
ture, it is evident from this figure that the SQS arrangement
is unstable and there is a tendency for the structure to distort.
In this system, there is a miscibility gap in the hcp phase up
to 
900 K and the RD reflects the tendency for the system
to phase separate.

The results from the peak fitting for all the fully relaxed
SQS’s are summarized in Table IV. It should be noted that
regardless of the system and compositions, the sum of the
areas under each peak should converge to a single value,
proportional to 50 atoms. For each peak, the error was quan-
tified as the absolute and normalized difference between the
expected and actual areas. The error reported in the table is
the averaged value for all the peaks in the RD. The broadness
of the peaks in the RD is quantified through the full width at
half maximum �FWHM�. In the table, the reported FWHM
corresponds to the average FWHM observed for the coordi-
nation shells enclosing a total of 50 atoms. Note that the
alloys with the smallest FWHM are Hf-Zr and Cd-Mg. As
will be seen later, Hf-Zr behaves almost ideally and Cd-Mg

is a system with rather strong attractive interactions between
unlike atoms that forms ordered hexagonal structures at the
25 and 75 at. % compositions.

2. Bond length analysis

In addition to the RD analysis, we performed the
bondlength analysis �A-A, B-B, and A-B� for all the relaxed
SQS’s. In Table V the bond lengths corresponding to the first
nearest neighbors for all the 21 SQS’s are presented. As ex-
pected, in the majority of the cases the sequence dii�dij
�djj is observed throughout the composition range, where
dij corresponds to the bond distance between two different
atom types. The two notable exceptions to this trend corre-
spond to the Cd-Mg and Mg-Zr alloys. As will be mentioned
below, the Cd-Mg system tends to form rather stable inter-
metallic compounds at the 25, 50, and 75 at. % composi-
tions, including two hexagonal intermetallic compounds. The
calculated enthalpy of mixing in this case—shown in Fig.
3�a�—is the most negative among seven binaries studied and
the fact that the Cd-Mg bonds are shorter than Cd-Cd and

TABLE IV. Results of radial distribution analysis for the seven binaries studied in this work. FWHM shows the averaged full width at
half maximum and is given in Å. Errors indicate the difference in the number of atoms calculated through the sum of peak areas and those
expected in each coordination shell.

Compositions Cd-Mg Mg-Zr Al-Mg Mo-Ru Hf-Ti Hf-Zr Ti-Zr

FAHM 0.06±0.01 0.09±0.03 0.08±0.02 N/Aa 0.11±0.03 0.02±0.00 0.16±0.05

A75B25 Error, % 0.72 0.39 0.47 N/A 1.07 1.84 1.27

Symmetry PASS PASS PASS FAIL PASS PASS FAIL

FWHM 0.07±0.02 0.15±0.02 0.15±0.07 0.13±0.01 0.16±0.02 0.03±0.01 0.09±0.06

A50B50 Error, % 0.30 1.42 1.28 1.90 0.35 1.84 2.39

Symmetry PASS FAIL FAIL PASS PASS PASS PASS

FWHM 0.04±0.01 0.09±0.03 0.10±0.02 0.07±0.02 0.11±0.06 0.03±0.00 0.13±0.07

A25B75 Error, % 2.05 1.22 0.26 1.93 0.26 1.01 0.96

Symmetry PASS PASS PASS PASS PASS PASS PASS

aThe radial distribution analysis of Mo 75 at. % –Ru 25 at. % was not possible since it completely lost its symmetry as hcp.

TABLE V. First nearest-neighbor average bondlengths for the fully relaxed hcp SQS of the seven binaries
studied in this work. Uncertainty corresponds to the standard deviation of the bondlength distributions.

