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A comprehensive study of small mercury clusters is presented using relativistic coupled cluster, many-body
perturbation, and density functional theory starting from the dimer potential, to small clusters and to the solid
state. In all these calculations we employ an energy-consistent small core relativistic pseudopotential. We
address the possibilities for the simulation of larger clusters. Both Lennard-Jones and alternative isomers are
considered as candidate structures for the global minimum, and both isotropic and anisotropic polarizabilities
are determined for N=24. We address the well-known nonconvergence of the many-body expansion of the
interaction potential. We show that a two-body potential cannot describe the rhombohedral distortion from a
face centered cubic structure. Density functional theory seems to have similar difficulties with the exception of
the local density approximation. We therefore suggest a two-body correlation potential to be used to correct the
Hartree-Fock energy, which already contains the important many-body effects. Within this approach we obtain
good agreement with the best-known reference data ranging from the dimer to the solid state.
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I. INTRODUCTION

Clusters are interestingly situated between two extreme
systems; to one side lie small molecules such as the dimer,
and at the other is the very different system of an infinite
periodic lattice. This vision of connecting the two limits
upon varying the number of atoms (N) is at the heart of
cluster physics due to the marked way in which properties of
clusters vary with size. The possibility of tuning, for ex-
ample, electric and optical responses of clusters as a function
of size implies a wide range of applications. This is indicated
by the large number of cluster systems that have been studied
so far,!~*

Mercury clusters are of particular interest as the contrast
between the dimer and bulk is most marked; the dimer and
small clusters are van der Waals-like (and therefore compa-
rable to the noble gas clusters) whereas the bulk is metallic.
This is exemplified by a rather large change in the bonding
distance, from 3.7 A for the dimer’ to 3.0 A for the solid.®
An early paper found deviations from van der Waals behav-
ior already at a size of about 12 atoms, and noted behavior at
N=13 that defied the trend, marking it as a uniquely sym-
metric icosahedral structure.” This is consistent with arrang-
ing close-packed spheres on the surface of a sphere, and
found typically in Lennard-Jones clusters® which maximize
the number of bonding interactions. In 1992 Rademann,
Hensel, and co-workers published a study of the photoelec-
tron spectra of the neutral clusters of sizes up to 200 atoms.’
They observed a non-structured absorption between 4.3 and
6.3 eV up to a cluster size of 13 atoms, but found that for
clusters of 20 or more atoms the observed spectra fit closely
the Drude model of metallic mercury, and they extracted
approximate bond lengths of 3.1 A, known to be much closer
to the bulk value than that of the dimer. This was accompa-
nied by a similar work of Kaiser and Rademann,'®© who
found that cluster sizes of about 60 atoms were sufficient for
there to be a high density of p states near the Fermi level.
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Moreover, theoretical (tight-binding linear muffin-tin) calcu-
lations available at the time!' found an increase of 6p char-
acter in clusters between 13 and 19 atoms, indicating an
increase in covalency. The 6p character of a cluster of 79
atoms was also found to agree very closely with the bulk
value.''!2 A study of caesium-mercury clusters (HgyCs™)
also agreed with the assumption of a transition from van der
Waals to covalent bonding at a relatively small size of about
30 atoms. '3

Later experiments would disagree strongly with these first
findings. In contrast to the prediction by Singh and Dy of the
onset of metallicity at around N=80,'" a study of the 6s-6p
gaps of negatively charged mercury clusters in 1998 by
Cheshnovsky and co-workers predicted a much higher value
for the onset of metallicity, at an extrapolated value of 400
atoms. Their data covered the range 3=N=250."* At this
stage it became clear that the simple concept of a metal to
nonmetal transition at small sizes, which has been very use-
ful in much of cluster physics, must become in the case of
mercury a very complicated evolution from van der Waals
behavior at small sizes, gradually to covalently bound clus-
ters, and then eventually to the metallic state. However, this
is no simple monotonic behavior, as it is constantly inter-
rupted by the changing structure of the clusters themselves.
For small clusters the addition of a single atom may change
many properties significantly though the underlying struc-
tural motif is constant, such as is observed with the comple-
tion of the icosahedron on going from 12 atoms to 13. In
large clusters the impact of adding a single atom may be
apparently less, except that at particular sizes competing ge-
ometries which have different “magic numbers” may lead
again to highly size-dependent characteristics.

The current challenge for computational physics is to ap-
proach the much larger sizes at which the nonmetal to metal
transition for mercury has been predicted experimentally.
This is no trivial task as the methods that have been proven
accurate for small sizes are expensive in computer time, re-
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quiring a high-level treatment of electron correlation and
relativistic effects together with large basis sets to suppress
the basis set superposition error. Previous theoretical studies
have been restricted to large-core pseudopotentials for the
calculation of clusters only up to N=15,""!8 and more re-
cently up to N=14 by Hartke and co-workers.'*?° For larger
cluster sizes towards the metallic state single-reference elec-
tron correlation procedures will fail and a multireference
treatment becomes impossible. On the other hand, methods
that have been used for the optimization of noble gas clusters
(e.g., a Lennard-Jones or effective two-body potential fitted
to the dimer curve) have been shown to be problematic for
mercury, due to the poor convergence of the many-body ex-
pansion which requires at the very least the inclusion of
three- and four-body forces.?? This poor convergence is usu-
ally attributed to the non-metal to metal transition and con-
sequent bond shortening which implies that at shorter dis-
tances than the dimer bond length, a two-body potential is
not sufficient anymore.? In contrast, for the noble gases the
dimer and solid bond distances are very close and this prob-
lem does not occur, although at shorter distances (accessible
under high pressure) many-body effects will eventually be-
come important.26 It remains to be seen if, for example, cor-
relation effects can be parametrized using a simple two-body
potential, as a way of improving on the poor convergence of
the many-body series for the total energy of mercury clusters
as has been previously mentioned.?>?* Finally, density func-
tionals are currently not accurate enough to describe interac-
tions between mercury atoms from the dimer to the solid
state.

