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We develop a simple iterative algorithm for successive corrections of the correlation function and the free
energy of a binary system. The main characteristics of the formalism are the use of an exact statistical-
thermodynamic relations and the absence of the small parameters. The only approximation involved is the form
of the configurational free energy which serves as a starting point for the iterative procedure. Two iterations
within this algorithm for a dispersion-free and a microscopic model of fluctuations are presented starting with
a one-site mean-field approximation. We obtain closed analytical expressions for the correlation function and
thermodynamic potentials in each iteration. The algorithm can be widely applied, as in the calculation of phase
diagrams, and segregation profiles at surfaces and thin films, and in k-space kinetic theories of atomic ordering
and decomposition in alloys.
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I. INTRODUCTION

The microscopic understanding of the atomic interactions
in multicomponent systems and how they influence the prop-
erties of the system is a cornerstone in condensed matter
physics and materials sciences. One ultimate goal is the pre-
diction of the phase behavior of a given multicomponent
system from the known interaction potentials. In order to
tackle this difficult task, binary alloys have served as model
systems for theoretical as well as experimental studies, since
they are simple enough to be handled with current theoretical
tools and include, on the other hand, essential features that
emerge in such complex systems and thus need to be under-
stood. In turn, much effort has been devoted in the last de-
cades to the development of theories that are able to predict
structural and thermodynamic properties of alloy systems
�see the reviews Refs. 1–5�.

Monte Carlo6–8 �MC� and cluster variation methods2,3,9–12

�CVM� are standard methods nowadays for statistical-
thermodynamic simulations. Using the atomic interaction po-
tentials �deduced from first principles4,13–18 as well as from
diffuse x-ray and neutron scattering data5,11,19–21� as input
parameters, these methods allowed successful study of a
wide range of metallic and semiconducting alloys. A com-
mon challenge for these theories is the long-ranging charac-
ter of the interactions in alloys8,22–24 which unavoidably
originates from the atomic size mismatch and leads to strain
fields exhibiting power-law decay,1,2,5,25 and in addition from
the presence of flat portions on the Fermi surface �“nesting
effects”�.2,5,26,27

A further challenge in striving for the aforementioned
goals is the proper introduction of the spatial correlations
between the alloy constituents into the theory at hand. These
local correlations are a direct consequence of the interatomic
interactions and contribute to the free energy of the system.
The key quantity that determines the accuracy of the
statistical-thermodynamic approximation is the correlation
function �which is also known as the set of short-range
order parameters deduced from diffuse scattering data�. If
this function is known, the configurational energy can be
calculated3 and the free energy is determined by the
temperature dependence of the energy.3,6 The k-space

Krivoglaz-Clapp-Moss19,28,29 �KCM� formula for the correla-
tion function, which has no limitation for the radius of
atomic interaction, has been used extensively over the past
40 years. More advanced k-space correlation functions are
obtained in the spherical model20–36 �SM�, Tahir-Keli,37,38

high-temperature,3,39–43 Tokar-Masanskii-Grishchenko36,44

and ring25,45,46 approximations. The accuracy of these ap-
proximations in comparison with the results of MC simula-
tions for model systems and real alloys has been discussed in
Ref. 47. The common feature in all these analytical approxi-
mations that ultimately limits their applicability is the use of
a small parameter, such as the inverse temperature or the
inverse correlation length.

The aim of the present paper is to develop a correlation
correction algorithm �CCA� that allows us to find successive
corrections for both the correlation function and the configu-
rational free energy of the alloy. This algorithm does not
employ a small expansion parameter and is not challenged
by the long-ranging character of the interatomic interactions.
As we will show in what follows, the only approximation
involved is the form of the configurational free energy, which
is used as the starting point for the iteration algorithm. The
basic principle of the CCA has been presented in a recent
communication and successfully applied for the calculation
of the chemical potential.48 In this paper we present the de-
tails of this algorithm and apply it �i� to a dispersion-free
model for the fluctuations and �ii� to a microscopic k-space
theory of fluctuations.

This paper is organized as follows. In Sec. II, we intro-
duce concentration fluctuations. The configurational Hamil-
tonian and the internal energy of the alloy are presented,
assuming the atomic interactions to be pairwise. The calcu-
lation of the correlation function and the integration with
respect to inverse temperature for the calculation of the free
energy are described and the general scheme of the CCA is
presented. In Sec. III, we apply two iterations of the CCA to
a simple model of concentration fluctuations with no spatial
dispersion. In Sec. IV, we apply the CCA to the microscopic
theory of concentration fluctuations taking into account their
spatial dispersion. Using some examples we demonstrate in
Sec. V the convergence of the CCA and its applicability to
ordered as well as disordered systems, before we discuss
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future applications and also limitations of this algorithm in
Sec. VI.

II. CORRELATION CORRECTION ALGORITHM

In the following the correlation correction algorithm,
which has recently been introduced in Ref. 48 is presented in
full detail within the lattice-gas model of binary alloys.49

A. Concentration fluctuations in disordered alloys

Consider a macroscopically homogeneous disordered bi-
nary alloy �AcB1−c� on a simple Bravais lattice with N sites.
The distribution of the A and B atoms over the lattice sites is
commonly described by a set of variables cR=1 �0�, if an A
�B� atom occupies the lattice site with coordinate R. For our
purpose it is more convenient to introduce instead a set of
continuous variables �0� PR�1�, which have been intro-
duced by de Fontaine2,50 as single-site averages of the cR
over the ensemble of supercells.51

PR can be represented as

PR = c + �PR, �1�

with

c =
1

N
�
R

PR �2�

as the average concentration of A atoms in the alloy and �PR
as the concentration fluctuation at site R. �The sum over R is
carried over all sites of the crystal lattice.�

The normalization requirements then imply

1

N
�
R

PR =
1

N
�
R

PR
2 = c; �3�

in turn,

�
R

�PR = 0 �4�

and

�
R

�PR
2 = Nc�1 − c� . �5�

The spatial distribution of the fluctuations ��PR� can conve-
niently be described by a linear superposition of plane
waves,2,5,52

PR = c + �
k

�PkeikR. �6�

The summation is carried out over all the k vectors in the
first Brillouin zone �applying periodic boundary conditions�
except the vector k=0. The amplitudes �Pk are given by

�Pk = N−1�
R

�PRe−ikR. �7�

Using Eq. �6�, Eqs. �4� and �5� can be rewritten as

�Pk=0 = 0, �8�

�
k

�Pk�P−k = c�1 − c� . �9�

The presence of interactions between the alloy constitu-
ents manifests itself by characteristic spatial correlations be-
tween concentration fluctuations.3,5,43 Key quantities in alloy
theory are the socalled two-point correlation function

�R1−R2
= ��PR1

�PR2
	 �10�

and its Fourier transform

�k = N��Pk�P−k	 , �11�

which describes the dispersion relation of the concentration
fluctuations ��¯	 denotes the statistical average over the
Gibbs ensemble�. The average over Eq. �9� is the normaliza-
tion condition

N−1�
k

�k = c�1 − c� . �12�

The two generic dispersion relations �k are illustrated in
Fig. 1 for a binary alloy with ordering and clustering fluc-
tuations, respectively.

Atomic correlations are mediated by the internal interac-
tions and contribute directly to the configurational energy
and to the entropy of the system. The relevant corrections of
the internal energy ��E� and entropy ��S� have thus to be
accounted for as reliably as possible. The CCA presented
here provides an analytical iteration algorithm for the corre-
lation correction of the configurational Gibbs free energy
��F�.

