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Using atomistic simulations of dislocation motion in Ni and Ni-Au alloys we report a detailed study of the
mobility function as a function of stress, temperature, and alloy composition. We analyze the results in terms
of analytic models of phonon radiation and their selection rules for phonon excitation. We find a remarkable
agreement between the location of the cusps in the �-v relation and the velocity of waves propagating in the
direction of dislocation motion. We identify and characterize three regimes of dissipation whose boundaries are
essentially determined by the direction of motion of the dislocation, rather than by its screw or edge character.
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I. INTRODUCTION

The emergence of fully three-dimensional, mesoscopic
computational methodologies based on dislocation theory
has given rise to several recent breakthrough observations in
crystal plasticity. Calculations involving dislocation densities
of the order of 1012 m−2 and higher have become accessible
by using efficient computational methods such as dislocation
dynamics �DD�.1–3 This has provided many critical insights
that are improving our understanding of strain hardening and
single-crystal plasticity. Dislocation multiplication giving
rise to cell boundaries, dislocation forests, and other collec-
tive dislocation arrangements have been simulated to high
degrees of accuracy using DD.4–6 At its core, DD is a dis-
cretized representation of dislocation lines interacting with
each other via isotropic linear elasticity. This means that the
rich atomistic details of the dislocation core are neglected in
favor of computational efficiency. Nevertheless, given the
highly nonlinear character of the interatomic interactions in
the core, it is clearly the relative motion of the core atoms
that contributes most to the energetics of dislocation motion.7

Therefore, no DD model is complete without a meaningful
incorporation of this atomistic information. In order to un-
derstand how this can be achieved, one only needs to look at
the two fundamental equations integrated during a DD
simulation:8

v = Mf,

f = − �rEel�r� , �1�

where r, v, and f are the position, velocity, and force vectors
of the set of discrete nodes representing the dislocation en-
semble. Eel is the total elastic energy and M is a second-
order tensor that maps the local force field onto nodal veloci-
ties. The computation of the nodal velocities �mobilities� in
response to the driving forces �stresses� is highly material
and condition specific and M is a complex function of many
parameters including stress, temperature, dislocation charac-
ter and, of course, material properties. As mentioned above,
dislocation motion is intrinsically a discrete process gov-
erned by the atomic properties and discreteness of the lattice
and the dislocation core. Therefore determining the mobility
law is beyond the capabilities of linear elasticity and requires

more detailed, atomistic-level calculations that take into ac-
count the nonlinear character of dislocation motion. Sources
of this information are typically experiments, especially
those performed with atomistic resolution such as high reso-
lution electron microscopy �HREM�, or atomistic simula-
tions. The fidelity of DD simulations hinges heavily on these
mobilities functions, whose determination is generally quite
computationally exhaustive.

To date, DD simulations have been performed for pure
systems in slow deformation conditions. However, there is
an increasing volume of work in high-pressure physics and
materials strength that imply stresses in excess of several
GPa and strain rates of the order of 106 s−1 and higher as
well as mixed materials such as LiF and SiO.9,10 Under these
extreme conditions, it is expected that dislocations will travel
at very high velocities, possibly exceeding the speed of
sound. Additionally, processes involving multicomponent
systems have not yet been addressed in DD. By way of ex-
ample, precipitation hardening, or age hardening, provides
one of the most widely used mechanisms for the strengthen-
ing of metal alloys. In precipitate-strengthened alloys, the
stress required to move dislocations appreciable distances on
a slip plane is noticeably higher than in the pure matrix and
thus this is the process controlling the yielding behavior of
the solid. Models proposed to explain the yield strength of
precipitate-strengthened materials make use of some struc-
tural features that restrict dislocation mobility, be it disloca-
tion bowing, cross slip, particle shear, etc. These are mecha-
nisms that are microscopic in nature and thus atomistic
simulation is ideally suited to study it. Although of high tech-
nological importance, only recently have reliable multicom-
ponent interatomic potentials been developed for the study of
binary alloys. Potentials are fitted to a few well-known pa-
rameters, such as elastic properties and heats of mixing, that
might not reproduce the thermodynamics satisfactorily.

In this paper, we report molecular dynamics �MD� results
of edge and screw dislocation motion simulations in dilute
Ni-Au alloys. In the first part of this work we discuss the
continuum solutions for sub- and supersonic dislocations.
Subsequently, we choose the working regime within the
phase diagram of the alloy based on short-range order con-
siderations and we age the working samples to thermody-
namic equilibrium. Second, on the previously obtained
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samples, a MD study is carried out to detail the dislocation
motion behavior and extract mobility laws under each corre-
sponding regime.

II. MOVING DISLOCATIONS IN ALLOYS:
THE ANALYTIC APPROACH

Dislocations moving in a crystal experience a resisitive
force leading to energy dissipation. These forces originate
from the intrinsic properties of the crystal, and give rise to
two possible dissipation mechanisms: damping by scattering
of elementary excitations existing in the lattice and radiation
of waves produced by dislocation motion. The first mecha-
nism can be described by a simple viscous law, with the
viscosity directly proportional to the temperature, and is the
dominant dissipation mechanism at low velocities. The
second mechanism has a complex velocity dependence,
is relevant generally at high velocities, and is essentially
independent of temperature. Traditionally, two theoretical
frameworks have been employed to study radiative dissipa-
tion, namely continuum elasticity and discrete lattice models
within the harmonic approximation. However, their applica-
tion to real lattices poses serious challenges when it comes to
a proper quantitative interpretation. We shall focus most of
this work on this problem as it still presents the biggest dif-
ficulties.

Dissipation of energy by radiation is a puzzling effect.
Starting in the late 1940s with the continuum approximation,
the work of Frank, Leibfried, and Dietze introduced the no-
tion of “relativistic” motion for speeds comparable to the
transverse sound velocity.11 In the 1950s, solutions based on
continuum elasticity predicted dissipation-free subsonic and
dissipative supersonic motion, with a divergence at cT, the
speed of transverse waves. This divergence was later charac-
terized for screw and edge dislocations. For example, Hirth
and Lothe11 give the standard treatment of a moving dislo-
cation in an isotropic continuum medium. It is based on the
Lorentz transformations of space and time with the trans-
verse sound velocity cT as the limit velocity. As in relativity
theory, several magnitudes diverge as v approaches cT, in
particular the self-energy of the moving dislocation and
hence the stress necessary to maintain a steady motion. The
concept of “forbidden velocity” emerges from this context in
which cT appears as the maximum possible velocity. How-
ever, supersonic dislocation velocities are also possible and
curious solutions �as, for example, dissipation-free motion at
�2cT �Ref. 12�� appear in isotropic continuum elasticity
above cT.