In this work we would like to establish the global mini-
mum structures of small mercury clusters as they have been
claimed recently to deviate substantially from known
Lennard-Jones systems.!®?" We therefore considered the
static dipole polarizabilities of these clusters as they are usu-
ally sensitive to the particular cluster structure. They also
provide a possible indicator of van der Waals or covalent
character, as has been seen, for example, for zinc.?’ Experi-
mentally, static electric dipole polarizabilities of metal clus-
ters may be measured by electric field deflection of a mo-
lecular beam. Such results already exist for sodium,?®
nickel,?’ niobium,3° and copper®' clusters, for example. In
the case of sodium, a correlation is seen between the elec-
tronic shell structure and the polarizability, as can be under-
stood for a jellium-type metal; on the other hand for niobium
a very large variation in polarizability (a factor of 7 over a
change of three atoms in size) is observed which must be due
to large variations in geometrical structure. In the case of
mercury we expect the second result to be most applicable.
We then extend our cluster studies to the solid state and
present optimized lattice parameters and cohesive energies
for bulk mercury.

II. METHODS

The Hg dimer is a well known example of a van der
Waals molecule, for which a good description of correlation
is essential and density functional theory (DFT) could be
deficient. Thus as the first step in our study of mercury clus-
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ters we have examined the dimer binding potential. The Zn,
Cd, and Ba dimers are also included for comparison. The
calculations have been performed using both the GAUSSIANO3
and MOLPRO codes.’?>?* The basis sets used to assess the
performance of the different methods was chosen to be as
large as practical to suppress the basis set superposition error
(BSSE). For this we chose correlation consistent basis sets
obtained by minimizing the atomic energy at the second-
order many-body (Mgller-Plesset) perturbation level of
theory, abbreviated as MBPT?2 in the following. For Hg, Cd,
Zn, and Ba, these large Gaussian basis sets consist of uncon-
tracted (11s10p9d4f) functions with the core described by
small core Stuttgart pseudopotentials.>* Various density func-
tionals have been employed as well as Hartree-Fock (HF),
MBPT2, and coupled cluster procedures [CCSD(T)] for
comparison. All calculations were performed with a full ac-
tive orbital space, i.e., 20 electrons per atom to be correlated
over the full virtual space.

Based on the performance observed for the Hg dimer, the
PWOII functional was further chosen for the cluster optimi-
zations, along with MBPT2 and CCSD(T) (up to N=9 and
N=17, respectively). The local density approximation (LDA)
functional was used for comparison as it describes the solid
structure most accurately. As starting points in our geometry
optimizations, we have chosen the Lennard-Jones type struc-
tures obtained from simulated annealing calculations using
two- and effective three-body potentials as described in de-
tail by Moyano et al.,? starting from geometries found at the
Cambridge Cluster Database,® as well as the recently pub-
lished alternative structures by Hartke and co-workers.!”
Here we used smaller correlation consistent basis sets for
mercury, i.e., a contracted (6s5p4d1f) to [4s4p3d1f] set (de-
noted as small in the following). The accuracy of this basis
set was assessed using the counterpoise procedure for the
BSSE of Boys and Bernardi.®

We have also considered the problem of determining the
structures of large mercury clusters. The nonconvergence of
the many-body expansion in mercury requires not only three-
body but also higher many-body effects to be included.?
However, it has been shown that the correlation energy for
Hg, is largely a two-body effect,” and therefore a two-body
correlation potential has been obtained by taking the differ-
ence between the best known dimer curve (of Ref. 36)
and the Hartree-Fock curve calculated with a rather large
uncontracted basis set including g and / functions
(11s10p9d4f3g2h). The resulting two-body correlation
curve was used as a correction to HF. This has the advantage
that the BSSE at the HF level of theory is relatively small
compared to correlated calculations. The applicability of this
approach ranges from the dimer to the solid state. The pro-
gram used for the solid-state calculations of mercury was
CRYSTAL.?” A small contracted basis set which was optimized
for HF calculations has been used for the solid-state
calculations.?

The small correlation consistent basis set used for the
coupled cluster calculations was further improved for polar-
izability calculations by the addition of diffuse s and p func-
tions, and an extra f function. The size of this basis set,
coupled with its good performance for the atomic polariz-
ability means that these calculations can be extended to rea-
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sonably large cluster sizes. Following the definitions of
Buckingham,® we can write the energy of an uncharged
molecule in a weak, static, homogeneous electric field as

EP=E"— p, F —1a F Fg+ - (1)
ol 9 apt ot B s

where EV is the energy of the free molecule, u, is the dipole
moment, F,, etc., is the electric field, and Qop is the static
dipole polarizability. Here we use the Einstein sum conven-
tion. The subscripts denote Cartesian coordinates x,y,z. The
number of independent components of the polarizability ten-
sor is symmetry dependent, and thus we define an isotropic
polarizability dependent on the cluster size N,

alN) = ] (N) /3 2)

which is orientation independent and accessible by experi-
ment. The polarizability anisotropy is calculated from the
polarizability tensor [denoted as (a,p)] as