B. Configurational Hamiltonian and internal energy

Assuming pairwise atomic interactions the configurational
Hamiltonian of the binary alloy can be presented in the
form2,53,54

FIG. 1. The two generic dispersion relations �k in binary alloys,
for the cases of ordering �full line� and clustering �dashed line�. �k
has been calculated for a model system AB3 with nearest- and next-
nearest-neighbor interactions V1 and V2=−0.5V1 �ordering, V1�0;
clustering, V1�0�.
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H = N�c +
1

2 �
R1,R2

VR1−R2
PR1

PR2
. �13�

� is the injection energy of an A atom into the crystal lattice
and VR1−R2

is the mixing energy of atomic species, which
depends on the vector difference R1−R2 in macroscopically
homogeneous alloys �note also that VR1=R2

=0�.
Using Eq. �1� the Hamiltonian in Eq. �13� can be rewritten

as

H = N�c +
1

2 �
R1,R2

VR1−R2
c2 +

1

2 �
R1,R2

VR1−R2
�PR1

�PR2
.

�14�

With the Fourier transforms

Vk = �
R

VRe−ikR �15�

and

VR = N−1�
k

VkeikR �16�

Eq. �14� becomes

H = H0 + N�c +
N

2
Vk=0c2 +

N

2 �
k

Vk�Pk�P−k. �17�

The average of Eq. �17� over the Gibbs ensemble finally
gives the configurational energy

E = E0 + �E , �18�

where

E0 = N�c +
N

2
Vk=0c2 �19�

is the configurational energy of the disordered alloy in the
absence of atomic correlations �“mean-field �MF�
approximation”1–3,9,31� and

�E =
N

2 �
k

Vk��Pk�P−k	 =
1

2�
k

Vk�k �20�

is the energy contribution from atomic correlations.

C. General scheme of the correlation correction algorithm

Consider the case of a known functional F̃ for the free

energy. Assuming the fluctuations to be small, we expand F̃
with respect to the fluctuations and take into account only
quadratic terms. We obtain1,2,5,42,43,50,52,55–58

F̃ = 
F̄�c�
��PR�=0 + Ffl���PR�� �21�

where F̄ is the part of the free energy that does not depend on
the fluctuations, and

Ffl =
1

2 �
R1R2

�2Ffl

��PR1
��PR2

�PR1
�PR2

=
N

2 �
k

�2Ffl

��Pk��P−k
�Pk�P−k �22�

is the nonequilibrium part of the free energy as caused by
fluctuations. Note that the form of the fluctuation part Ffl
depends on the initial approximation for the free energy.

The derivative in Eq. �22� is taken at ��PR=0"R�. The
dispersion law for the correlation function is then obtained
by the Landau relation2,3,5,43,51,55

�k = kBTN� �2Ffl

��Pk��P−k
�

��Pk�=0

−1

, �23�

where kB is the Boltzmann constant and T the absolute tem-
perature. Equation �23� holds if the fluctuations follow a
Gaussian distribution. In this case, Eq. �23� is exact5,51 and
any uncertainty in �k is only caused by the approximations
made for the initial free energy.

The configurational free energy of the system follows
from the exact relation3,6,48

F = kBT
0

1/kBT

E�T��d�1/kBT�� − TS0 �24�

with S0 being the configurational entropy as taken in the
high-temperature limit and E is the internal configurational
energy of the alloy.

Equation �24� can be rewritten using Eq. �18�,

F = F0 + kBT
0

1/kBT

�E�T��d�1/kBT�� , �25�

where F0=E0−TS0, and �E is determined by Eq. �20�. No-
tice here that not only E0 but also S0 and F0 correspond to
the MF approximation, because it is asymptotically exact in
the high-temperature limit.1,59

Substitution of Eq. �20� into Eq. �25� gives the contribu-
tion of the atomic correlations to the free energy,

�F = F − F0 =
kBT

2 �
k

Vk
0

1/kBT

�k�T��d�1/kBT�� , �26�

where we assume that the value Vk does not explicitly de-
pend on temperature.

Equation �26� allows one to calculate the free energy of
the alloy, provided that the temperature dependence of the
correlation function �k�T� is known.

With the relation Eq. �20�, which provides a precise recipe
for calculating the energy corrections as caused by the
atomic correlations, and with the exact integration for the
free energy defined in Eq. �24� we have the elements at hand
to set up a convenient and effective iterative algorithm for
correcting the Gibbs free energy of a disordered alloy to
account for the fluctuation dispersion relation �k.

This iteration scheme, denoted the correlation correction
algorithm in what follows, is illustrated in Fig. 2. We start

with the known functional for the free energy F̃�V ,T ; �PR��.
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Introducing fluctuations as defined in Eq. �1� we obtain the
relation for the correlation function Eq. �23�. In turn, the
correlation function allows us to calculate the energy correc-
tions caused by fluctuations. As a result, following Eq. �25�,
we derive a new expression for the Gibbs free energy. This
corrected free energy in terms of probabilities �PR� can again
be expanded with respect to fluctuations and used as a start-
ing point to find successive corrections to the correlation
function and the free energy.

We show in the subsequent sections that this iteration can
be performed twice in a fully analytical way. For almost all
practical cases the accuracy of the second iteration is already
sufficient. However, the assumption of a Gaussian distribu-
tion for fluctuation amplitudes in the Landau relation Eq.
�23� may not be justified upon approaching a phase transfor-
mation temperature. In what follows we apply this algorithm
for “macroscopic” �dispersion-free� fluctuations and for mi-
croscopic fluctuations taking into account the full dispersion
relation �k.

III. THERMODYNAMIC (DISPERSION-FREE) APPROACH

We consider a volume element V� that is small compared
to the volume V �V�	V� of the crystal but large compared to
the unit cell. Let the concentration of A atoms within V� be
given by c+�c, whereby the “local” fluctuations �c are gov-
erned by the Boltzmann factor exp�−R /kBT� with R as the
minimum work associated with the concentration excitation
�c.55

In harmonic approximation, R is given5 by

R =
1

2
V�

d2f

dc2 ��c�2, �27�

where d2f /dc2 is the second derivative of the specific �rela-
tive to V�� configurational free energy of the volume V� with
respect to the concentration c, calculated for a fixed tempera-
ture and volume.

Inserting Eq. �27� into the Boltzmann factor finally leads
to

���c�2	 =
kBT

V�
� d2f

dc2�−1

. �28�

Note that ���c�2	 decreases with increasing local volume V�.

A. First iteration of the CCA

At high temperatures, the specific free energy of the vol-
ume element V� can be written as5

f �0� = f0 + e − Ts = f0 + 
e1c +
1

2

e2c2

+ 
kBT�c ln c + �1 − c�ln�1 − c�� , �29�

where f0 denotes the specific free energy of the pure compo-
nent B,

e = 
e1c +
1

2

e2c2 �30�

the specific internal energy with e1=
−1ec, e2=
−1ecc, and

s = − 
kB�c ln c + �1 − c�ln�1 − c�� �31�

the specific entropy of the volume element V�.
The parameters ec= 
 �e

�c 
c=0, ecc= 
 �2e
�c2 
c=0, 
= N�

V�
�N� is the

number of lattice sites in the volume element V�� do not
explicitly depend on concentration and temperature. Note
further that Eq. �29� is also obtained within the single-site
MF approximation �assuming pairwise interactions�.