For dispersive media, Eshelby13 found the solution for
dissipation versus v at intermediate velocities. Eshelby’s ap-
proximate approach in a dispersive continuum gives dissipa-
tive subsonic motion in some range above the minimum
phase velocity and below cT. This is a regime that MD simu-
lations recently seem to have identified, although no particu-
lar relation between this minimum velocity and any relevant
crystal velocity has been established.14 In general, every ad-
ditional complexity considered in the different models intro-
duces some new characteristic velocity that appears to play a
role in the mechanism of dissipative radiation.

The main conclusions extracted from the continuum
analyses then are as follows:

�i� Subsonic motion is dissipation free if the medium
has no dispersion.

�ii� As v approaches cT from below, the singularity of
the self-energy in nondispersive media goes as

Ẇ � �1 − � v
cT
�2	−1/2

�2�

for screw, and as

Ẇ � �1 − � v
cT
�2	−3/2

�3�

for edge dislocations.
�iii� When dispersion is introduced but isotropy is

maintained a new critical velocity appears, the slowest phase
velocity cmin=� /k, for k in the direction of dislocation ve-
locity. At this velocity radiation starts as

� � �v/cmin − 1�3/2 �4�

for screw dislocations. The case of edge character has not
been solved.

In the 1970s and 1980s, discrete models of even the sim-
plest cubic lattices introduced more structure in the dissipa-
tion curve. These theoretical calculations of the relation be-
tween stress and velocity for dislocations moving in a
discrete lattice were done on the basis of idealized lattice
dynamics models of harmonic crystals. Celli et al.,15 Crow-
ley et al.,16 and Ishioka17 developed models for a screw dis-
location moving in a simple cubic nearest-neighbor harmonic
lattice with snapping bonds. These results were later ex-
panded by Glass18 to include isotopic mass defects, and the
case of uniform motion was solved by Caro et al.19 Analyses
of the nature of the radiation were given by de Debiaggi and
Caro.20,21

These works consider a perfect crystal at zero temperature
under the influence of external Kanzaki forces as imple-
mented by Boyer et al.22 These forces create the time-
dependent topology of a moving screw dislocation. In this
way, the external forces act on a perfect harmonic lattice
whose Green’s function is known analytically and therefore
the response, in particular the energy dissipation, can be eas-
ily calculated by using the fluctuation-dissipation theorem
�see Caro et al.19�,

Ẇ =
 dkd��F�k,���2ImG�k,�� . �5�

The relation between k and � in the Kanzaki force F�k ,��,
together with the dispersion relations appearing in the
Green’s function G�k ,�� impose selection rules for the exci-
tation of lattice waves that produce the rich behavior of the
dissipation function.

Figure 1 shows the �-v relation for an anisotropic lattice
model with cubic symmetry and a ratio cL /cT=3, where cL is
the longitudinal speed of sound along a �100 direction.19

Many interesting features appear in the figure. For example,
at high velocities �v�0.4cL� the motion is well defined in the
sense that �v /���0, similar to continuum theory. A mini-
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mum stress, often called dynamic Peierls stress, appears at
the beginning of this regime. Contrary to continuum theory
solutions, the dynamic Peierls stress is nonzero and has to do
with the intrinsic properties and the discreteness of the lat-
tice. At intermediate velocities, there are regions of instabil-
ity, �v /���0, and singularities, the strongest of them corre-
sponding to a dislocation velocity equal to the transverse
sound velocity �in this model the two transverse branches are
degenerate along the direction of dislocation motion�.

These singularities are the main result of the analytic
works we are reviewing here. They show the existence of
many dislocation velocities related to the phase velocity of
particular phonons in the lattice for which the dissipation
displays cusps. This leads to a situation where the energy
radiated by the snapping bonds cannot abandon the core of
the moving dislocation, thus producing divergences in the
stress required to keep a steady motion. The exact nature of
these singularities depends, in these models, on the artificial
phonon lifetime chosen for the Green’s function.

De Debiaggi and Caro20 analyzed the spectrum of these
radiated waves, finding a relation between the polarization
and the Burgers vector, and between the glide plane and the
direction of propagation. In particular they found that these
waves are exponentially localized on the glide plane with
polarization along the Burgers vector and propagation direc-
tion along that of dislocation motion. These rules, when ap-
plied to the fcc lattice of the Ni-Au system under consider-
ation, would give us the key to locate the cusps in the �-v
relation.

It is interesting to note here that Hirth and Lothe11 con-
sider that there is neither experimental evidence nor com-
puter simulations that support the existence of these reso-
nances. However, we should bear in mind that the sharp
resonances in the model correspond to precise selection rules
in a model system that does not couple motions with differ-
ent polarizations, i.e., a simple cubic, nearest-neighbor har-
monic model, and where dislocations are ideal, radiating

fully transverse polarized waves. In real crystals, as well as
in computer simulations, none of these features apply, and
what is observed instead of resonances is a smooth increase
in radiation energy as the velocity increases. The source of
this dissipation is likely to be related to both mechanisms
found in the simple models explained above, namely the iso-
tropic dispersive elastic result and the cumulus of resonances
in Fig. 1 for the discrete models.

The main difference between discrete and continuum
models is that, in the latter, the sound velocity and the mini-
mum phase velocity are the only two velocities that could
play a role in dissipation, while in a discrete lattice the split-
ting between sound velocities and minimum phase velocities
is a rich three-dimensional �3D� function, as the wave vector
points towards different directions in the Brillouin zone.
With this in mind, we realize that at any velocity above some
absolute minimum, a dislocation is supersonic with respect
to some waves and subsonic with respect to others, giving
radiation of phonons at all speeds above such minimum. As a
result, the fine structure of Fig. 1 is lost. Finally, the analytic
models also predict a rich array of dynamic effects when
impurities in solid solution interact with a moving
dislocation,21 which can lead to either hardening or softening
of the material depending on the sign of the mass misfit. This
effect on the Peierls stress does not appear when dislocations
are treated in a continuum.

In summary, despite the simplified picture of dislocations
and lattices given by these analytical discrete and continuum
models, they have the merit of highlighting the physical na-
ture of phonons radiated by moving dislocations, showing an
unexpectedly rich behavior.