Compositions Bonds Cd-Mg Mg-Zr Al-Mg Mo-Ru Hf-Ti Hf-Zr Ti-Zr

A100B0 A–A 3.07 3.18 2.87 2.75 3.13 3.13 2.87

A–A 3.17±0.10 3.18±0.03 2.92±0.03 3.14±0.05 3.18±0.03 2.96±0.07

A75B25 A–B 3.16±0.11 3.18±0.05 2.95±0.03 N/A 3.10±0.05 3.18±0.03 3.02±0.07

B–B 3.18±0.10 3.12±0.10 2.96±0.03 3.09±0.06 3.18±0.04 3.04±0.06

A–A 3.16±0.04 3.16±0.04 2.98±0.06 2.81±0.08 3.09±0.06 3.18±0.03 3.00±0.09

A50B50 A–B 3.12±0.04 3.20±0.06 3.02±0.06 2.75±0.04 3.05±0.07 3.19±0.03 3.06±0.08

B–B 3.15±0.03 3.14±0.08 3.07±0.08 2.75±0.04 3.00±0.06 3.20±0.03 3.12±0.08

A–A 3.16±0.01 3.15±0.04 3.06±0.04 2.73±0.04 3.02±0.05 3.19±0.03 3.09±0.08

A25B75 A–B 3.14±0.02 3.19±0.04 3.08±0.04 2.73±0.04 3.00±0.06 3.19±0.03 3.11±0.06

B–B 3.15±0.01 3.18±0.04 3.11±0.03 2.71±0.04 2.95±0.05 3.20±0.04 3.17±0.06

A0B100 B–B 3.18 3.19 3.18 2.68 2.87 3.19 3.19
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Mg-Mg seems to reflect the tendency of this system to order.
In the case of the Mg-Zr alloys, the Mg-Zr bonds are longer
than Mg-Mg and Zr-Zr, suggesting that this system has a
great tendency to phase separate, as indicated by the pres-
ence of a large hcp miscibility gap in the Mg-Zr phase
diagram.19

B. Enthalpy of mixing

It is obvious that if an hcp SQS alloy is not stable with
respect to local relaxations, its properties are not accessible
through experimental measurements. However, approximate
effective properties could still be estimated through
CALPHAD modeling. In order to compare the energetics
and properties of the calculated SQS’s with the available
experiments or previous thermodynamic models, only the
nonlocally relaxed structures were considered whenever the
SQS was identified as unstable. This effectively assumes that
the structures in question are constrained to maintain their
symmetry. The total energies of the structures under
symmetry-preserving relaxations are obviously higher since
the relaxation energy is not considered. However, we can
consider these calculated thermochemical properties as an
upper bound which can still be of great use when attempting
to generate thermodynamically consistent models based on
the combined first-principles/CALPHAD approach.

As mentioned earlier, obtaining thermodynamic properties
of random alloys using cluster expansion or the CPA method
has some drawbacks. These methods, however, have the ad-
vantage of calculating the properties of random alloys at ar-
bitrary and closely spaced concentrations. SQS’s in this case
are at a disadvantage since the size of the SQS itself limits
the concentrations with randomlike correlations. Neverthe-
less, if we can acquire the properties at these three composi-
tions, we can sufficiently describe the tendency of the sys-
tem. Furthermore, these SQS’s can be applied directly to
other binary systems without any modifications.

The enthalpies of mixing for these alloys were calculated
at the 25, 50, and 75 at. % concentrations through the ex-
pression

�H�A1−xBx� = E�A1−xBx� − �1 − x�E�A� − xE�B� , �2�

where E�A� and E�B� are the reference energies of the pure
components in their hcp ground state.

In the following sections, the generated SQS’s are tested
by calculating the crystallographic, thermodynamic, and
electronic properties of hcp random solutions in seven binary
systems Cd-Mg, Mg-Zr, Al-Mg, Mo-Ru, Hf-Ti, Hf-Zr, and
Ti-Zr. The results of the calculations are then compared with
existing experimental information as well as previous calcu-
lations.

C. Cd-Mg

In the Cd-Mg system, both elements have the same va-
lence and almost the same atomic volumes. Consequently,
there is a wide hcp solid solution range as well as order/
disorder transitions in the central, low temperature region of
the phase diagram. In fact, at the 25 and 75 at. % composi-
tions there are ordered intermetallic phases with hexagonal
symmetries.