From Eqs. �28� and �29� we find

���c�2	�1� =
kBT

V�

1

fcc
�1� =

c�1 − c�


V��1 +
e2

kBT
c�1 − c�� �32�

with

fcc
�1� =

�2f

�c2 =
kBT


c�1 − c��1 +
e2

kBT
c�1 − c�� . �33�

The superscript index �1� in Eqs. �32� and �33� denotes
the iteration number of the CCA.

A local fluctuation of the concentration in the volume V�
is necessarily accompanied by a change �e of the specific
internal energy defined in Eq. �30�,

�e�1� =
1

2

e2���c�2	�1� =

1

2V�

e2c�1 − c�

�1 +
e2

kBT
c�1 − c�� , �34�

and, in turn, by a change of the free energy,

�f = kBT
0

1/kBT

�e�T��d�1/kBT�� . �35�

Thus, the specific free energy decomposes into two terms,

f = f �0� + �f �1�, �36�

with

�f �1� =
1

2V�
kBT ln�1 +

c�1 − c�e2

kBT
� , �37�

which follows after substituting Eq. �34� into Eq. �35� and
performing the integration with respect to the inverse tem-
perature. We obtain in this way the specific free energy �f �1�

within the first iteration of the CCA,

FIG. 2. Correlation correction algorithm.
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f �1� = f �0� + �f �1� = f0 + 
e1c +
1

2

e2c2 + 
kBT�c ln c

+ �1 − c�ln�1 − c�� +
1

2V�
kBT ln�1 +

c�1 − c�e2

kBT
� .

�38�

B. Second iteration of the CCA

Inserting f �1� defined in Eq. �38� into Eq. �28� starts the
second iteration process and gives

���c�2	�2� =
c�1 − c�

c�1 − c�
kBT

V�fcc
�1� −

ecc

fcc
�1� −

�1 − 2c�2

2c�1 − c�� ecc

fcc
�1��2 ,

�39�

where fcc
�1� is given by Eq. �33� and

ecc

fcc
�1� =

e2c�1 − c�

kBT�1 +
e2

kBT
c�1 − c�� . �40�

Note that even for high temperature the correlation func-
tion ���c�2	�2� cannot be simply replaced by ���c�2	�1� ne-
glecting second-order terms with respect to inverse tempera-
ture. Nevertheless, both correlation functions approach

asymptotically
c�1−c�

N�
in the high-temperature limit.

In the second iteration the change of the specific internal
energy is given by

�e�2� =
1

2

e2���c�2	�2�

=
1

2


e2c�1 − c�
c�1 − c�

kBT
V�fcc

�1� −
ecc

fcc
�1� −

�1 − 2c�2

2c�1 − c�� ecc

fcc
�1��2 �41�

Substituting Eq. �41� into Eq. �35� gives the specific free
energy within the second iteration of the CCA,

f �2� = f0 + 
e1c +
1

2

e2c2 + 
kBT�c ln c + �1 − c�ln�1 − c��

+
1

2

e2kBTc�1 − c�

0

1/kBT � c�1 − c�
kBT

V�fcc
�1� −

ecc

fcc
�1�

−
�1 − 2c�2

2c�1 − c�� ecc

fcc
�1��2�−1

d� 1

kBT�
� .

Hence, using general thermodynamical expressions within
the CCA, we successively derived two corrections to the
Gibbs free energy caused by the concentration fluctuations.
The approach we have outlined in this section can be easily
implemented numerically, allowing one to include correla-
tion corrections, e.g., in CALPHAD calculations, in a compu-
tationally very efficient way.

IV. MICROSCOPIC APPROACH

A. First iteration of the CCA

1. Calculation of the correlation function

In order to introduce interactions between individual at-
oms and to describe their distribution over the lattice sites, a
microscopic model is mandatory. We start the first iteration
of the CCA from the known expression for the free energy
functional of an alloy in terms of nonequilibrium variables
PR within the one-site MF approximation1,2,9,3

F̃ = Ẽ − TS̃ , �42�

with the configurational internal energy

Ẽ = N�c +
1

2 �
R1,R2

VR1−R2
PR1

PR2
�43�

and the configurational entropy

S̃ = − kB�
R

�PR ln PR + �1 − PR�ln�1 − PR�� . �44�

Using Eq. �1� the energy can be rewritten as

Ẽ = N�c +
1

2 �
R1,R2

VR1−R2
c2 +

1

2 �
R1,R2

VR1−R2
�PR1

�PR2
.

�45�

The products �PR1
�PR2

in Eq. �45� are not independent, but
related by the sum rule given in Eq. �5�. It is convenient to
introduce this relation directly into the internal energy func-
tional by a Lagrangian multiplier �; then we obtain

Ẽ = N�c +
1

2 �
R1,R2

VR1−R2
c2 +

1

2 �
R1,R2

VR1−R2
�PR1

�PR2

+
1

2
�� �

R1,R2

�PR1
�PR2

�R1,R2
− c�1 − c��

= N�� −
�

2
�c +

1

2 �
R1,R2

�VR1−R2
+ ��c2

+
1

2 �
R1,R2

�VR1−R2
+ ��R1,R2��PR1

�PR2
�46�

��R1,R2
is the Kronecker symbol�.

Inserting Eqs. �6�, �7�, and �16� into Eq. �46� we arrive at

Ẽ = N�c +
N

2
Vk=0c2 +

N

2 �
k

Vk�Pk�P−k

+
N

2
���

k
�Pk�P−k − c�1 − c��

= N�� −
�

2
�c

+
N

2
�Vk=0 + ��c2 +

N

2 �
k

�Vk + ���Pk�P−k. �47�
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Note that the interaction energy parameters �Vk� are re-
placed by the parameters �Vk+��, this results in a higher
accuracy of the correlation function calculations.47

Expanding Eq. �44� with respect to the fluctuations and
taking only quadratic terms into account we find, after insert-
ing Eqs. �6� and �7�, the expression

S̃ = S0 −
kBN

2 �
k

�Pk�P−k

c�1 − c�
�48�

for the entropy S̃ with

S0 = − kBN�c ln c + �1 − c�ln�1 − c�� �49�

as the high-temperature limit.
Substitution of Eq. �47� into Eq. �42� gives then the ex-

pression for the free energy in harmonic approximation with
respect to fluctuations,

F̃ = F̄�0��c� + Ffl
�1����Pk�� , �50�

where

F̄�0��c� = F0 − N
�

2
c�1 − c� = N�� −

�

2
�c +

N

2
�Vk=0 + ��c2

+ kBTN�c ln c + �1 − c�ln�1 − c�� , �51�

and the contribution of the fluctuations to the free energy is

Ffl
�1����Pk�� =

N

2 �
k
�Vk + � +

kBT

c�1 − c���Pk�P−k. �52�

In order to derive the correlation function we calculate the
second derivative of Eq. �52� with respect to �Pk:

�2Ffl
�1�

��Pk��P−k
= N�Vk + � +

kBT

c�1 − c�� . �53�

Applying Eq. �23� the correlation function is now given by

�k
�1� = N��Pk�P−k	 =

c�1 − c�

1 +
c�1 − c�

kBT
�Vk + ��

. �54�

For �=0 we recover the well-known KCM
formula.19,28,29,43 We note here that an equivalent formulation
has also been derived for magnetic systems60 within the so-
called random phase approximation. Notice further that �
�0 in Eq. �54� corresponds to the spherical model.29–36 �The
same expression was also derived within the first approxima-
tion of the thermodynamical perturbation theory.45�

The actual value of the Lagrangian multiplier � is ob-
tained numerically by the normalization condition Eq. �12�

1

N
�
k

1

1 +
c�1 − c�

kBT
�Vk + ��

= 1. �55�

Since by definition �k=N��Pk�P−k	�0, the denominator
in Eq. �54� must be positive. This corresponds to the disor-
dered state of the alloy.1–3,20 The spinodal temperature of the
alloy corresponds to a vanishing denominator; then the sys-

tem becomes unstable with respect to arbitarily small fluc-
tuations.