172
BN) = + (%(3 tr{l g (N} - {tr[aag(N)]}2)>

« diag
= + (5{[0111(1\’) = ap(N) P +[a),(N) — azn(N) ]

12
+[apn(N) - a33(N)]2}) . (3)

The polarizability tensor has been calculated analytically us-
ing the PWO91 functional as implemented in GAUSSIANO3, as
this gives very good results for the mercury atom.*’ The
choice of basis set is particularly sensitive for polarizability
calculations, but in order to extend these calculations to
larger cluster sizes, the size of the basis set had to be kept
relatively small. We therefore improved our small correlation
consistent basis set optimized for the CCSD(T) calculations
for the polarizability calculations by the addition of diffuse s
and p functions, and an extra f function. This basis set is
therefore referred to as the small+spf basis set.

III. RESULTS AND DISCUSSION
A. Dimers

The Hg dimer is more strongly bound than the Zn and
Cd dimers due to relativistic effects and to a lesser extent
the lanthanide contraction, which shorten the Hg, bond
substantially.*>#! Although barium is not a transition metal, it
is a metal with a closed 6s valence shell and similar in size
compared to mercury. Moreover, barium is also influenced
by relativistic effects which makes a comparison interesting.
Studies of Bay cluster structures have shown similar results
to those of mercury and of the noble gases.** The currently
most accurate Hg, CCSD(T) potential curve calculated with
the same large basis set includes spin-orbit effects*® is shown
in Fig. 1 together with the HF and DFT curves. The HF
curve is included as to give an idea of the effect of electron
correlation in binding the dimer. It is not surprising that HF
fails to describe van der Waals bonding, which may be con-
sidered to be entirely due to electron correlation, but the
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FIG. 1. DFT, HF, and CCSD(T) potential curves for the Hg, Cd,
7Zn, and Ba dimers.

functionals B3LYP and BPWO1 fail almost as badly, with
BP86 showing just a slight improvement. LDA is typically
overbinding, by about a factor of 3. It is therefore evident
that DFT gives widely varying results for Hg,, depending on
the functional chosen. It is however the PWO91 functional
(PWO1 for both exchange and correlation) that gives by far
the most realistic curve. It produces a curve which has a
slightly shorter equilibrium bond length than either MBPT2
or CCSD(T), but a binding energy intermediate between the
two, and at long range (above 4 A) matches the CCSD(T)
curve closely. However, all functionals show the wrong be-
havior at long range, as they do not correctly describe Van
der Waals interactions. A summary of the performance of
these methods for Hg, (bond lengths, dissociation energies,
and vibrational frequencies) is given in Table I, along with
the results for Zn, Cd, and Ba.
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TABLE 1. Spectroscopic parameters for the Hg, Cd, Zn, and Ba
dimers. Dissociation energies are in eV, bond lengths in A, and
frequencies in cm™'. The experimental data for Cd, and Zn, are
from Ref. 43, for Hg,, from Ref. 44, and for Ba, only theoretical
reference data are available (Ref. 45).

Bond length at potential minimum r,

Method Hg, Cd, Zn, Ba,
B3LYP 5.124
BP86 3.499 3.213 4910
BPWI1 3.567 3.302 4.902
PWI1 3.522 3.441 3.173 4.360
Xa 3.128 3.158 2.930 4.925
LDA 3.040 3.055 2.810 4.749
CCSD(T) 3.772 3.738 4.215 5.079
Expt 3.69 4.07 4.19 4.881
Dissociation energy at potential minimum D,
Method Hg, Cd, Zn, Ba,
B3LYP 0.0968
BP86 0.0308 0.0432 0.2126
BPWO1 0.0008 0.0246 0.2436
PWO1 0.0614 0.0867 0.0829 0.4152
Xa 0.1591 0.1876 0.1457 0.2473
LDA 0.2206 0.2698 0.2116 0.3549
CCSD(T) 0.0443 0.0359 0.0380 0.1368
Expt 0.0471 0.0410 0.0346 0.2020
Harmonic vibrational frequency w,
Method Hg, Cd, Zn, Ba,
B3LYP 65.7 9.8
BP86 33.6 53.1 413
BPWI1 40.4 429
PWOl 25.7 355 49.8 234
Xa 46.3 54.6 65.7 40.1
LDA 55.0 70.4 88.5 47.5
CCSD(T) 21.5 23.1 274 32.8
Expt 19.7 23.0 259 35.0

The various potential curves for Cd, are given for a range
of density functionals, as well as the CCSD(T) and HF re-
sults. The picture for Cd is very similar to that for Hg, al-
though the generalized gradient approximation (GGA) func-
tionals behave on the whole a little better. Of the functionals
tested, only B3LYP is entirely repulsive. Again for Zn the
overall picture is much the same. It is, however, noticeable
that the difference in bond length between DFT and
CCSD(T) is largest for Zn,, close to 1 A apart. However,
while DFT consistently predicts the Zn dimer bond length to
be shorter than Cd, the experimental values are 4.07 A for
Cd, and 4.19 A for Zn. This compares reasonably well with
the CCSD(T) values given here 3.738 and 4.215 A, respec-
tively.

The potential curves for Ba, are also shown in Fig. 1. The
overall behavior of all methods for Ba is considerably better
than for Hg. In particular, the GGA-corrected functionals are
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all binding, and the agreement between DFT and CCSD(T) is
in general much better. This demonstrates the polarization of
the underlying d core for the group 12 transition metals,
especially for Hg where the 5d electrons are relativistically
destabilized. Hence the failure of DFT to correctly describe
the van der Waals bonding at long range, where considerable
overlap takes place and polarization of the d core becomes
important.