While these models represent the situation at 0 K, at finite
temperatures an additional mechanism of dissipation ap-
pears, namely phonon drag. This mechanism has been de-
scribed, among others, by Leibfried23 and by Brailsford,24

and gives a simple viscous damping proportional to the tem-
perature:

ATv = b� . �6�

A relation like Eq. �6� has been found experimentally as
well as observed numerous times in computer simulations.

III. MOVING DISLOCATIONS IN ALLOYS:
THE COMPUTATIONAL RESULTS

It is only recently that the problem of dislocation mobility
has regained some attention, as progress in computational
materials science requires a proper knowledge of these func-
tions. In a recent paper, Olmsted et al.14 report atomistic
simulations of dislocation mobility in Al �a fairly isotropic
material�, Ni �fairly anisotropic�, and Al-Mg alloys, and ana-
lyze their results in terms of the forbidden velocities of the
continuum models. At low velocities they find that a linear
regime exists where the velocity is proportional to � /T, as
expected from phonon damping at finite temperature. They
note that, in Al, screw dislocations are more damped than
edge dislocations, while in Ni both behave comparably. The
mobility of screw dislocations in the subsonic regime in both
materials behaves as a superposition of viscous damping plus

FIG. 1. Dislocation velocity normalized to longitudinal sound
velocity versus applied stress normalized to shear modulus, for a
screw dislocation moving in a simple cubic nearest-neighbor har-
monic lattice, from Ref. 19.
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a radiative behavior with the functional form suggested by
Eshelby,13 namely

� = �ATv v � v0

ATv + D�v − v0�3/2 v � v0.
�7�

But, despite the implications of these formulas, which sug-
gest a crossover between a damping regime below some ve-
locity v0 and a radiative regime above it, they find that v0 is
not related to any relevant phonon velocity in the material, so
they conclude that equations above have to be considered
only as phenomenological. Furthermore, they do not provide
an interpretation as to why edge dislocations do not behave
in a similar way.

Other computational works that we do not discuss here
address the damping regime at low velocity,25 high-speed
collisions with different obstacles,26 or different aspects of
saturation velocities.27,28 In general, from the collective find-
ings of these workers, one does not get a comprehensive
picture relating the structure of the mobility functions to lat-
tice and dislocation properties.

IV. MODELING DISLOCATIONS IN Ni-Au ALLOYS

A. Phase diagram

For this work we have selected the Ni-Au system,
described by a set of embedding-atom �EAM� potentials
that are fitted to the heats of solution of the binary alloys,29

because it has recently been fully characterized
thermodynamically.30 The Ni-Au system has a simple phase
diagram but unusual thermodynamic properties. The forma-
tion enthalpy is the result of the cancellation of two impor-
tant terms: a positive contribution stemming from the elastic
lattice distortion due to different atomic radii �rAu=1.46 Å,
and rNi=1.24 Å�, that translates into a 14% lattice parameter
mismatch �for Ni a0=3.524 Å, for Au a0=4.079 Å�, and a
negative chemical contribution that results from the differ-
ence in the electronegativity of the two elements. According
to Lu et al.,31 alloys with different signs in these two contri-
butions may show phase separation in the long range at low
temperature, and short-range ordering at high T. Addition-
ally, the Ni-Au system has a large positive excess entropy
derived from significant changes in the vibrational frequency
spectrum when the alloy is constituted.

As shown in Ref. 30, good overall qualitative agreement
with experiments is found about the main characteristics of
the phase diagram. Figure 2 shows both the experimental and
the calculated equilibrium phase diagrams of the Ni-Au alloy
used in this work. The potentials give a narrower miscibility
gap compared to the experimental measurements. There are
also some manifestations of short-range order in the solid
solution below saturation both experimentally and as pre-
dicted by the potentials. Therefore Ni-Au makes for an in-
teresting system to study dislocation mobility since one can
explore regimes of ordering or segregation depending on the
solute content.

B. Dispersion relation

To understand the dislocation behavior close to the forbid-
den velocities we focus now on the dynamic properties of the

model under consideration. As discussed above, the largest
cusp in the �-v relation, see Fig. 1, appears at a dislocation
velocity equal to the phase velocities of particular waves in
the crystal. Phase velocities along each possible propagation
direction and polarization span a range of values from a
minimum, usually at the Brillouin-zone edge along high-
symmetry directions, and a maximum close to the center of
the zone, where phase �� /k� and group ��� /�k� velocities
are equal, the so-called sound velocities. Critical velocities at
which singularities occur are then the slopes close to the �
point of those phonon branches in the direction of the dislo-
cation velocity. The red dashed lines in Fig. 3 represent the
minimum phase velocity, cmin for each k direction. According
to the arguments presented in Sec. II, the dissipative range of
velocities for the �110 direction of motion, i.e., cmin�v
�cT, is considerably narrower than for the �112 direction.
cmin for each direction are given in Table I.

FIG. 2. �Color online� Ni-Au phase diagram as obtained from
the EAM potentials �Ref. 29�. The experimental phase diagram �red
dashed lines� is shown for comparison, from Ref. 30.

FIG. 3. �Color online� Dispersion relations for pure Ni obtained
with the Ni-Au EAM potential used in this work along the relevant
directions dictated by dislocation motion. � is given in units of the
reciprocal-lattice parameter 4	 /a0. The red dashed lines represent
the minimum phase velocity, cmin for each k direction. The dissipa-
tive range of velocities for the �110 branch, i.e., cmin�v�cT, is
significantly narrower than for the �112 branch.
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Relevant wave velocities are those along the direction of
dislocation motion, �110 for edge and �211 for screw dis-
locations. These directions correspond to the �-K-X and the
�-J-X branches in Fig. 3, respectively. The point that we
have labeled J is not usually reported in dispersion relations;
it is relevant for the process we are studying here and its
location at the boundary of the first Brillouin zone is
sketched in Fig. 4. The sound and minimum phase velocities
associated with the potential used in this work are given in
Table I for the two directions of interest.