2. Calculation of thermodynamical potentials

Using the correlation function �k we calculate the correc-
tions to the thermodynamic potentials, i.e., the internal en-
ergy ��E�, the Gibbs free energy ��F�, and the grand ca-
nonical potential ����.

Substituting Eq. �54� into Eq. �20� allows us to calculate
the energy contribution from the concentration correlations:

�E =
c�1 − c�

2 �
k

Vk

1 +
c�1 − c�

kBT
�Vk + ��

, �56�

which according to Eq. �A1� is proportional to the Lagrang-
ian multiplier � �see Appendix A�:

�E = −
c�1 − c�

2
�N . �57�

Performing the exact integration of Eq. �26� the contribu-
tion of the correlations to the free energy of the disordered
alloy is given by

�F =
kBT

2 �
k

ln�1 +
c�1 − c�

kBT
�Vk + ��� −

c�1 − c�
2

�N .

�58�

The contribution �S to the entropy caused by correlations
reads as �S=T−1��E−�F�. Inserting Eqs. �57� and �58� we
find61

�S = −
kB

2 �
k

ln�1 +
c�1 − c��Vk + ��

kBT
� . �59�

All the other important thermodynamic configurational
potentials of the alloy can be calculated in a similar way. For
instance, the chemical potential =A−B �A and B are
the chemical potentials of the alloy components� reads

 = 0 + � , �60�

where

0 =
1

N

�F0

�c
= � + Vk=0c + kBT ln

c

1 − c
�61�

is the chemical potential of alloy within the MF
approximation.3 The contribution of the concentration fluc-
tuations to the chemical potential is given by

� =
1

N

��F

�c
=

1 − 2c

2N
�
k

Vk

1 +
c�1 − c�

kBT
�Vk + ��

. �62�

Using Eqs. �54�, �20�, and �57�, this can be rewritten as

� =
1 − 2c

2Nc�1 − c��k
Vk�k =

1 − 2c

Nc�1 − c�
�E = −

1 − 2c

2
� .

�63�
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The grand canonical potential is given by

� = �0 + �� , �64�

with �0=F0−N0c as the MF approximation and

�� = �F − N�c �65�

as the correlation correction.
Combining Eqs. �58� and �63� we obtain

�� =
kBT

2 �
k

ln�1 +
c�1 − c�

kBT
�Vk + ��� −

�Nc2

2
. �66�

Thus, as a result of the first iteration of the CCA, the
configurational internal energy of a disordered alloy can be
found by combining Eqs. �18�, �19�, and �57�:

E�1� = N�� −
�

2
�c +

N

2
�Vk=0 + ��c2. �67�

Equations �49� and �59� define the configurational entropy

S�1� = S0 + �S = − kBN�cln c + �1 − c�ln�1 − c��

−
kB

2 �
k

ln�1 +
c�1 − c��Vk + ��

kBT
� . �68�

Accordingly, the configurational free energy of a disordered
alloy F=E0−TS0+�F is calculated from Eqs. �19�, �49�, and
�58�:

F�1� = N�� −
�

2
�c +

N

2
�Vk=0 + ��c2 + kBTN�c ln c

+ �1 − c�ln�1 − c�� +
kBT

2 �
k

ln�1 +
c�1 − c��Vk + ��

kBT
� .

�69�

Using Eqs. �60�, �61�, and �63� the chemical potential is fi-
nally given by

�1� = � −
�

2
+ �Vk=0 + ��c + kBT ln

c

1 − c
, �70�

and the grand canonical potential reads

��1� = F�1� − N�1�c , �71�

where F�1� and �1� are defined in Eqs. �69� and �70�.

B. Second iteration of the CCA

The starting point for the second iteration of the CCA is
the free energy functional in terms of the variables �PR�,
which has been derived in the first iteration of the CCA �see
Appendix B�:

F̃��PR�� = N�� −
�

2
�c +

1

2 �
R1,R2

�VR1−R2
+ ��R1,R2

�PR1
PR2

+ kBT�
R

�PRln PR + �1 − PR�ln�1 − PR�� +
kBT

2
ln det��R1,R2

+
�PR1

�1 − PR1
��VR1−R2

+ ��R1,R2
��PR2

�1 − PR2
�

kBT
� .

�72�

Expanding this functional with respect to fluctuations, we
obtain

F̃ = F̄�0��c� + Ffl���Pk�� , �73�

where F̄�0��c� is given by Eq. �51� and the fluctuation
part is defined by Ffl���Pk��=Ffl

�1����Pk��+Ffl
�2����Pk�� with

Ffl
�1����Pk�� determined by Eq. �52� and Ffl

�2����Pk�� given by
Eq. �C27� �see Appendix C�.

Thus, after the second iteration of the CCA, the total cor-
relation correction of the configurational free energy in Eq.
�73� reads

Ffl���Pk�� =
NkBT

2c�1 − c��k
��k

�1� +
1

N
�
q

�1 − �q
�1��

�q
�1�

−
�1 − 2c�2

2Nc�1 − c��q

�1 − �q
�1���1 − �k−q

�1� �
�q

�1��k−q
�1� �
�Pk
2,

�74�

where

�k
�1� = 1 +

c�1 − c�
kBT

�Vk + �� . �75�
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The second derivative of Eq. �74� with respect to vari-
ables �Pk is

�2Ffl

��Pk��P−k
=

NkBT

c�1 − c���k
�1� +

1

N
�
q

�1 − �q
�1��

�q
�1�

−
�1 − 2c�2

2Nc�1 − c��q

�1 − �q
�1���1 − �k−q

�1� �
�q

�1��k−q
�1� � .

�76�

According to Eq. �23� the expression for correlation function
is defined as

�k
�2� =

c�1 − c�
�k

�2� , �77�

with

�k
�2� = �k

�1� +
1

N
�
q

�1 − �q
�1��

�q
�1�

−
1

2N

�1 − 2c�2

c�1 − c� �
q

�1 − �q
�1���1 − �k−q

�1� �
�q

�1��k−q
�1� . �78�

The Lagrangian multiplier � is again obtained from the
normalization condition Eq. �12� applied to the correlation

function �k
�2� Eq. �77�. �k

�1�=
c�1−c�

�k
�1� is represented in the same

form as �k
�2� with �k

�1� replaced by �k
�2�. The second-order

correlation contributions to the internal and Gibbs free en-
ergy as well as other thermodynamical potentials are calcu-
lated using Eqs. �77� and �78� and the relations given by Eqs.
�20� and �26�, the first relation of Eq. �62�, and Eq. �65�.
However, this can be done only numerically.