B. Hgy clusters

It is well known that up to some cluster size the noble
gases adopt highly symmetric icosahedral structures that are
obtained using a simple Lennard-Jones (LJ) type model (for
a detailed discussion see Ref. 21). LJ type clusters maximize
the number of interactions between the atoms. Therefore the
structures are as close to spherical as can be managed to
minimize surface effects. These result from the essentially
isotropic van der Waals forces and the lack of overlap ef-
fects, and so have commonly been assumed to apply to mer-
cury clusters as well. Of course, as the nature of the
Hg-Hg bond changes from van der Waals to covalent with
increasing cluster size N, the existence of non-LJ isomers
becomes more likely. However, simulated annealing results
of Moyano et al.?? using two- and three-body potentials con-
structed from relativistic coupled cluster and second-order
many-body perturbation theory show behavior in agreement
with the LJ potential, and have the familiar “magic numbers”
at N=6, 13, 19,23, 26, and 29 atoms. In contrast, in a re-
cent paper Hartke et al. proposed several novel low-
symmetry structures as the global minima for Hg clusters.'”
These appeared curiously disordered when compared to
more commonly known LJ or Morse type structures, and a
vibrational analysis was performed in order to test their sta-
bility. The model used was that of an effective dispersion
potential based on accurate calculations of the dimer, and
added to the HF energy to include correlation effects.*® The
structures proposed by Hartke et al. covered the size range of
7 to 14 atoms and show a tendency towards tetrahedron-
based structures.

The optimized structures at the ab initio and DFT level of
theory are summarized in Table II. The results for the opti-
mized Hartke clusters are given in Table III. The correspond-
ing minimum energy structures are pictured in Fig. 2 and
labeled as isomers 7b through 14b. The MBPT?2 clusters
should be considerably more reliable than the DFT results;
however, even MBPT?2 calculations could only be carried out
to the limited size of 9 atoms as they become prohibitively
more expensive, and at larger cluster size single reference
MBPT?2 will fail due to the closing 6s-6p gap. The CCSD(T)
results are undoubtedly the most accurate, however, the
BSSE correction (discussed later) becomes a much larger
problem here compared to DFT. CCSD(T) calculations were
only feasible up to a size of 7 atoms, where we have the first
marked difference between the LJ and the Hartke isomer. We
note that all Hartke structures have been reoptimized at the
current level of theory. In most cases the resulting structure
is still recognizably the structure as described in Ref. 19,
however, for N=8 we see considerable structural changes.
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TABLE 1II. LJ isomers, optimized with DFT (LDA, PW91),
MBPT2, and CCSD(T) methods. The binding energy (BE) and
binding energy per atom (BE/N) are in eV, the shortest bond length
in the cluster (r,y;,) is given in A.
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TABLE III. Hartke (Ref. 19) isomers, optimized with DFT
(LDA, PW91), MBPT2, and CCSD(T) methods. The binding en-
ergy (BE) and binding energy per atom (BE/N) are in eV, the short-
est bond length in the cluster (r,,) is given in A.

DFT (LDA) DFT (LDA)
N Symmetry BE BE/N T'min N Symmetry BE BE/N T'min
2 D, -0.21 -0.107 3.107 7 D5, -2.50 -0.358 3.050
3 Dy, -0.61 —-0.205 3.100 8 Cy, -3.26 -0.407 3.152
4 T, -1.20 -0.301 3.102 9 Dy, —4.12 -0.458 3.094
5 Dy, -1.71 -0.341 3.109 10 Cs, -4.74 —0.474 3.086
6 0, -2.19 -0.365 3.173 11 Dy, -5.33 —0.484 3.080
7 Ds), -2.86 -0.408 3.162 12 G -6.00 -0.500 3.060
8 Dy, -3.42 -0.427 3.109 13 G -6.76 -0.520 3.046
9 Cy -4.12 -0.457 3.094 14 G —7.35 -0.525 3.021
10 Cs, -4.79 -0.479 3.100 DFT (PW91)
11 Cs, -5.45 -0.495 3.055 D, 073 0104 3384
12 Cs, -6.15 -0.512 3.046 8 Coy 098 —o1m 3468
13 I, -6.93 -0.533 3.111 Dy, 117 ~0.130 3452
14 Cs, -7.55 —-0.540 3.097 10 Cs, ~1.36 ~0.136 3.437
DFT (PW91) 11 Dy, -1.54 -0.140 3.415
2 D.., —~0.06 —0.031 3.508 12 (o -1.75 -0.145 3.346
3 Dy, ~0.18 0,058 3491 13 ol ~1.94 -0.149 3313
4 T, 035 0,087 3.457 14 ol -2.15 -0.153 3.352
5 Dy, -0.50 -0.101 3.438 MBPT2
6 O -0.64 —0.107 3.505 7 Dsy -0.57 -0.082 3.485
7 Ds), —0.86 -0.122 3.479 8 Coy -0.91 -0.114 3.414
8 D4 -0.99 —0.123 3.470 9 D3, -1.10 -0.122 3.423
9 Cy, -1.23 -0.137 3.435
10 Cs, -1.44 -0.144 3.406 CCSD(T)
11 Cy, -1.64 -0.149 3.395 ! D 020 ~0.029 3835
12 Cs, -1.87 -0.156 3.373
13 I, 14 Z0.165 3392 The CCSD(T) optimizations for Hg; were performed un-
der symmetry constraints, i.e., both isomers (LJ and Hartke)
14 Ca —232 ~0.166 3.385 have only two internal coordinates to be optimized. These
MBPT2 structures are compared in Fig. 3, with the variable bonds
2 beom an e el e e ond et o
3 Dy, -0.11 -0.036 3.684 CCSD(T) results for Hg; are consistent with the LDA,
4 T, -0.25 -0.063 3.556 PWO1, and MBPT?2 calculations, with weaker bonding char-
5 D3, -0.40 -0.081 3.479 acteristic of the CCSD(T) calculations, that is the LI (Ds,)
6 0, -0.55 -0.091 3.552 isomer is more stable at every level of calculation. The
7 Ds, —0.78 ~0.112 3.487 CCSD(T) calculation finds the LJ isomer to be 0.078 eV
8 Coy ~0.93 ~0.116 3386 more stablf: compgred to the Hartke isomer, which is larger
9 Co, _12 0136 3.361 than the dissociation energy of ng (0.050 eV). Moreover
both the DFT and MBPT?2 calculations found that the Hartke
CCSD(T) structure is a higher-order saddle point, with two and three
) D.y 001 —0.007 4.058 imeigirllﬁry ;ibrati(;lnal fr(;,}(lluen(':ies, resl}ecti]\\;el)é. . "
n Fig. 2 are shown three isomers for N=8, where 8a is
431 DTSh :883 :gg;i ;z?g the LD/f optimized LJ .isomer, 8b is the ispmer presel}ted by
d : : : Hartke er al., and 8c is the MBPT2 optimized LJ isomer.
5 Dy, -0.15 -0.029 3.894 While the underlying construction of 8a and 8c is quite simi-
6 O -0.20 -0.033 3.900 lar, we present here both structures to indicate the range
7 Ds), -0.28 -0.040 3.762 within which these structures vary when optimized by differ-