Figure 3�a� compares the enthalpy of mixing calculated
from the fully relaxed and symmetry preserved SQS with the
results from cluster expansion.20 The results by Asta et al.20

at 900 K are presented for comparison since it is to be ex-
pected that these values would be rather close to the calcu-
lated enthalpy of completely disordered structures. The pre-

FIG. 3. Calculated and experimental results of mixing enthalpy
and lattice parameters for the Cd-Mg system. �a� Calculated en-
thalpy of mixing for the disordered hcp phase in the Cd-Mg system
with SQS at T=0 K, cluster variation method �CVM� �Ref. 20� at
T=900 K, and experiment �Ref. 21� at T=543 K. �b� Calculated
lattice parameters of the Cd-Mg system compared with experimen-
tal data �Refs. 22–24�.
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vious and current calculations are also compared with the
experimental measurements as reported in Hultgren21 at
543 K. The first thing to note from Fig. 3�a� is that the fully
relaxed and symmetry preserved calculations are very close
in energy, implying negligible local relaxation. Additionally,
the present calculations are remarkably close �
1 kJ/mol� to
the experimental measurements. By comparing the SQS en-
thalpy of mixing with the results from the cluster expansion
calculations,20 it is obvious that the former is, at least in this
case, more capable of reproducing the experimental measure-
ments.

Formation enthalpies of the three ordered phases in the
Cd-Mg system, Cd3Mg, CdMg, and CdMg3 are also pre-
sented. The measurements from Hultgren21 deviate from the
calculated results from Asta et al.20 and this work. Cd and
Mg are known as very active elements and it is likely that
reaction with oxygen present during the measurements may
have introduced some systematic errors. Furthermore, the
measurements were conducted at relatively low tempera-
tures, making it difficult for the systems to equilibrate. Nev-
ertheless, experiments and calculations agree that these three
compounds constitute the ground state of the Cd-Mg system.

Figure 3�b� also shows that the present calculations are
able to reproduce the available measurements on the varia-
tion of the lattice parameters of hcp Cd-Mg alloys with com-
position, as well as the deviation of these parameters from
Vegard’s Law. This deviation is mainly related to the rather
large difference in c /a ratio between Cd and Mg. The c /a
ratio of Cd is one of the largest ones of all the stable hcp
structures in the periodic table.

D. Mg-Zr

The Mg-Zr system is important due to the grain refining
effects of Zr in magnesium alloys. According to the assess-
ment of the available experimental data by Nayeb-Hashemi
and Clark,19 the Mg-Zr system shows very little solubility in
the three solution phases, bcc, hcp, and liquid. In fact, the
low temperature hcp phase exhibits a broad miscibility gap
up to 923 K, corresponding to the peritectic reaction hcp
+liquid→hcp.19

Our calculations yielded a positive enthalpy of mixing,
confirming the trends derived from the thermodynamic
model developed by Hämäläinen et al.25 In the case of the
full relaxation, however, it was observed that the Mg50Zr50
SQS was unstable with respect to local relaxations. The in-
stability at this composition and the large, positive enthalpy
of mixing indicate that the system has a strong tendency to
phase separate. By comparing the fully relaxed and the non-
locally relaxed structures, we estimate that the local relax-
ation energy lowers the mixing enthalpy of the random hcp
SQS by about 2 kJ/mol in this system.

Figure 4 shows the calculated mixing enthalpy for the
Mg-Zr hcp SQS with no local relaxations, as well as the
mixing enthalpy calculated from the thermodynamic model
by Hämäläinen et al.,25 which was fitted only through phase
diagram data. It is therefore remarkable that the maximum
difference between the CALPHAD model and the present
hcp SQS calculations is 
3 kJ/mol. The CALPHAD model,

however, does not correctly describe the asymmetry of the
mixing enthalpy indicated by the first-principles calculations.
The results of the hcp SQS calculations for the Mg-Zr sys-
tem have recently been used to obtain a better thermody-
namic description of the Mg-Zr system26 and, as can be seen
in the figure, this description is better at describing the trends
in the calculated enthalpy of mixing.