V. RESULTS

For our molecular-dynamics simulations we use a 80a

30b
40c �where a=a0

�2
2 , b=a0

�6
2 , and c=a0

�3� tetrago-
nal sample with its principal axes oriented along x= �110�,
y= �112�, and z= �111�, containing 576 000 atoms. Our simu-
lated system is larger than those customarily used in similar
studies, a measure aimed at minimizing finite-size effects

and ensuring 3D dislocation behavior. Periodic boundary
conditions are used in the x and y directions, whereas trac-
tion surfaces are chosen for the z boundaries. Perfect screw
or edge dislocations with Burger vector 1

2 �110� are created at
the center of the sample by applying the appropriate linear
elasticity solution to the unrelaxed crystallite �screw� or by
removing half planes of atoms �edge�. The initial line direc-
tion is �112� and �110� for the edge and screw dislocation,
respectively. Our geometry implies dislocation densities of
the order of �3
1015 m−2, which can result in shear rates of
107–109 s−1. However, the dynamic behavior of dislocations
in systems with realistic dislocation densities can be extrapo-
lated from simulations in systems with much higher densi-
ties, insofar as the dislocation velocities are similar.32 After
relaxation, both dislocations are seen to split into Shockley
partials on a �111� plane. Samples are thermally equilibrated
at 100, 300, or 500 K prior to the application of the external
shear stress.

With respect to the alloy systems, more details are given
below. Suffice it to say that all alloys considered were aged
with a Monte Carlo code33 to build up any eventual short-
range order.

Shear stress is applied by imparting appropriate atomic
forces on top and bottom skin regions containing one or
more �111� planes. Here we probe stresses in the 0��
�4000-MPa range. Dislocations start moving under the ac-
tion of the applied stress and, after a transient, a steady mo-
tion develops with the dislocation crossing the sample sev-
eral times depending on its speed. All simulations were done
in the microcanonical ensemble to avoid temperature-control
artifacts in the dynamics of the system. Despite this, the tem-
perature increase at the higher stresses is, on average, only of
about 15% of the initial value. However, a significant amount
of heat �produced by friction� is locally generated on the
dislocation glide plane. This heat is evacuated in between
successive dislocation passages. Nevertheless, at very high
dislocation velocities, there is not sufficient time for a com-
plete thermalization of the glide plane and this eventually
leads to failure. This is a finite-size effect than can be par-
tially mitigated by using larger systems.

Linear regression fits to the dislocation position vs time
evolution provide the velocity reported in the figures below.
The atoms belonging to the core of the partial dislocations
and the stacking fault ribbon were identified using the cen-
trosymmetry deviation parameter. All simulations were run
using the LAMMPS code34 with 128–256 processors on the
THUNDER cluster at LLNL.

A. Short-range order vs segregation

In choosing the alloy compositions for our study we must
ensure that Au remains in solid solution in Ni at all times at
the temperatures of interest. The reasons for this have to do
with the possible existence of short-range order �SRO� in the
solid solution because of the periodic boundary conditions
along the direction of motion: at every passage of the dislo-
cation the portion of crystal above the glide plane shifts with
respect to the portion below by a magnitude b; when the
dislocation re-enters the box the distribution of solute atoms

TABLE I. Longitudinal cL, transverse cT, sound speeds, and
minimum phase velocities cmin, for the two k paths of interest: �-J-
X for screw and �-K-X for edge dislocation motion. Both k paths
have nondegenerate transversal branches. The data have been cal-
culated from the phonon dispersion relation in Fig. 3. Velocities are
given in m s−1.

k branch �-K-X �-J-X

cL 5637.6 5872.6

cT1
3647.3 3281.7

cT2
2132.0 2578.1

cmin 1927.8 766.6

FIG. 4. �Color online� Brillouin zone showing the k branches
displayed in Fig. 3 and the location of the points, �, K, X, and J,
which is the exit point of the �112 branch from the first Brillouin
zone. Note that the periodicity limits of both branches are located at
point X, hence both branches come at X with equal frequency val-
ues and zero derivative.
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on the sheared section of the crystal would change with re-
spect to the original configuration if SRO were present. Ran-
dom solid solutions do not bring about such complication.
Not only is this a technical issue in the simulation setup but,
if SRO develops in the solid solution, passing dislocations
would alter this order producing an additional hardening ef-
fect, as discussed by Rodary et al.25 Therefore care must be
taken in ensuring that we are working in the solid solution
region of the phase diagram derived from the potentials that
we are using. To characterize this effect we have calculated
the SRO parameter for a number of Au concentrations in Ni.
The SRO is a local parameter and can be expressed as

�ij = Zij − cjZ , �8�

where �ij is the SRO parameter of species i with respect to
species j, Zij is the number of neighbors of type j surround-
ing an atom of type i, cj is the stoichiometric concentration
of species j, and Z is the total number of neighbors in the fcc
lattice. In other words, the SRO parameter represents the
difference between the local and global compositions. Ac-
cording to this definition we can contemplate the following
scenarios:

�ij��0 tendency to ordering

=0 random solution

�0 tendency to segregation.

�9�

Here we work in the range of Au concentrations for which
�12�0 �here the subindex “1” refers to Ni and “2” to Au�.
Figure 5 shows the SRO parameter as a function of Au con-
centration at 300 K. Clearly, at CAu�20% the crystal-
averaged SRO exhibits no significant tendency to ordering.
In contrast, at CAu�20%, the SRO gradually escalates indi-
cating a strong precipitation inclination as we approach the
solubility limit. Hence, in this work, we confine the disloca-
tion mobility study to CAu20% and we choose Au concen-
trations of 0, 5, 10, and 20 %.

B. Dislocation behavior

We now focus on mobility functions for both dislocation
types at the different temperatures and Au concentrations.
Unless otherwise noted, simulations were performed at in-
creasing shear stresses until a failure mode was detected. As
we shall see, for a given system size, this maximum stress �m
strongly depends on the character of the dislocation, the
simulation temperatures and the Au concentration. For pure
Ni it is approximately of the same order of magnitude as
lower-bound estimates for the ideal shear strength of Ni
��2.4–7.1 GPa �Ref. 35��. On the other hand, the threshold
stress �th for dislocation motion also displays the same de-
pendences as �m. In pure Ni, this threshold stress is related to
the Peierls stress ��6.1 MPa �Ref. 36�� albeit thermal fluc-
tuations provide a smooth extrapolation to �th�0 at least in
the screw dislocation case.

Table II contains �m and �th for all cases considered in
this work. Interestingly, the �m range for screw is broader
than fore edge dislocations. The only notable exception is for
CAu=20%, for which screw dislocations do not move lin-
early beyond roughly 900 MPa. Conversely, �th for edge dis-
locations is significantly larger than for screw dislocations, a
somewhat puzzling observation since, generally, the Peirls
barrier for edge dislocation motion is assumed to be lower
than for screw dislocations.