ent ab initio methods. For N=8 both structures are realistic
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FIG. 2. (Color online) Structures of small Hg clusters. The iso-
mers labeled “a” are referred to as the LJ isomers in the text, the
isomers labeled “b” are those reoptimized from Ref. 19. In some
cases there is a third low energy isomer shown as described in the

text.

possibilities with quite highly symmetric structures. With the
inclusion of a zero-point vibrational energy correction, the
difference between the isomers becomes negligible.

It has recently been proposed*’ that at certain sizes perfect
tetrahedra may be formed (N=4,10,20,35,56,...), and that
these tetrahedra may be in some cases lower in energy than
the corresponding LJ structures. The case of N=4 is a trivial
case. However, it is of interest to examine the case of N
=10 for mercury. The structure was optimized using PW91
and the stability examined by a frequency analysis. The start-
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FIG. 3. The structures of the two Hg; isomers. The Ds;, (LJ)
isomer (left) is described by R;=3.938 and R,=3.833, A;=58.159.
The D3, isomer (right) has R;=3.835 and R,=4.096, A;=64.556,
according to the CCSD(T) optimization. Bond lengths R, and R,
are in A, angles A; in deg.

ing coordinates were taken from the supplementary data of
Ref. 47. The resulting structure is compared with other iso-
mers for N=10 in Table IV. The zero point vibrational en-
ergy (ZPVE) correction is reasonably large relative to the
total binding energy, however, it has no effect on the relative
energies of the different isomers. While the tetrahedral iso-
mer 10c is a local minimum determined by a frequency
analysis, it is also clearly less stable than the LJ isomer 10a.
It is, however, more stable than the Hartke structure 10b. In
the case of cadmium,*’ it was postulated that the increased
stability of the tetrahedral isomers relative to the Lennard-
Jones isomers could be related to the strong anisotropic ratio
(c/a) of the bulk hcp lattice, which is the largest of all met-
als. However, the rhombohedral lattice of mercury can be
considered to be even more anisotropic. This difference
could be explained from the earlier onset of metallicity in Cd
clusters than in Hg ones, which implies that the physics of
small Cd clusters may be closer to that of the bulk than is
observed for Hg.

The vibrational frequencies were calculated for each iso-
mer in both DFT (LDA, PW91) and MBPT2, after optimiza-
tion. All the LJ isomers were found to be minima on the
potential energy surface, with no imaginary frequencies of
vibration, except for some of the Hartke isomers. The N=7
case has already been mentioned, and for N=12 and 13 the
PWO1 calculation found the Hartke isomers to be transition
states as well. The others are all local minima. To summa-
rize, the isomers found by Hartke et al. are compared to the
standard LJ isomers in Fig. 4 which highlights the energy
difference between the two isomers. In all cases, the energy
of the LJ isomer is lower, however, there are a few cases
(notably N=8 and 9) where the energy differences become
quite close.

The energies of the small LJ clusters are plotted in Fig. 5.
There is at least a qualitative agreement between the various
methods used [DFT, MBPT2, and CCSD(T)]. The LDA en-
ergies are consistently overbinding as expected, and there-
fore show a much quicker convergence towards the bulk co-
hesive energy. MBPT2 seems to perform slightly better than
DFT, but, as for the dimer where the dissociation energy is
known to reasonable accuracy, is still overbinding.*! The
CCSD(T) values are the best as expected. It is apparent that
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TABLE IV. A comparison of the PW91 structures for Hg;,. The
binding energy (BE) and the binding energy with zero-point vibra-
tional correction (BE+ZPVE) included are in eV, and the shortest
bond length (r,;,) is in A. The isomers are labeled a—c as in Fig. 2.