Equations �77� and �78� have been obtained before in Ref.
25 by the use of ring diagrams within the thermodynamic
perturbation theory.1,29–31,39,56,62,63

C. Concentration fluctuations in alloys with many-body
atomic interactions

With many-body interactions present in the system, the
configurational Hamiltonian reads53,64

H = H0 + N�c +
1

2! �
R1R2

VR1,R2

�2� PR1
PR2

+
1

3! �
R1R2R3

VR1,R2,R3

�3� PR1
PR2

PR3

+
1

4! �
R1R2R3R4

VR1,R2,R3,R4

�4� PR1
PR2

PR3
PR4

+ ¯ .

�79�

Here VR1,R2,R3

�3� and VR1,R2,R3,R4

�4� are the three- and four-body
mixing energies of atoms.

Expanding Eq. �79� with respect to fluctuations using Eq.
�1� and performing the Fourier transform defined in Eq. �6�
allows us to calculate the configurational energy of the alloy
in a form similar to Eq. �47�:

Ẽ = N��̃ −
�

2
�c +

N

2
�Ṽk=0 + ��c2 +

N

2 �
k

�Ṽk + ���Pk�P−k,

�80�

with the effective mixing energy

Ṽk = Vk
�2� + cVk,0

�3� +
c2

2
Vk,0,0

�4� + ¯ , �81�

including now many-body contributions.
The Fourier transformations are performed by applying

the identities53

Vk1,k2,. . .,kn−1

�n� = �
R1,R2,. . .,Rn−1

VR1,R2,. . .,Rn−1,0
�n� exp�− i�

l=1

n−1

klRl� ,

VR1,R2,. . .,Rn

�n� = V0,R2−R1,R3−R1,. . .,Rn−R1

�n�

= N−�n−1� �
k2,k3,. . .,kn

Vk2,k3,. . .,kn

�n�

�exp�i�
l=2

n

kl�Rl − R1�� . �82�

Since Eq. �80� is similar to Eq. �47�, the first iteration of the
CCA leads to analogous expressions for the correlation func-
tion and correlation contributions to the internal and free
energies. They are given by Eqs. �54�, �56�, and �58� where
the concentration-independent mixing energy Vk is substi-

tuted by the explicitly concentration-dependent parameter Ṽk
given by Eq. �81�.

The expression for the chemical potential determined by
Eqs. �60� is then given by

 = 0 −
�1 − 2c�

2
� +

c�1 − c�
2N

�
k

Vk,0
�3� + cVk,0,0

�4�

1 +
c�1 − c�

kBT
�Ṽk + ��

,

�83�

with

0 = � + cṼk=0 +
c2

2
�Vk,0

�3� + cVk,0,0
�4� � + kBT ln

c

1 − c
.

�84�

Equation �83� is the generalization of the expression for
the configurational chemical potential48 for the case of many-
body interactions.

V. APPLICATION TO MODEL SYSTEMS

A. Disordered fcc AB3 alloy

In the following we apply the CCA to a disordered model
AB3 fcc system with c=0.25 and nearest- and next- nearest-
neighbor interactions V1 and V2=−0.5V1, respectively. As a
benchmark we are using results from MC simulations47 in
the first four coordination shells in real space. In Fig. 3 we
show the results of calculations of the correlation function at
two different temperatures, kBT /V1=1.15 close to the phase

BUGAEV et al. PHYSICAL REVIEW B 74, 024202 �2006�

024202-8



transition and kBT /V1=2.25 far above the phase transition,
which is located at kBT0 /V1=1.09. For high temperatures the
results of the first and the second iteration are almost identi-
cal with only minor deviations from the MC results �see Fig.
3�b��. As expected the correlations are more pronounced
close to the phase transition �see Fig. 3�a��. In this regime we
find significant differences between the first and second it-
erations of the CCA. While the results of the first iteration
deviate significantly from the correct MC result, the results
of the second iteration are practically identical to the MC
results. This demonstrates the excellent convergence of the
CCA even at temperatures close to phase transitions where
the fluctuations within the disordered system are more pro-
nounced.

Using Eqs. �20� and �26� we have calculated the
fluctuation-induced corrections �E and �F to the configura-
tional energy and the free energy, respectively. We have then
determined the correction to the configuational entropy from
the relation T�S=�E−�F. The results are summarized in
Fig. 4. While the first iteration of the CCA shows deviations
from the MC results which are more pronounced upon ap-
proaching the phase transition temperature, the second itera-
tion shows excellent agreement with the MC results for all
temperatures, demonstrating again the excellent convergence
of the CCA. Interestingly, the corrections for the configura-
tional energy �see Fig. 4�a�� and the configurational entropy
�see Fig. 4�c�� are both systematically too large in the first
iteration. This is compensated in the free energy, which
therefore provides good results already in the first iteration

�see Fig. 4�b��. The results clearly demonstrate that the CCA
is a highly efficient method to calculate thermodynamic
properties in the entire temperature and concentration range.

B. L12 and L10 ordering

In the following we demonstrate that the CCA is more
efficient in characterizing the phase transition itself. We con-
sider a system that undergoes a phase transformation at a
temperature T0. As a result the values �PR	 will be different
in certain lattice sites defining l different crystallographically
equivalent sublattices. The probabilities �Pm,r	= Pm are equal
on all sites of the sublattice m, where r denotes the coordi-
nate within the sublattice. Similarly to Eq. �1� we introduce

Pm,r = Pm + �Pm,r �85�

and define the matrix �Vrm−rn

mn � of interaction parameters in-
stead of the interactions VRm−Rn

. Following a procedure de-
veloped by Bugaev and Ryzhkov65 �see also Appendix B� we
obtain the first iteration of the free energy of the alloy in the
ordered state

FIG. 3. Correlation function �k in the disordered state for two
different temperatures �a� close to �kBT /V1=1.15� and �b� far above
�kBT /V1=2.25� the phase transition temperature. MC results �filled
circles� first iteration �triangles�, and second iteration �open circles�.

FIG. 4. Correlation-correction-induced �E, �F, and �S as func-
tions of temperature from MC results �filled circles� and after the
first �triangles� and second �open circles� iterations of the CCA. The
phase transition temperature is indicated by the dashed vertical line.
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Ford
�1� = N�c + kBTN0�

m

�Pm ln Pm + �1 − Pm�ln�1 − Pm��

+
N0

2 �
m,n

Vk=0
mn PmPn −

N0

2 �
m

�mPm�1 − Pm�

+
kBT

2 �
k

ln det Mk, �86�

where N0 is the number of sites in each sublattice and the
matrix Mk is given by

Mk = ��m,n +
�Pm�1 − Pm��Vk

mn + �m�mn��Pn�1 − Pn�
kBT

� .

�87�

The Fourier components Vk
mn are defined by

Vk
mn = �

rmn

Vrmn

mn e−ikrmn, rmn = rm − rn �88�

with rmn=rm−rn. The summations over m and n are per-
formed over all sublattices m=1,2 , . . . , l while the summa-
tion over the wave vector k is performed over the first Bril-
louin zone of the reciprocal space determined by one
sublattice. The Lagrangian multipliers �m for each sublattice
are determined by

N0
−1�

k
�Mk

−1�mm = 1 �89�

for m=1,2 , . . . , l. Equations �86� and �89� were obtained
within the ring approximation using the thermodynamic per-
turbation method.46

The equilibrium values of Pm are determined by the mini-
mum of the free energy �Eq. �86��. In order to test the accu-
racy of Eq. �86� we consider L12 and L10 ordering, which
exhibit, according to the Lifshitz theorem,1 phase transfor-
mations of first order. Both structures are described by the
superstructure wave vector k0= �1,0 ,0� in the Brillouin zone
of the disordered phase defining1 four different sublattices
m=1,2 ,3 ,4. In the L12 structure the Pm are given by

P1 = P2 = P3 = c −
�

4
, P4 = c +

3

4
� , �90�

where � is the long-range order parameter of the system with
�=1�0� in the perfectly ordered �disordered� state. For the
L10 structure the Pm are given by

P1 = P2 = c −
�

2
, P3 = P4 = c +

�

2
. �91�

Substituting Eqs. �90� and �91�, into Eq. �86� and neglegting
interactions in all coordination shells larger than the next-
nearest-neighbor shell, we can now minimize the free energy
as a function of � at fixed temperature and concentra-
tion, taking into account the normalization condition defined
in Eq. �89�. In the following we show results for systems
with nearest- and next-nearest-neighbor interactions V1
and V2=−0.5V1, at a concentration of c=0.25 �L12� and 0.5
�L10�.