E. Al-Mg

As one of the most important industrial alloys, the Al-Mg
system has been studied extensively recently.27–29 This sys-
tem has two eutectic reactions and shows solubility within
both the fcc and hcp phases. However, the solubility ranges
are not wide enough so there is only limited experimental
information for the properties of the hcp phase. The maxi-
mum equilibrium solubility of Al in the Mg-rich hcp phase is
around 12 at. %.

In Fig. 5�a� the calculated enthalpy of mixing is slightly
positive. The fully relaxed calculations show that the SQS
with the 50 at. % composition was unstable with respect to
local relaxations. This can be explained by the strong inter-
action between Al and Mg, as evident from the tendency of
this system to form intermetallic compounds at the middle of
the phase diagram, such as �-Al140Mg89, 	-Al12Mg17, and

-Al30Mg23. At the 25 and 75 at. % compositions the SQS’s
were stable with respect to local relaxations because both
elements have a close-packed structure. Furthermore, at
these compositions either the fcc or hcp phase take part in
equilibria with some other �intermetallic� phase. Figure 5�a�
shows that the present fully relaxed calculations are in excel-
lent agreement with the most recent CALPHAD
assessments.27,28 Note also that in this case, and contrary to
what is observed in the Cd-Mg binary, the energy change

FIG. 4. Calculated enthalpy of mixing in the Mg-Zr system
compared with a previous thermodynamic assessment �Ref. 25�.
Both reference states are the hcp structure.
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associated with local relaxation is not negligible, although it
is still within 
1 kJ/mol.

Additionally, the calculated lattice parameters agree very
well with the experimental measurements of Mg-rich hcp
alloys, as can be seen in Fig. 5�b�. It is important to note that
the lattice parameter measurements of metastable hcp alloys
from Luo et al.30 �77.4 and 87.8 Mg at. %� are lying on the
extrapolated line between the 75 at. % SQS and the pure Mg
calculations. This is another example of how SQS’s can be

successfully used in calculating the properties of an hcp solid
solution system with narrow solubility range and mixed with
non-hcp elements, even in the metastable regions of the
phase diagram.

F. Mo-Ru

The Mo-Ru system shows a wide solubility range within
both the bcc and hcp sides of the phase diagram. In the
Ru-rich side, the maximum solubility of Mo in the hcp-Ru
matrix is up to 50 at. %. The calculations at Mo25Ru75 and
Mo50Ru50 retained the original hcp symmetry but Mo75Ru25
did not. The instability of the Mo-rich SQS is not surprising
since the Mo-rich bcc region is stable over a wide region of
the phase diagram. As shown in Wang et al.,34 elements
whose ground state is bcc are not stable in an hcp lattice and
vice versa �bcc Ti, Zr, and Hf are only stabilized at high
temperature due to anharmonic effects�. Thus hcp composi-
tions close to the bcc-side would be dynamically unstable
and would have a very large driving force to decrease their
energy by transforming to bcc.

Recently, Kissavos et al.7 calculated the enthalpy of mix-
ing for disordered hcp Mo-Ru alloys through the CPA in
which relaxation energies were estimated by locally relaxing
selected multisite atomic arrangements. Enthalpy of forma-
tion for hcp solutions were calculated from Eq. �3� shown
below. The enthalpy of mixing of the disordered hcp phase
can be evaluated accordingly based on the so-called lattice
stability2 Ebcc�Mo�−Ehcp�Mo�:

�Hf�Mo1−xRux�

= Ehcp�Mo1−xRux� − �1 − x�Ebcc�Mo� − xEhcp�Ru�

= Ehcp�Mo1−xRux� − �1 − x�Ehcp�Mo� − xEhcp�Ru�

− �1 − x�Ebcc�Mo� + �1 − x�Ehcp�Mo�

= Hmix
hcp�Mo1−xRux� − �1 − x��Ebcc�Mo� − Ehcp�Mo�	 .