1. Screw dislocations

First we discuss the screw dislocation mobility along the
direction of motion �112. Figures 6 and 7 show a family of
curves representing screw dislocation velocities as a function
of the applied shear stress at 100 and 300 K, respectively.
The behavior as a function of the Au concentration is quali-
tatively similar at both temperatures. Two dynamic regimes
can readily be observed in the subsonic region. First, after
overcoming the static friction �see Table II and the discussion
in Sec. II�, the dislocations start to move according to Eq. �6�
with friction coefficients spanning almost one order of
magnitude from approximately B=7.8
10−6 to 5.88

10−5 Pa s /b at 100 K as Au content increases. The friction
coefficients B=AT and A in Eq. �7�, particularized for the
Burgers vector of the perfect dislocation in Ni are given in
Table III. Theoretically, assuming ideal phonon damping in
the first linear regime, the magnitude A should be indepen-

FIG. 5. Short-range order parameter �12 �where the subindex
“1” refers to Ni and “2” to Au� for different equilibrated Ni-Au
alloys at 300 K. Below 20% Au content, the alloys display just
traces of segregation, whereas at CAu=30% the SRO parameter
grows significantly pointing to a strong precipitation tendency.

TABLE II. Threshold and maximum shear stresses �in MPa� for
dislocation motion for all cases simulated.

Dislocation type Screw Edge

Au % 0.0 5.0 10.0 20.0 0.0 5.0 10.0 20.0

T 100 K

�th 0 80 100 150 125 125 175 190

�m 3000 2600 2100 900 2600 2000 2200 1800

T 300 K

�th 0 60 100 125 100 175 175 200

�m 3000 2400 2100 500 2400 2200 2200 1800
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dent of temperature, a criterion that our simulations generally
meet �more details are given in Sec. VI C and Fig. 11 below�.

Second, the mobility curves experience a marked transi-
tion and level off into a more damped dynamic regime. This
transition takes at a critical velocity v0, which is directly
correlated with the value for cmin in Fig. 3 �given in Table I�
and displays a strong composition dependence. It also should
mark the change from phonon drag to radiative damping as
the dominant dissipative mechanism during dislocation mo-
tion. In fact, following Eshelby13 and Olmsted et al.,14 we fit
our data to the power law �=D� v

v0
−1��, where v0 plays the

role in the real crystal of cmin in the simplified continuum
analysis �see Eq. �4��. The values for the critical velocities v0
and exponents � and for the proportionality constant D are
given in Table III. The curves for 20% Au did not possess
sufficient structure for this kind of numerical analysis and no
fits were performed.

Generally, D is seen to decrease with temperature and
shows little dependence with the Au content, except an
anomalous data point at T=100 K and CAu=10%. The
power-law exponents range, approximately, between 0.65
and unity, with a clearly decreasing trend being observed as
a function of CAu and T. Ostensibly, the critical velocities
show no temperature dependence, decrease with Au compo-
sition, and are about twice the value of cmin along the �112
direction �see Table I�. In any event, the second regime con-
tinues until the velocity saturates at a value of approximately
2550 m s−1 for pure Ni at both 100 and 300 K. However, at
5% Au this saturation is only partially identifiable, whereas
at 10 and 20 at. % Au the crystal becomes mechanically
unstable well before this saturation velocity is reached. For
pure Ni, this velocity coincides with the lower shear wave
velocity in the direction of dislocation motion, cT1
=2578 m s−1, also plotted in Figs. 6 and 7 for reference. At
both temperatures, the stress required to leap into the tran-
sonic regime is approximately 2600 MPa, after which the
continuity of the mobility curve is broken and the dislocation
is seen to trespass this first transonic barrier very abruptly.
Thus this singular behavior represents a third identifiable dy-
namic regime, the singular regime.

The interpretation for this behavior can be found by iden-
tifying this transonic leap with the cusps shown in Fig. 1. In
this instance, the energy dissipated by the slipped atoms can-
not escape the dislocation core and an infinite stress is re-
quired in order to keep the dislocation moving. At still higher
stresses the system becomes mechanically unstable, an effect
related to the high strain rate that results from finite-size
effects.

2. Edge dislocations

We now analyze the dynamic behavior of edge disloca-
tions. In this case, as mentioned above, the propagation di-

FIG. 6. �Color online� Mobility at 100 K for a screw dislocation
moving in a Ni crystal with varying Au concentration. Two dynamic
regimes can be clearly observed corresponding to two different dis-
sipation mechanisms. For pure Ni, the dislocation velocity saturates
at c�112, after which a marked leap into the transonic regime is
observed.

FIG. 7. �Color online� Mobility at 300 K for a screw dislocation
moving in a Ni crystal with varying Au concentration. Similar to the
100 K case, two dynamic regimes can be observed. For pure Ni, the
dislocation velocity saturates at c�112, after which a marked leap
into the transonic regime is observed.

TABLE III. Friction coefficients, critical velocities, and radia-
tive exponents for the screw dislocation v-� dependence during the
first and second dynamic regimes observed in the mobility
functions.

Au % 0.0 5.0 10.0 20.0

T �K� 100

B �
10−5 Pa s /b� 0.78 1.18 2.85 5.88

A �
10−7 Pa s K−1 /b� 0.78 1.18 2.85 5.88

v0 �m s−1� 1640 1500 1371

D �109 Pa� 5.92 4.10 7.24

� 0.99 0.78 0.75

T �K� 300

B �
10−5 Pa s /b� 2.03 2.76 2.83 6.93

A �
10−7 Pa s K−1 /b� 0.68 0.92 0.94 2.31

v0 �m s−1� 1639 1498 1385

D �109 Pa� 4.01 3.58 3.60

� 0.71 0.63 0.70
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rection is �110. Figures 8 and 9 show the mobility curves at
100 and 300 K, respectively. The behavior of the edge dis-
locations is substantially different to the screw dislocations.
Initially, the edge dislocation velocity grows linearly with
stress until it levels off and saturates for pure Ni at a value of
cT2

=2132 m s−1, i.e., the maximum value of the lower shear
wave speed along the �110 direction. Phonon drag is the
main dissipative mechanism up to a critical velocity v0, very
close to cT2

, when the dislocation is seen to enter the singular
regime after displaying, apparently, no radiative behavior.
The critical velocities at which the dislocations transition
from the phonon damping regime into this singular behavior
vary with CAu, and are given in Table IV. One can see im-
mediately that, especially at 300 K, the gap between the
measured v0’s and cT2

for the �110 direction �2132 m s−1� is
significantly lower than for the screw dislocation case.