Figure 5 shows the free energy in Eq. �86� calculated as a

function of � for the L12 system in the MF approximation
�Fig. 5�b�� and after the first iteration of the CCA �Fig. 5�a��
for selected temperatures. This allows us to extract the long-
range order parameter as a function of temperature �see Fig.
5�c��. In particular, we can determine the phase transforma-
tion temperature T0, which coincides for the CCA extremely
well with the value determined in MC simulations47

�kBT0
MC/V1=1.09�. Here the first iteration is accurate enough

for our purposes as we have already demonstrated in Fig.
4�b�. The CCA correctly predicts a first-order phase transi-
tion at kBT0

CCA/V1=1.08, while the MF approximation results
in large errors �kBT0

MF/V1=1.44� as expected.3

Similar results for the L10 system are shown in Fig. 6.
The free energy is calculated in the MF approximation �Fig.
6�b�� and after the first iteration of the CCA �Fig. 6�a�� for
selected temperatures. The long-range order parameter as a
function of temperature is shown in Fig. 6�c�. In this case the
MF approximation gives qualitatively wrong results with a
second-order phase transformation at high temperature
�kBT0

MF/V1=1.75�. In the CCA we find again a first-order

FIG. 5. Free energy of an L12 model system calculated �a� with
the first iteration of the CCA and �b� within the MF approximation
for various temperatures in units of kBT /V1. �c� Long-range order
parameter extracted from the free energy calculations �open circles,
CCA; triangles, MF�.
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phase transition at kBT0
CCA/V1=1.125 which coincides very

well with the MC result47 kBT0
MC/V1=1.15.

The results presented in this section were obtained in only
a few seconds of CPU time on a conventional desktop com-
puter. The examples demonstrate the applicability and fast
convergence of the CCA in systems exhibiting first-order
phase transformations. In the CCA we assume only that the
fluctuations follow a Gaussian distribution. Recently, it has
been shown experimentally that even in a system with a
second-order phase transformation close to the critical point,
the fluctuations follow such a Gaussian distribution.66 There-
fore, we speculate that the CCA should be applicable also to
second-order phase transformation in the critical regime.

VI. CONCLUSIONS

In this work we presented a straightforward iterative al-
gorithm �CCA� to calculate the contribution of atomic corre-
lations to the free energy of a binary alloy system. The ac-
curacy of the results is determined by the initial

approximation for the free energy and by the assumption
about the Gaussian distribution for the fluctuation ampli-
tudes. This assumption may be violated upon approaching a
phase transformation of the system.

We have performed two iterations of the CCA assuming
the atomic interactions to be pairwise. We also have shown
the first iteration result for a system governed by many-body
interactions. Closed analytical expressions for the correlation
function and thermodynamic potentials were obtained in
each iteration. Starting from the MF approximation for the
free energy we successively arrive at the SM �Refs. 29–36�
and the ring25,45 approximations for the correlation function.
Comparing with MC simulations it was already shown47 that
the ring approximation is much more accurate than the SM.
This confirms the rapid convergence of the CCA. We obtain
the same rapid convergence in our calculations of thermody-
namic potentials, long-range order parameters, and phase
transformation temperatures in Sec. V. Our results support
the qualitative hypothesis by Brout31 on the dominating con-
tribution of the ring diagrams to cumulant expansion series,
which was used in the initial derivation of the ring
approximation.25,45

One important advantage of the presented algorithm is the
absence of a priori limitations on the radius of the effective
interaction due to the use of a k-space approach. Thus,
within the presented formalism the long-ranging strain-
induced interaction1,2 caused by atomic size-mismatch as
well as electronic effects2,5,26,27 can be naturally imple-
mented. The CCA can be generalized for the case of multi-
component alloys and systems with magnetic interactions.
Due to the simplicity of the CCA, it can be conveniently
applied for the investigation of surface segregation in amor-
phous and fluid systems as as well in thin films.

The numerical implementation of the formalism outlined
in this work is straightforward. In particular, calculations in-
cluding the dispersion-free case outlined in Sec. III are very
efficient. Including the effects of fluctuations even in a sim-
plified �dispersion-free� model in thermodynamic calcula-
tions such as CALPHAD could therefore significantly improve
such calculations.

We finally note that our results can be used directly in the
linear kinetic theory of atomic ordering and decomposition
in alloys in order to calculate the influence of correlations on
the relaxation behavior of the concentration wave amplitudes
which approach their equilibrium values as1,2

�k = − kBTN�c�1 − c�Lk
�2Ffl

��Pk��P−k
�−1

, �92�

with the new correlation corrected quantity
�2Ffl

��Pk��P−k
as de-

fined by Eq. �76�.
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FIG. 6. Free energy of a L10 model system calculated �a� with
the first iteration of the CCA and �b� within the MF approximation
for various temperatures in units of kBT /V1. �c� Long-range order
parameter extracted from the free energy calculations �open circles,
CCA; triangles, MF�.
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APPENDIX A: CONFIGURATIONAL ENERGY AND
LAGRANGIAN MULTIPLIER

Equation �56� can be simplified if we employ the normal-
ization condition Eq. �55�:

�E =
c�1 − c�

2 �
k

Vk

1 +
c�1 − c�

kBT
�Vk + ��

=
c�1 − c�

2

kBT

c�1 − c�

��
k

c�1 − c�
kBT

Vk + 1 − 1 +
c�1 − c�

kBT
� −

c�1 − c�
kBT

�

1 +
c�1 − c�

kBT
�Vk + ��

= −
c�1 − c�

2
�N . �A1�

From Eqs. �A1� and �20� it follows that

� = −
2�E

Nc�1 − c�
= −

1

Nc�1 − c��k
Vk�k. �A2�

Thus, the Lagrangian multiplier is proportional to the en-
ergy correlation contribution per atom �see Eq. �56��.

APPENDIX B: First iteration of the CCA in terms of variables
ˆPR‰

1. Correlation function for fluctuation modes

Consider the fluctuation part of the configurational free
energy as the harmonic series

Ffl =
1

2 �
R1,R2

� �2F̃

��PR1
� ��PR2

�
�

�PR�

�PR1
� �PR2

� . �B1�

The derivative in Eq. �B1� is taken in a state of the system
with ��PR� =0"R�. In such a state the system is described by
the set of variables �PR� and the fluctuations

�PR� = PR� − PR. �B2�

Note that such a definition of the fluctuations is different
from the one used in Sec. III, where the reference state for
the fluctuations is kept at thermodynamic equilibrium with
PR=c"R. We will show in the following, that the atomic
correlations for the fluctuations defined by Eq. �B2� are de-
scribed in terms of fluctuation modes, but not in terms of the
fluctuations in Eq. �23�.