Isomer BE BE+ZPVE T'min

Tetrahedral (10c) -1.366 -1.325 3.4066
Lennard-Jones (10a) —-1.437 -1.396 3.4064
D3, (from Ref. 19) (10b) -1.358 -1.317 3.4369

the binding in these clusters is much weaker, and therefore a
much slower progression towards the bulk is observed for
the small sizes calculated. However, due to the limited size
of the basis set available to our CCSD(T) calculations, the
BSSE becomes non-negligible. We therefore obtained an es-
timate for the BSSE at the CCSD(T) level of theory for
clusters between N=2-6 by calculating the sum of the
BSSE error in each pair interaction derived from the Hg,
potential curve. The subsequent binding energies are given in
Table V together with the BSSE correction. Another slightly
smaller contribution to the binding energy is the spin-orbit
(SO) interaction, which has been approximated according to
the equation in Ref. 36 taken from Ref. 48. Then the total
energy (energy+BSSE+SO) was optimized locally to give
the best approximation of the actual binding of each cluster.

It is evident that the BSSE correction worsens the agree-
ment with experiment for the dimer, making the bond lengths
considerably too long. However, it may be taken as an upper
bound on the error induced by this basis set. This does mean
that the errors in both bond lengths and energies are greater
than desired. Moreover, the BSSE increases with decreasing
distance of the atoms,3%#! that is the BSSE becomes more
notable if one moves towards the bulk. However, larger
coupled cluster calculations were computationally not fea-
sible and the BSSE correction does not change the relative
ordering of the different isomers. Nevertheless, it is reassur-
ing that despite the large energy differences produced by the
different methods, the optimized structures are consistently

0.01 T T T T T : r T
0 [
U Y Ay S,
L 001+
£
8
© -0.02 -
D
o
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G 004t PWOT —o— 1
PW914ZPVE e
L MBPT2 1
oSy oCsD(M) v

7 8 9 10 1M 12 13 14
Number of atoms

FIG. 4. Binding energy difference between LJ clusters and
Hartke isomers in eV per atom. A zero-point vibrational energy
(ZPVE) correction is added to the PW91 energies for comparison,
calculated in the harmonic approximation as ;i w;/2. A negative
energy difference means that LJ is the most stable arrangement.
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FIG. 5. Binding energy of LJ clusters per atom.

reproduced though with a bond length scaled according to
the method used. The LDA clusters all have close to a con-
stant (shortest) bond length, ranging between 3.0 and 3.2 A,
while the CCSD(T) bond lengths range from 3.8 to 4.1 A for
the clusters with N=7. The PW91 and MBPT2 calculations
show a similar trend, ranging between 3.3 and 3.8 A. The
minimum bond length decreases with cluster size N, as ex-
pected as the binding energy per atom is also increased. This
decrease is more pronounced for MBPT2 than for PWO1.

C. Two-body forces and the bulk

The experimentally determined structure of solid mercury
has been extensively studied and is well known. Mercury
freezes at 233 K, and forms a rhombohedral lattice with a
=3.005 A and a=70.53°. Below 79 K it transforms into
B-Hg, which has a tetragonal structure. Calculations using
DFT, however, produce a surprising variety of numbers for
the rhombohedral phase. The cohesive energies E,, for bulk
mercury at the experimental solid-state structure range from
—-0.17 eV (unbound, B3LYP) to 1.00 eV (LDA) through
0.01 eV (BP86), 0.14 eV (PBE), and 0.18 eV (PWO91). The
experimental cohesive energy is 0.67 eV.® Of these, LDA is
the best performing functional for the solid as it is derived
from the electron gas model and also gives reasonable lattice
constants (¢=3.00 A and @=71.3°). With all the other func-
tionals tested the angle goes to a=60°. At the B3LYP level
of theory the atoms are not bound in the solid. Although in a
global optimization LDA gets the rhombohedral angle cor-
rect, this appears to be due primarily to the overbinding of

TABLE V. The effect of the basis set superposition error and
spin-orbit interaction to the binding energy for cluster sizes
N=2-6, per atom. r,;, is the shortest bond length in A, obtained at
the [CCSD(T) +BSSE+SO] level of theory. All energies are in eV.

N rmin  BE/N  BSSE/N SO/N BE(+BSSE+SO)/N
2 4352 -0.011 0.008 —-0.001 —-0.004
3 4329 -0.037 0.025 -0.002 -0.014
4 4289 -0.076 0.056 -0.005 -0.025
5 4.173 -0.127 0.088 —-0.008 —-0.047
6 4.158 -0.176 0.123 -0.011 —-0.065
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FIG. 6. The dependence of the rhombohedral angle on nearest
neighbor distance, as calculated with LDA. The corresponding
binding energy is also shown.

LDA, as if the a is fixed at a higher value the angle will
decrease towards 60°. This is shown in Fig. 6. Already at a
=3.30 A, the optimized angle with LDA becomes 60°. On
the other hand, the PW91 functional gives larger angles at
short bond lengths. When the bond length is reduced from
the optimized value of a=3.54 A to a=3.00 A, « increases
from 60° to 86°. Hence the rhombohedral angle « is very
sensitive to the lattice constant a.