At CAu=20% the mobility curves lose most of the struc-
ture observed at lower Au contents and the transition from

the phonon damping regime to the singular behavior be-
comes difficult to distinguish, albeit the transonic transition
can still be appreciated. Table IV contains the friction coef-
ficients and critical velocities as a function of Au content and
temperature.

The most striking difference with respect to the screw
dislocation behavior is that the transonic stress for edge dis-
locations is about 1050 MPa for both temperatures simulated
irrespective of the Au concentration. Subsequently, for a
range of velocities cT2

�v�cT1
the dislocation enters the

transonic regime, and presumably undergoes radiative damp-
ing of the form given by Eq. �7� followed by a singular
behavior close to the upper shear wave velocity cT1
=3647 m s−1. At a stress of about 2.5 GPa �at both 100 and
300 K�, the dislocation in pure Ni is seen to break cT1

into
another regime. Only the pure system is mechanically able to
withstand such elevated stresses but all the other alloys show
the same qualitative behavior, with their velocities saturating
just below their effective forbidden velocity, see Table IV.

At these elevated velocities, v�cT2
, most of the edge dis-

locations are seen to develop twinning partials leading to loss
of mechanical stability.

VI. DISCUSSION

Figures 6–9 clearly suggest that dislocation motion is a
complex phenomenon. Indeed, attempts to understand its in-
tricacies span more than 50 years of research and focus onto
several aspects, such as the Peierls stress, alloy composition,
and the sources of dissipation, phonon drag, and radiation. In
what follows we analyze each aspect separately.

A. Critical velocities

Polarization effects give rise to two possible scenarios,
depending on whether the mobility is governed by the over-
all behavior of the perfect dislocation or by the individual
behaviors of the Shockley partials into which the perfect dis-
location splits. It is worth mentioning here that the analytic
calculation in Ref. 19 was done for a case where no partials
exist, so this additional complexity was not treated there.

FIG. 8. �Color online� Mobility at 100 K for an edge dislocation
moving in a Ni crystal with varying Au concentration. In this case,
the dislocation moves in the phonon drag regime until it asymptoti-
cally reaches the lower shear wave velocity. Then it trespasses the
transonic limit, seemingly behaving singularly again until the ve-
locity saturates at the upper shear wave velocity. Only the pure Ni
system is able to withstand the strain rates necessary to leap into the
second transonic stage.

FIG. 9. �Color online� Mobility at 300 K for an edge dislocation
moving in a Ni crystal with varying Au concentration.

TABLE IV. Friction coefficients and critical velocities for the
edge dislocation v-� dependence observed in the mobility
functions.

Au % 0.0 5.0 10.0 20.0

T �K� 100

B �
10−5 Pa s /b� 0.57 2.54 2.70 6.69

A �
10−7 Pa s K−1 /b� 0.57 2.54 2.70 6.69

v0 �m s−1� 1103 1235 1291 1200

T �K� 300

B �
10−5 Pa s /b� 2.05 3.26 5.07 6.76

A �
10−7 Pa s K−1 /b� 0.68 1.09 1.69 2.25

v0 �m s−1� 1784 1597 1571 1148
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If the Burgers vectors of the partial dislocations, namely
b= 1

6 �121, are the ones that dictate the mobility behavior,
then the radiated waves will be the result of the superposition
of longitudinal and transverse modes for both branches. If,
on the contrary, the relevant Burgers vector is that of the
perfect dislocation, b= 1

2 �110, then waves will have pure
longitudinal or pure transversal polarizations for the edge
and screw dislocations, respectively. Comparing with the nu-
merical results reported above, one gets the impression that
in more realistic models like molecular dynamics, none of
these scenarios apply. For screws, the perfect Burgers vector
is orthogonal to the velocity vector, whereas partials have
both normal and parallel components. Therefore, as observed
in Figs. 6 and 7, the singularity appears at the lowest trans-
verse sound speed, and we may conclude that the polariza-
tion of the perfect dislocation is the one that matters. In the
case of edge dislocations, the perfect Burgers vector is lon-
gitudinal with respect to the direction of motion, and the
partials also have mixed components. However, as shown in
Figs. 8 and 9, the singularity also appears at the two trans-
verse sound speeds, so we cannot conclude which polariza-
tion is dominant.

Thus the only interpretation that satisfies the whole en-
semble of observations is that both polarizations are relevant,
and that all sound speeds, regardless of their polarization,
introduce singularities. In our model, displacements are
coupled and thus dislocations do not emit waves with a well
defined polarization. We conclude that our simulations do not
show singularities at longitudinal modes simply because
such high velocities were not reachable in our system due to
finite-size effects, but we speculate that using larger samples
the entire transonic and supersonic regimes could be mapped
and singularities should be observed also at cL.

With regard to the difference between the sequence drag
→ radiation→singularity observed for screws, and drag
→singularity observed for edge dislocations, we conclude
that the reason is to be found in the difference between the
minimum and maximum phase velocities along the �-J and
�-K branches �see Fig. 3�. The radiation regime appears in a
window between cmin and cT2

; for edge dislocations cmin is
very close to cT2

and therefore the radiation regime is over-
run by the singularity regime. Instead, in screw dislocations
cmin is approximately half the value of cT2

and there is there-
fore a wide v range where this regime is dominant.

Therefore from the MD simulation results and the simple
models discussed above, we can conclude the following:

�i� There is a minimum velocity ��0.1cT in Fig. 1 and
�0.3cT in our MD simulations�, below which radiation is
suppressed and only phonon drag is significant. This mini-
mum velocity is related to cmin, defined in Fig. 3. It is worth
mentioning, however, that a very interesting recent work on
discrete lattices by Koizumi et al.37 demonstrates that wave
radiation by a dislocation can occur at any given velocity.

�ii� Supersonic motion is clearly possible and beyond
cT analytic calculations suggest that the v-� relation is
smooth, although this regime cannot be reached in our MD
simulations due to finite-size effects that lead to mechanical
failure of the computational cell. Moreover, we have demon-
strated that dislocations can be accelerated beyond transonic

barriers, in disagreement with some works published in the
literature.27,38

�iii� Screw and edge dislocations behave differently.
While edge dislocations go from a regime of viscous damp-
ing �phonon drag� to a regime dominated by singularities,
screws show an additional intermediate regime of radiative
dissipation. We speculate that this regime is the equivalent in
real crystals to the multisingularity regime observed below
cT in the simple discrete analytical model discussed in Sec. II
�see Fig. 1� and in the continuum model of Eshelby13 with a
single singularity at cT. Figures 6 and 7 strongly suggest such
a relationship, although it has to be noted that the exponent is
different. We capture the complex behavior of the superpo-
sition of several weak singularities into a functional form
similar to the case of a single singularity, but where the ex-
ponent and the velocity cmin are not related in a simple way
to the dispersion relation of the material. We interpret the
difference between screw and edge in terms of the small
window of possible velocities up to cT2

in the direction of
motion of the edge dislocations. The singularity at cT2

hides,
we believe, the intermediate regime. With this interpretation
a single mobility law can be formulated for both dislocation
types.