We start with the following expression for the free energy
functional:

F̃ = N�� −
�

2
�c +

1

2 �
R1,R2

�VR1−R2
+ ��R1,R2

�PR1
PR2

+ kBT�
R

�PR ln PR + �1 − PR�ln�1 − PR�� , �B3�

which is obtained from Eqs. �42�–�44� taking into account
the conservation law defined in Eq. �3� via the Lagrangian
multiplier �.

Equation �B3� is valid for both the variables PR and PR�
since the latter variables correspond by definition to one and
the same macroscopically homogeneous sample. The differ-
ence consists in different sets of supercells50 used for the
averaging during the calculation of �PR� and �PR� �. Substitut-
ing PR� = PR+�PR� in Eq. �B3� and calculating the second
derivative defined in Eq. �B1�, we derive the contribution of
the atomic correlations to the configurational free energy

Ffl
�1� =

1

2 �
R1,R2

�VR1−R2
+ ��R1,R2

+
kBT�R1,R2

PR1
�1 − PR1

���PR1
� �PR2

� .

�B4�

Using the following transformation of the variables:64

�P̃R = �PR�1 − PR��−1/2�PR� , �B5�

the quadratic form with respect to the values �P̃R can be
represented as

Ffl
�1� =

1

2 �
R1,R2

�WR1−R2
+ kBT�R1,R2

��P̃R1
�P̃R2

, �B6�

where

WR1−R2
= �PR1

�1 − PR1
��VR1−R2

+ ��R1,R2
��PR2

�1 − PR2
� .

�B7�

The matrix �WR1,R2
� can be diagonalized by means of a

linear nonsingular similarity transformation to new variables
�normal modes�

�P̃R = �
�

t�RQ� �B8�

with t�R as the eigenfunctions of the matrix �WR1,R2
�. The

secular equation reads

�
R2

WR1−R2
t�R2

= ��t�R1
, �B9�

where �� are the eigenvalues of the matrix �WR1,R2
�. Note

that the eigenfunctions and eigenvalues are real numbers,
because of the symmetry of �WR1,R2

�.
The orthonormalization requirement for the eigenfunc-

tions t�R is set as

�
R

t�1R
* t�2R = ��1�2

, �
�

tR1�
* tR2� = �R1R2

. �B10�

We multiply both parts of the secular equation �B9� by t�R1

*

and perform the summation over R1. Considering the re-
quirement Eq. �B10� the eigenvalues �� can be written in the
form

�� = �
R1R2

t�R1

* WR1−R2
t�R2

. �B11�

With the linear transformations defined in Eq. �B8�, the secu-
lar equation �B9�, and the orthonormalization requirement
Eq. �B10�, the correlation contribution to the free energy Eq.
�B6� can be written in diagonal form
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Ffl
�1� =

1

2�
�

��� + kBT�
Q�
2. �B12�

We then assume a Boltzmann probability for the normal
modes

W � exp�−
Ffl

�1�

kBT
� . �B13�

Inserting Eq. �B12� into Eq. �B13� leads to the Gaussian
distribution for the normal modes,

W � exp�−
1

2kBT
�
�

��� + kBT�
Q�
2�
= �

�

exp�−

Q�
2

2kBT/��� + kBT�
� . �B14�

Finally the correlation function for the normal modes is
given by

�
Q�
2	 =
1

1 + ��/kBT
. �B15�

B. The free energy functional

The fluctuation contribution to the internal energy

�E =
1

2 �
R1R2

VR1−R2
��PR1

� �PR2
� 	 �B16�

can be rewritten as

�E =
1

2�
�

���
Q�
2	 −
N

2
�c�1 − c� . �B17�

The equilibrium correlation contribution to the free energy is
then given by

�F = kBT
0

1/kBT

�E�1�d�1/kBT��

=
kBT

2 �
�

��
0

1/kBT

�
Q�
2	d�1/kBT�� −
N

2
�c�1 − c� .

�B18�

Performing the integration after inserting Eq. �B15� we
derive

�F =
kBT

2 �
�

ln�1 +
��

kBT
� −

N

2
�c�1 − c�

=
kBT

2
ln �

�
�1 +

��

kBT
� −

N

2
�c�1 − c� . �B19�

There is a product of the eigenvalues under the logarithm
sign in Eq. �B19�. This product is equal to the determinant of

the matrix �1+
WR1R2

kBT �. Thus, the equilibrium correlation con-
tribution to the free energy reads

�F =
kBT

2
ln det�MR1,R2

� −
N

2
�c�1 − c� , �B20�

with

�MR1,R1
� = �R1,R1

+
�PR1

�1 − PR1
��VR1−R2

+ ��R1,R2
��PR2

�1 − PR2
�

kBT
. �B21�

APPENDIX C: FLUCTUATIONS IN THE SECOND
ITERATION OF THE CCA

The correlation contribution Ffl
�2����PR�� to the free energy

Eq. �73� in the second iteration of the CCA can be calculated
using Eq. �22�.

The first term in Eq. �B19�

− T�S =
kBT

2 �
�

ln�1 +
��

kBT
� �C1�

can be represented as

− T�S = −
kBT

2 �
n=1

�
1

n�
�
�−

��

kBT
�n

, �C2�

where the eigenvalues �� are determined by Eq. �B11�. In
the following we use in Eq. �B8� the Fourier transformation

as the similarity transformation tR�= tRk=eikR /N. Then Eq.
�B11� takes the form

�� = �k = �
R1,R2

e−ikR1

N
WR1−R2

eikR2

N
= Wk, �C3�

with Wk as the Fourier transform of WR1−R2
defined in Eq.

�B7�.
Substituting Eq. �C3� into Eq. �C2� gives

− T�S = −
kBT

2 �
n=1

�
1

n�
k
�−

Wk

kBT
�n

. �C4�

Performing the series of identity transformations we ob-
tain
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− T�S = −
kBT

2 �
n=1

�
1

n �
k1,. . .,kn

�−
Wk1

kBT
��−

Wk2

kBT
�¯ �−

Wkn

kBT
��k1−kn

�k2−k1
�k3−k2

¯ �kn−kn−1

= −
kBT

2 �
n=1

�
1

n �
R1,. . .,Rn

1

Nn�
k1

�−
Wk1

kBT
�eik1�R1−R2��

k2

�−
Wk2

kBT
�eik2�R2−R3� � ¯ � �

kn

�−
Wkn

kBT
�eikn�Rn−R1�

= −
kBT

2 �
n=1

�
1

n �
R1,. . .,Rn

�−
WR1−R2

kBT
��−

WR2−R3

kBT
�¯ �−

WRn−R1

kBT
� , �C5�

where the delta function �km,kn
is defined as

�km,kn
=

1

N
�
R

e−i�km−kn,R�. �C6�

Taking into account the definition given in Eq. �B7�, Eq.
�C5� can be represented as

− T�S = −
kBT

2 �
n=1

�
�− 1�n

n �
R1,. . .,Rn

�
i=1

n

PRi

��1 − PRi
�vR1−R2

vR2−R3
¯ vRn−R1

, �C7�

where

vR1−R2
=

VR1−R2
+ ��R1,R2

kBT
, �C8�

and its Fourier transformation is given by

vk =
Vk + �

kBT
. �C9�

Using the definition PR=c+�PR Eq. �C7� can be rewrit-
ten as

− T�S = −
kBT

2 �
n=1

�
�− 1�n

n �
R1,. . .,Rn

�vR1−R2
vR2−R3

. . . vRn−R1
,

�C10�

with

� = �c�1 − c��n − �c�1 − c��n−1�1 − 2c��
i=1

n

�PRi
+ �c�1

− c��n−2�1 − 2c�21

2 �
i,j

i�j

n

�PRi
�PRj

− �c�1 − c��n−1�
i=1

n

�PRi

2 .