Equally disappointing is the performance of pure two-
body potentials. It has been demonstrated® that not only
three-body, but four-body and higher interaction terms are
important for mercury clusters. For example, a recently
determined empirical pair potential used for liquid/vapor
phase simulations* yields for the solid at T=0K a
=3.04 A, a=60.0°, E_;,=0.21 eV, and a zero-point energy
of wy=72 cm™! obtained from using the Einstein approxima-
tion (66 cm™! derived from the Debye frequency).’! In com-
parison, the simple Lennard-Jones potential®® gives a
=3.16 A, @=60.0°, E.;,;=0.63 eV, and wy=100 cm™'. The
most accurate potential curve as parametrized by Schwerdt-
feger et al’® gives a=3.47 A, @=60.0°, E,;,=0.42 eV, and
=58 cm™!. The difference to the experimental values is (in
addition to minor corrections such as temperature) purely
determined by three- and higher-body forces. It seems to be
that all two-body potentials lead to an angle of @=60.0° and
only vary in the cohesive energy and the lattice constant a.
This angle of course reflects fcc packing, that is two-body
potentials lead to closed packing and any distortion from fcc
is due to higher than two-body effects. The particular stabil-
ity of fcc packing is seen as a small dip in the energy curve
of Fig. 6 at around a=3.30 A.

Currently the best way to treat the solid-state for mercury
is by a many-body electron correlation expansion derived
from coupled-cluster theory for embedded clusters which is
added to the solid state HF energy, as detailed by Paulus and
co-workers.?>>? They obtained a cohesive energy of 0.79 eV
in good agreement with experiment. However, this method
is computationally quite expensive. In a recent paper® we
have shown that the many body expansion of the correlation
energy
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0.1 .
] HF ——
§ CCSD(T) —-rm
& COSD(T)+Expt -m-
0.05 :'(‘ Correlation -
=
)
> 0kt
T
f
w
-0.05 |
-0.1

FIG. 7. The HF and correlation description of Hg,.

Er= 2 A€+ 2 A€+ -+, (4)

i<j i<j<k

for Hgg converges much faster than the total energy, and that
even at 3.0 A the two-body part of the correlation energy
contains 95% of the total energy. Therefore as it is precisely
this part of the ab initio calculations that is most expensive,
replacing the explicit calculation of correlation by a two-
body correlation potential may allow us to optimize the
structures of larger clusters more accurately than has been
previously possible. We therefore attempted the parametriza-
tion of the two-body correlation potential obtained from the
diatomic potential curve, and tested this approximation for
the smallest cluster sizes and the solid state. For the solid this
requires the calculation of the bulk HF energy and the sub-
sequent addition of a simple two-body correlation energy
term calculated over all pairs in the lattice.>' This approach is
not only computationally cheap, but is conceptually simple
and may in principle be applied to all size ranges between
the atom and the bulk.

For the smallest mercury clusters the HF potential was
calculated using the large uncontracted basis set used for the
dimer potential, with the addition of g and & functions. Here
the BSSE at the HF level of theory becomes negligible. The
sum of HF plus the parametrized two-body correction was
then taken as the total energy of the cluster, and the structure
was optimized with respect to this energy by varying the
bond lengths. The initial coordinates were taken from the
MBPT2 optimized structures described in Sec. III B.

In Fig. 7 the Hartree-Fock curves for the dimer are shown,
calculated with our large uncontracted basis set. This is com-
pared to the best potential curve for Hg,, which is the
CCSD(T) curve of Ref. 36 including spin-orbit effects and
scaled to fit the experimental bond length and energy
(3.69 A, 400 cm™'=0.0018 a.u.=0.05 eV). The correlation
energy curve is simply the difference between the scaled
CCSD(T) [CCSD(T)+expt.] curve and the HF potential. A
simple function was fitted to the correlation energy curve
which for convenience took the same form as that used for
the CCSD(T) Hg, potential in Ref. 36. This is of the form

9
Ag;= > ay,(ri)) ™" (5)
n=3

for a potential depending on the distance between two atoms
r;;. The coefficients a,, are given in Table VL.
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TABLE VI. The coefficients a,, of Eq. (5) used for the correla-
tion potential (A€ in eV and r in a.u.).

Aoy

ag 4.5540579128E+01

ag -8.9370767041E+02
ay 6.0974939151E+03

aps -2.1744291269E + 04
ayy 4.3408446572E +04

ag —4.5875022175E+04
ag 1.9971335911E+04

Table VII shows the total binding energy and the opti-
mized bond lengths for clusters up to N=8. The agreement
with the CCSD(T) structures of Ref. 53 is very good, as
shown in Table VII. A final comparison of the energies and
bond lengths of mercury clusters (N=2-6) obtained with
different methods is given in Table VIII. Moving now to the
solid state we obtain at the experimental lattice parameters
Eyr=0.508 eV, E_,,=—1.384 eV, which gives for the total
cohesive energy Epp,con=—0.876 ¢V (E.,,=0.876 V). The
discrepancy to the experimental value comes most likely
from the HF part which is not repulsive enough due to basis
set deficiencies and corresponding BSSE, plus higher than
two-body effects in the correlation correction. Therefore we
performed a counterpoise correction for the HF energy of the
solid, where the basis functions of the 12 nearest neighbors
were included in the atomic energy calculation. This results
in a revision of the HF binding energy from 0.508 to
0.984 eV, and a total Eyp,cor,=—0.399 eV. This is a 54%
decrease in the cohesive energy due to the BSSE. Larger
basis sets could not be used due to convergence difficulties in
the SCF procedure. An optimization of the lattice structure
using the BSSE-corrected HF energy and the two-body cor-
relation energy finds a minimum at lattice parameters 2.97 A

TABLE VII. The HF+two-body correlation potential optimized
clusters N=2-6, based on the global minimum LJ geometries. The
CCSD(T) results are those of Ref. 53. For Hgs the bond length
given is that of the axial-equatorial bond of the trigonal bipyramid
[which are more numerous (6 pairs) than the longer axial-axial (1)
or shorter equatorial-equatorial (3) bonds]. For Hge and above the
shortest bond is given.