�iv� There is an unequivocal relation between the sin-
gularities and the velocity of transverse polarized waves trav-
eling in the direction of the dislocation motion, as deter-
mined from the phonon dispersion relations. However, there
is no direct connection between the direction of the Burgers
vector of either the partials or the perfect dislocations and the
branches in the dispersion relations as it happens in the ide-
alized harmonic model.19

�v� For edge dislocations there is a peculiar v-� pair,
namely v=cT1

�2100 m s−1 and ��1100 MPa where all
curves meet, regardless of temperature and composition, i.e.,
all alloys at all temperatures studied cross the first singularity
at the same stress level. The reason for the existence of this
point remains unclear, as from the analytic approach, the
strength of the singularity depends on the phonon lifetime
i.e., anharmonicities of the lattice, and by changing compo-
sition and temperature, this property certainly changes. We
believe this feature may be related to size effects.

B. Temperature dependence

For the temperature analysis, we confine the discussion to
the results in pure Ni to separate this from composition ef-
fects that will be discussed below. Phonon drag, relevant at
low dislocation speeds and moderate to high T, has been
successfully characterized by several workers23,24 and its ef-
fect is well captured by a viscous term that depends linearly
on T, B=AT. As discussed earlier, here A is the temperature-
independent viscosity and should remain constant in the dy-
namic regime where phonon drag is dominant. We have per-
formed additional simulations to further substantiate this and
the results are shown in Fig. 10. The figure shows the mo-
bility of screw dislocations in pure Ni at three different tem-
peratures, namely 100 and 300 K, already discussed in Sec.
V B 1, and also 500 K. The data for A at 100 and 300 K
were already presented in Table III, 7.82
10−8 and 6.77
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10−8 Pa s K−1 per unit Burgers vector, respectively, and to
this we add a value of A=6.624
10−8 at 500 K in the same
units. Therefore our simulations capture the dynamic behav-
ior of the phonon drag regime quite accurately and are in
excellent agreement with the data obtained by Olmsted
et al.14 for screw dislocation simulations in Ni using MD.

Another striking feature in Fig. 10 is that, after the initial
viscous regime, the dynamical behavior of the screw dislo-
cations becomes temperature independent. The transition
into the radiative regime scales almost linearly with tempera-
ture �� /T�0.3 for all three temperatures� but, once estab-
lished, this radiative dissipation is characterized by a law of
the type ��v�, with � being close to unity. More details are
given in Sec. VI D concerning the functional form of the �
vs v dependence in this regime.

Similarly, as the dislocation approaches the lower shear
wave speed, the three cases display the same qualitative be-
havior. At 500 K the �-v curve loses some resolution due to
thermal noise, although the transonic stress is the same as for
100 and 300 K and equal to 2700 MPa.

With regard to edge dislocations, similar conclusions can
be extracted. The values for A at 100 and 300 K for pure Ni
are given in Table IV and are 0.57
10−7 and 0.68

10−7 Pa s K−1 per unit Burgers vector, respectively, again
in good agreement with Olmsted et al. Evidently, two data
points are not enough to derive a conclusive trend but the
respective values are within a tolerable margin and seem to
validate the expected dynamic behavior in the phonon drag
regime.

In stark contrast with screw dislocations, here the mobil-
ity curve transitions into a temperature-independent, singular
behavior leaving no indication of the development of a ra-
diative regime. As mentioned in Sec. VI A we conclude that
this is caused by the narrow range of available wave veloci-
ties between the minimum phase velocity and the sound ve-
locity along the �110 direction �see Fig. 3� when compared

to the �112 direction, pertinent to screw dislocations. In
other words, �cT−cmin�edge� �cT−cmin�screw. As pointed out in
Sec. V B 2 and shown in Fig. 10, the first transonic stress is
around 1000 MPa and is also temperature �and composition�
independent. The subsequent singular behavior, in the tran-
sonic regime, also bears no temperature dependence, nor
does the second transonic stress �at about 2400 MPa�.

In conclusion, in pure Ni, temperature is only a factor to
consider when dislocations operate within the phonon drag
regime at low velocities. The dependence follows Eq. �6�
very accurately and the corresponding viscosities are given
in Tables III and IV. In the other two regimes, both types of
dislocations exhibit a temperature-independent behavior.

C. Composition dependence

The alloying effects manifest themselves mainly through
two features, namely the threshold stresses and the viscous
damping coefficients. The threshold stresses �th are given in
Table II for all cases simulated in this work. Several theories
have been proposed over the last decades to explain the ori-
gin of �th. These theories have mostly been formulated on
the basis of direct dislocation-solute interactions �see Ref. 39
and references therein� or solute-solute associations induced
by dislocation glide.25,40 Other nonelastic mechanisms such
as electrostatic locking41 have also been proposed, but they
will not be considered here as they are not captured by our
potentials.

Contrary to the Ni-Al system studied by Rodary et al.,25

where there is a strong tendency to ordering and therefore, in
principle, Al-Al pairs repel, Au in dilute solution in Ni ex-
hibits a weak inclination to segregation �see Fig. 5�. This
means that the mechanism responsible for chemical harden-
ing cannot be explained in terms of an increase of repulsive
solute dimers across the glide plane. In our case, solute hard-
ening appears as a consequence of elastic interactions be-
tween dilatational inclusions �the Au atoms� and the volu-
metric stress field of the dislocation. The interaction is thus
“dielastic” in the sense of Kröner, i.e., it is induced by the
dislocation.42 Another factor to take into account is that, al-
though a perfect screw dislocation possesses no volumetric
stress component, its intrinsic dissociation into a pair of
Shockley partials in fcc materials projects the total Burgers
vector into an edge and a screw component. Nevertheless,
the edge component of the partials resulting from a perfect
screw is only 1/�3�0.57 times that of a perfect edge. At
this point we make two interesting considerations. First,
since it is only the edge component that interacts elastically
with the solute atoms, one would expect �th to be some
function of the edge component of the Burgers vector. Sec-
ond, the intrinsic lattice barrier to dislocation motion in a
material �the so-called Peierls barrier in a pure system� is
known to scale linearly with b. As anticipated in Sec. V B,
the threshold stress in dilute alloys is directly related to this
intrinsic barrier in the pure material. Therefore following this
line of reasoning, the threshold stress for screws should be
approximately 0.57 times that for edge dislocations. Notably,
the ratios taken from Table II at 100 K are in very good
agreement with this estimate: �thscrew

/�thedge
=0.64, 0.57, and

0.78 for 5, 10 and 20 % Au, respectively.