�C11�

We now split Eq. �C10� in to a sum of the following terms:

− T�S =
kBT

2
A1 +

kBT�1 − 2c�
2c�1 − c�

A2 +
kBT�1 − 2c�2

4�c�1 − c��2 A3

+
kBT

2c�1 − c�
A4, �C12�

with

A1 = − �
n=1

�
�− 1�n

n
�c�1 − c��n �

R1,. . .,Rn

vR1−R2
vR2−R3

¯ vRn−R1
,

�C13�

A2 = �
n=1

�
�− 1�n

n
�c�1 − c��n �

R1,. . .,Rn

vR1−R2
vR2−R3

¯ vRn−R1�
i=1

n

�PRi
, �C14�

A3 = − �
n=1

�
�− 1�n

n
�c�1 − c��n �

R1,. . .,Rn

vR1−R2
vR2−R3

¯ vRn−R1

1

2 �
i,j

i�j

n

�PRi
�PRj

, �C15�

A4 = �
n=1

�
�− 1�n

n
�c�1 − c��n �

R1,. . .,Rn

vR1−R2
vR2−R3

¯ vRn−R1�
i=1

n

�PRi

2 . �C16�

In the following we calculate explicit forms for the terms Ai.
Using the Fourier transformation defined in Eq. �16�, the �
function defined in Eq. �C6�, the definition Eq. �C9�, and the
representation ln�1+x�=−�n=1

� 1
n �−x�n we find

A1 = − �
k

�
n=1

�
1

n
�− c�1 − c�vk�n = �

k
ln�1 + c�1 − c�vk� .

�C17�
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Equation �4� implies that A2=0.
Using the Fourier transformations defined by Eqs. �6� and �16� in Eq. �C15� we perform the following transformations:

A3 = − �
n=1

�
�− 1�n

n
�c�1 − c��n �

R1,. . .,Rn

vR1−R2
vR2−R3

¯ vRn−R1�
i,j

i�j

n

�PRi
�PRj

= − �
n=1

�

�− 1�n�c�1 − c��n �
R1,. . .,Rn

vR1−R2
vR2−R3

¯ vRn−R1�
j=2

n

�PRj
= − �

n=1

�
�− 1�n�c�1 − c��n

Nn �
k1,. . .,kn

�
k�,k�

vk1
vk2

¯ vkn
�Pk��Pk�

� �
R1,. . .,Rn

eik1�R1−R2�
¯ eikn�Rn−R1�eik�R1�

j=2

n

eik�Rj = − �
n=1

�
�− 1�n�c�1 − c��n

Nn �
k1,. . .,kn

�
k�,k�

vk1
vk2

¯ vkn
�Pk��Pk�

� ��
R1

eiR1�k�+k1−kn��
R2

eiR2�k�−k1+k2��
R3

eiR3�k3−k2�
¯ �

Rn

eiRn�kn−kn−1�

+ �
R1

eiR1�k�+k1−kn��
R2

eiR2�k2−k1��
R3

eiR2�k�−k2+k3�
¯ �

Rn

eiRn�kn−kn−1� + ¯

+ �
R1

eiR1�k�+k1−kn��
R2

eiR2�k2−k1��
R3

eiR3�k3−k2�
¯ �

Rn

eiRn�kn−kn−1+k��� . �C18�

The term in large parentheses is a sum of the � function
�Eq. �C6�� products. Performing simple but cumbersome
transformations Eq. �C18� can be simplified to

A3 = − �
k,q

�
n=2

�

�
i=1

n−1

�− c�1 − c�vq�i�− c�1 − c�vk−q�n−i
�Pk
2.

�C19�

Taking into account the algebraic relation

�
n=2

�

�
i=1

n−1

�− x�i�− y�n−i =
xy

�x + 1��y + 1�
, �C20�

A3 can then be written as

A3 = − �c�1 − c��2�
k,q

vqvk−q

�1 + c�1 − c�vq��1 + c�1 − c�vk−q�

�Pk
2.

�C21�

Performing the Fourier transformations defined in Eqs. �6�
and �16� A4 reads

A4 = �
n=1

�− 1�n

n
�c�1 − c��n �

R1,. . .,Rn

vR1−R2
vR2−R3

¯ vRn−R1�
i=1

n

�PRi

2 = �
n=1

�− 1�n�c�1 − c��n �
R1,. . .,Rn

vR1−R2
vR2−R3

¯ vRn−R1
�PR1

2

= �
n=1

�− 1�n�c�1 − c��n

Nn �
k1,. . .,kn

vk1
vk2

¯ vkn �
k�,k�

�Pk��Pk� � ��
R1

eiR1�k�+k�+k1−kn��
R2

eiR2�k2−k1�
¯ �

Rn

eiRn�kn−kn−1�� . �C22�

Using the � function defined in Eq. �C6� and the geometrical
series

1

1 + x
= �

n=1

�

�− x�n−1, �C23�

we can rewrite Eq. �C22� in the simple form

A4 = �
k,q

�− c�1 − c�vq��
n=1

�

�− c�1 − c�vq�n−1
�Pk
2

= − c�1 − c��
k,q

vq

�1 + c�1 − c�vq�

�Pk
2. �C24�

Substituting expressions for A1, A2, A3, and A4 in Eq.
�C12� and using the definition Eq. �C9� results in
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− T�S =
kBT

2 �
k

ln�1 +
c�1 − c��Vk + ��

kBT
� −

1

2�
k,q

�Vq + ��

�1 +
c�1 − c��Vq + ��

kBT
� 
�Pk
2

−
�1 − 2c�2

4kBT
�
k,q

�Vq + ���Vk−q + ��

�1 +
c�1 − c��Vk + ��

kBT
��1 +

c�1 − c��Vk−q + ��
kBT

� 
�Pk
2. �C25�

Thus,

− T�S = �F + N
�

2
c�1 − c� + Ffl

�2� =
kBT

2 �
k

ln�1 +
c�1 − c��Vk + ��

kBT
� + Ffl

�2�, �C26�

with �F determined by Eq. �58� and

Ffl
�2� = �−

1

2�
k,q

�Vq + ��

�1 +
c�1 − c��Vq + ��

kBT
� −

�1 − 2c�2

4kBT
�
k,q

�Vq + ���Vk−q + ��

�1 +
c�1 − c��Vq + ��

kBT
��1 +

c�1 − c��Vk−q + ��
kBT

��
�Pk
2. �C27�

Finally, the derivative of the correlation contribution into the Gibbs free energy in the second iteration of the CCA reads

�2Ffl
�2�

��Pk��P−k
= − �

q

�Vq + ��

�1 +
c�1 − c��Vq + ��

kBT
� −

�1 − 2c�2

2kBT
�
q

�Vq + ���Vk−q + ��

�1 +
c�1 − c��Vq + ��

kBT
��1 +

c�1 − c��Vk−q + ��
kBT

� . �C28�
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