�3�

Usually, structural energy differences �or lattice stability�
between first-principles calculations and CALPHAD show
quite good agreement. However, for some transition ele-
ments, the disagreement between the two approaches is quite
significant.35 Mo is one such case, with the structural energy
difference between bcc and hcp from first-principles calcula-
tions and the CALPHAD approach differing by over
30 kJ/mol. After a rather extensive analysis, Kissavos et al.7

arrived at the conclusion that in order to reproduce enthalpy
values close enough to the available experimental data36 the
CALPHAD lattice stability �11.55 kJ/mol� needed to be
used for the value of the bcc→hcp promotion energy.

The SQS and CPA calculations are compared with the
experimental measurements in Fig. 6. On the assumption that
the experimental measurements by36 are correct, the derived
enthalpy of formation of the hcp Mo-Ru system from the
first-principles calculated lattice stability with the SQS and
CPA approach in Fig. 6�a� cannot reproduce the experimental
observation at all since the first-principles bcc→hcp lattice
stability for Mo is 42 kJ/mol. Given this lattice stability, the
only way in which the first-principles calculations within

FIG. 5. Calculated and experimental results of mixing enthalpy
and lattice parameters for the Al-Mg system. �a� Calculated en-
thalpy of mixing for the hcp phase in the Al-Mg system compared
with assessed data �Ref. 27–29�. Reference states are hcp for both
elements. �b� Calculated lattice parameters of the hcp phase in the
Al-Mg system compared with experimental data �Refs. 23, 24, and
30–33�.
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both the SQS and CPA approaches would match the experi-
mental results would be for the calculated enthalpy of mixing
to be very negative, which is not the case. In fact, as can be
seen in Fig. 6�a�, the SQS and CPA calculations are very
close to each other.

On the other hand, the enthalpy of formation derived from
the CALPHAD lattice stability in Fig. 6�b� shows a better
agreement than that from the first-principles lattice stability.
It is important to note that the CALPHAD lattice stability
was obtained through the extrapolation of phase boundaries
in phase diagrams with Mo and stable hcp elements and,
therefore, are empirical. The reason why such an empirical
approach would yield a much better agreement with experi-
mental data is still the source of intense debate within the
CALPHAD community and has not been resolved as of now.
The main conclusion of this section, however, is that the
SQS’s were able to reproduce the thermodynamic properties
of hcp alloys as good as or better than the CPA method while
at the same time allowing for the ion positions to locally
relax around their equilibrium positions.

G. IVA transition metal alloys

The group IVA transition metals Ti, Zr, and Hf have hcp
structure at low temperatures and transform to bcc at higher
temperatures due to the effects of anharmonic vibrations.
When they form a binary system with each other, they show
complete solubility for both the hcp and bcc solutions with-
out forming any intermetallic compound phases in the
middle.

The Hf-Ti binary is reported to have a low temperature
miscibility gap and was modeled with a positive enthalpy of
mixing by Bittermann and Rogl.37 Figure 7�a� shows remark-
able agreement between the fully relaxed first-principles cal-
culations and the thermodynamic model, which was obtained
by fitting the experimental phase boundary data. Despite the
fact that the local relaxation energies are rather large
�
4 kJ/mol�, the lattice parameters in both cases agree be-
tween each other and with the experimental results.39–41

In the case of the Ti-Zr binary, although no low-
temperature miscibility gap has been reported, Kumar et al.38

found that the enthalpy of mixing for the hcp solutions in this
binary was positive through fitting of phase diagram data.
Our results confirm this finding, although with even more
positive enthalpy. They are in fact similar in value to those
calculated in the Hf-Ti alloys, suggesting that a low tempera-
ture miscibility gap may also be present in this binary.

In the Hf-Zr system no miscibility gap has been reported.
The hcp phase was modeled as an ideal solution ��Hmix

=0� in the CALPHAD assessment.42 The present calcula-
tions suggest that the enthalpy of mixing of this system is
positive, although rather small. In this case, it is expected
that any miscibility gap would only occur at very low tem-
peratures.