FIG. 10. �Color online� Dislocation mobility in pure Ni as a
function of temperature. For screw dislocations, the figure show-
cases the three dynamic regimes studied in this work: phonon drag,
radiative dissipation, and singular regimes. For edge dislocations,
the radiative region is suppressed on account of the narrow gap
between v0 and cT1

for the direction of motion �see text�. The data
at 100 and 300 K were already presented in Figs. 6 and 7 for screws
and in Figs. 8 and 9 for edge dislocations.
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With regard to the friction coefficients given in Tables III
and IV, there are several important observations. First, the
presence of solute atoms introduces an additional tempera-
ture dependence for A in the phonon drag regime. Figure 11
shows the four coefficients of the phonon drag regime versus
composition. We see that the T dependence of A with Au
content is well described by an expression such as A�T ,x�
=A*+x��T�, where A* is the temperature independent value
of A�T ,0�, x is the Au content and ��T� is the slope of the
curves shown in Fig. 11. Then, at low velocities, our results
agree well with those of standard hardening models43 in that
phonon drag coefficient is proportional to the solute concen-
tration. Second, for screw dislocations �Figs. 6 and 7�, during
the radiative and singular regimes there is no appreciable
composition dependence, the curves run qualitatively in a
similar fashion scaled by an attenuation factor inherited from
the phonon drag regime. A similar argument can be made for
the singular regimes observed during edge and screw dislo-
cation motion.

Hence we conclude that the origin of the static threshold
stress calculated in our simulations lies in the local elastic
interaction between the dislocations and the solute Au atoms,
and its strength is dictated by the edge character of the partial
dislocations. On the other hand, the system’s chemical com-
position does not overly affect the temperature-independent
behavior at low velocities. At a fixed temperature, a propor-
tionality is found between A and the Au content. No
dislocation-specific behavior is observed.

D. Mobility functions

To summarize our observations, we present here the gen-
eral form of the mobility law, taking into consideration all
three regimes observed in our simulations and the theoretical
framework used to interpret them. As we have seen, there are
three types of contributions to the dynamic dissipation:

�i� A phonon drag term that holds at all velocities,
characterized by a viscosity that depends linearly on all three

magnitudes explored, namely temperature, the magnitude of
Burgers vector and, to first order, Au content.

�ii� A radiative term that holds only at velocities above
the minimum critical velocity cmin related to the minimum
phase velocity along the direction of motion of the disloca-
tion. This term is expressed by a power law which is a func-
tion of the ratio between the dislocation velocity and the
minimum phase velocity, with an exponent in the range 1

2 –1
that displays little or no dependence on composition.

�iii� Several �up to three� singular terms at the maxi-
mum phase velocities, i.e., the sound velocities cT1

, cT2
, and

cL, which do depend, albeit weakly, on the alloy composi-
tion. Every singularity holds up to a maximum stress, at
which the v-� curve presents a discontinuity. The critical
exponents depend on dislocation type, and are also in the
range 1

2 – 3
2 . Our results do not provide enough information to

relate these stress values to any of the parameters explored.
Moreover, while intuitively these values should be related to
anharmonicities, the effect of solutes is not apparent.
The combination of these terms gives the following func-
tional form for the mobility law

��x,T,v� = �th + �A* + x��T��Tv + D� v
v0

− 1��

��v − v0�

+ � Ci�x��cTi
− v�−�i��cTi

− v� . �10�

A schematic representation of this function is given in
Fig. 12. Finally, for every material and every direction of
motion, the dispersion relations give the values for minimum
and singular velocities.

VII. CONCLUSIONS

We have studied the relation between applied stress and
dislocation velocity in a model alloy using computer simula-
tions. The obtained mobility curves display a rich structure,
expressed in the form of an intricate functional form, which
we interpret by resorting to continuum and discrete models
of dislocation dynamics.

FIG. 11. �Color online� Temperature-independent friction coef-
ficient A for screw and edge dislocations as a function of composi-
tion. Generally, equal temperatures correlate together except most
notably at 5% Au at 100 K. The lines connecting the datapoints are
just a guide to the eye.

FIG. 12. �Color� Schematic plot of the three dynamic regimes
observed in our simulations. Each regime corresponds to a term in
Eq. �10�. The enveloping black curve is the range observed in this
work.
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We show that dislocation motion is a superposition of
three different dynamic regimes punctuated by critical ve-
locities. We have established relations between the phonon
spectrum of the lattice and the structure of the mobility func-
tion. These relations remove long-standing uncertainties
found in the literature concerning the interpretation of these
critical velocities, as we show that they are clearly related to
the phase velocities of phonons propagating in the direction
of dislocation motion.

Our main conclusion thus is that our MD simulations sat-
isfy the velocity selection rules derived from the continuum
and discrete lattice dynamics analysis. Our simulations con-
firm the validity of the phonon damping mechanism as being
linear with temperature and independent of dislocation char-
acter. Additionally, our data suggest that the threshold stress
for dislocation motion depends linearly with the alloy com-
position, resulting from elastic interactions among solute at-
oms and the hydrostatic component of the stress field of the
moving dislocation.

Finally, we are led to conclude that, seemingly, the direc-
tion of motion is the overarching parameter governing dislo-
cation dynamics, rather than its character. In our model sys-

tem and in the stress and temperature ranges explored, we
find no indication that dislocation character plays any signifi-
cant role in the dynamic properties of the moving disloca-
tions. Nevertheless, one needs to bear in mind that our data
have been obtained under very specific conditions. To name
but a few: the crystal structure considered is fcc and hence
our conclusions are circumscribed to this type of materials;
the stress state is simple shear so that there are only glide
forces acting upon the dislocations. These are not necessarily
limitations but simply final cautionary remarks to put our
conclusions into perspective. More simulations broadening
the parametric space explored here are needed in order to
consolidate our observations.
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