The three systems described in this section are chemically
very similar, having the same number of electrons in the d
bands. Electronic effects due to changes in the widths and
shapes of the DOS of the d bands are not expected to be
significant in determining the alloying energetics. Charge
transfer effects are also expected to be negligible. The en-
thalpy observed can then be explained by just considering
the atomic size mismatch between the different elements. As
was shown in Table V, the Hf-Zr hcp alloys are the ones with

FIG. 6. Enthalpy of formation of the Mo-Ru system with both
first principles and CALPHAD lattice stabilities. Reference states
are bcc for Mo and hcp for Ru. �a� Enthalpy of formation of hcp
phase in the Mo-Ru system from SQS’s �this work� and CPA �Ref.
7�. Total energy of hcp Mo is obtained from first-principles calcu-
lations in both cases. �b� Enthalpy of formation of hcp phase in the
Mo-Ru system from SQS’s and CPA. Total energy of hcp Mo is
derived from the SGTE �Scientific Group Thermodata Europe� lat-
tice stability.
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the smallest difference in their lattice parameter, thus ex-
plaining their very small positive enthalpy of mixing.

As a final analysis of the ability of the generated SQS to
reproduce the properties of random hcp alloys, Fig. 8 shows
the alloying effects on the electronic DOS in Ti-Zr hcp al-
loys. The figure also presents the results obtained through the
CPA approach by Kudrnovsky et al.43 As can be seen in the
figure, both calculations predict that the DOS corresponding
to the occupied d states are virtually insensitive to alloying.
The overall shape of the d-DOS remains relatively invariant.
Since Ti and Zr have the same number of valence electrons,
the fermi level remains essentially unchanged as the concen-
tration varies from pure Zr to pure Ti. On the other hand,
alloying effects are more pronounced in the d-DOS corre-
sponding to the unoccupied states. Figure 8 shows how the
broad peak at 
4.5 eV of the d-DOS for Zr is gradually
transformed into a narrow peak at 
3.0 eV as the Ti content
in the alloy is increased. The results from the CPA and the
first-principles SQS calculations thus agree with each other,
confirming the present results.

V. SUMMARY

We have created periodic special quasirandom structures
with 16 atoms for binary hcp substitutional alloys at three
different compositions 25, 50, and 75 at. %, to mimic the
pair and multisite correlations of random solutions. The gen-
erated SQS’s were tested in seven different binaries and
showed fairly good agreement with existing experimental ei-
ther enthalpy of mixing and/or CALPHAD assessments and
lattice parameters. Analysis of the radial distribution and
bond lengths in the 21 calculated SQS’s, yielded a detailed
account of the local relaxations in the hcp solutions and has
been proven a useful way of characterizing the degree relax-
ation over several coordination shells.

It should also be noted that when using enthalpy of mix-
ing to derive formation enthalpy to compare with experimen-
tal measurements, there can be a severe discrepancy between
theoretical calculations and experimental data when the lat-
tice stability, or structural energy difference, from first-
principles calculation is problematic such as the Mo-Ru

FIG. 7. Enthalpy of mixing for the Hf-Ti, Hf-Zr, and Ti-Zr bi-
nary hcp solutions calculated from first-principles calculations and
CALPHAD thermodynamic models. All the reference states are hcp
structures. �a� Calculated enthalpy of mixing for the hcp phase in
the Hf-Ti system compared with a previous assessment �Ref. 37�.
�b� Calculated enthalpy of mixing for the hcp phase in the Ti-Zr
system compared with a previous assessment �Ref. 38�. �c� Calcu-
lated enthalpy of mixing for the hcp phase in the Hf-Zr system.
�Hmix�0.

FIG. 8. Calculated DOS of Ti1−xZrx hcp solid solutions from �a�
SQS and �b� CPA �Ref. 43�.
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system in this work. This problem remains as an unsolved
issue.

These supercells can be applied directly to any substitu-
tional binary alloys to investigate the mixing behavior of
random hcp solutions via first-principles calculations without
creating new potentials, as in the coherent potential approxi-
mation �CPA� or calculating other structures in the cluster
expansion. Although the size of the current SQS’s is not
large enough to generate a supercell which can satisfy its
correlation function at more than just three compositions �x
=0.25, 0.5, and 0.75 in A1−xBx binary�, calculations for these
compositions can yield valuable information about the over-
all behavior of the alloys.
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