CCSD(T)
HF+correlation from Ref. 53

N r(A) BE (eV) r(A) BE (eV)
2 3.762 —-0.047 3.750 —-0.046
3 3.542 -0.171 3514 -0.183
4 3.359 —-0.446 3.350 -0.472
5 3.438 -0.625 3.440 -0.695
6 3.501 -0.768 3.519 -0.792
7 3.452 —-1.095

8 3.487 -0.710 3.649* -0.624*

aThe CCSD(T) calculation for Hgg assumed a cubic structure.
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TABLE VIII. Binding energies (BE) in eV and bond lengths (r)
in A, of mercury clusters (N=2-6) obtained with different meth-
ods. The CC’ results are the CCSD(T) results of this paper (without
BSSE correction), the Dolg results are the CCSD(T) results of Ref.
53, the HFC results are the Hartree-Fock+two-body correlation re-
sults, and the 2+3n results are the simulated annealing results of
Ref. 22.

r BE
N CC' Dolg HFC 2+3n CC’ Dolg HFC 2+3n
2 4.057 3.75 3.762 3.690 -0.022 —-0.046 -0.046 -0.045
3 3996 3.51 3.542 3.612 -0.111 -0.183 -0.171 -0.173
4 3918 3.35 3.359 3.398 -0.412 -0.472 -0.446 -0.403
5 3.894 344 3438 3.361 -0.635 -0.695 -0.626 -0.628
6 3.899 3.52 3.501 3.327 -1.056 -0.792 -0.767 -0.908

and a=68.5°. The binding energy here is then E_,
=0.419 eV, or 63% of the experimental value. However, we
can expect this error to be considerably less for finite systems
where we are able to use much better basis sets for the HF
calculation, thereby reducing the error inherent in the BSSE
correction.

Another consideration is related to the pseudopotential
approximation used for mercury (for both the cluster and
solid calculations) which will introduce a small error in the
repulsive region of the potential at small distances such as
3 A, which is due to the neglect of innercore polarization and
core-core repulsion effects. Nevertheless, this is a better re-
sult than what we have obtained with any density functional
yet.

D. Polarizabilities

Polarizabilities are sensitive to structural changes and
therefore useful to distinguish experimentally between differ-
ent isomers of the same cluster size. In the following, the
large and small basis sets are those used for the dimer poten-
tials and the cluster optimizations, respectively. Small+spf
refers to the basis set that we have used for all cluster polar-
izability calculations. The PWO91 values for the atom are
15.51 a.u. (small), 34.61 a.u. (large), and 32.99 a.u.
(small+spf). The experimental atomic polarizability of Hg is
33.92 a.u., taken from Goebel and Hohm.>* This clearly
shows the importance of diffuse and polarization functions.

Table IX compares the polarizability of each of the Hartke
isomers with the corresponding LJ isomer. Clearly the aver-
age polarizability of the Hartke structures is higher, due to
the lower symmetry and less compact arrangement. The dif-
ference is consistently about 1 a.u. per atom, with the ex-
ceptions of N=10, where the isomers have almost exactly
equal polarizabilities per atom, and N=13, where the differ-
ence is almost 2.5 a.u. per atom. The first case can be un-
derstood as the Hartke structure for N=10 is quite far from
compact compared to the LJ structure. Conversely the maxi-
mum difference seen for N=13 is due to the particularly high
symmetry of the icosahedral LJ cluster, which results in a
lower than otherwise expected polarizability. However, even
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TABLE IX. Comparison of the PW91 polarizability for different
Hg cluster isomers. The polarizability units are a.u.

Isotropic polarizability Anisotropic polarizability

N LJ isomers Hartke isomers LJ isomers Hartke isomers
272.5 281.0 98.4 82.2
308.3 317.9 77.7 1.5
356.7 369.4 114.1 63.3

10 396.5 396.1 106.6 22.0

11 4354 444.6 74.9 114.9

12 470.6 480.7 44.5 92.9

13 502.3 532.1 0.0 133.9

14 553.8 568.5 104.8 163.8

this difference is still only approximately 30 a.u., i.e., about
7% of the total polarizability value for N=13, and it will be
difficult experimentally to distinguish between the different
structures. However, less compact structures show large
anisotropies which are also listed in Table IX. In particular
we note the large difference in the polarizability anisotropy
of the different isomers for N=13, as expected, but also for
N=8, where the non-LJ isomer is more symmetric according
to this measure than the LJ isomer.

In Fig. 8 are plotted the polarizability per atom of all
clusters N=1-24, where the structures are the PW91 opti-
mized geometries obtained from the LIJ structures. Clear
magic numbers are seen at N=6,8,13,19, and 23. These
correspond to the most symmetric structures, the N=6 octa-
hedron, the N=8 D, structure (based on the octahedron),
and the icosahedral structures for N=13,19, and 23. This is
in precise agreement with the magic numbers found previ-
ously by Moyano et al..?”> These numbers are even more
pronounced in the plot of the change in polarizability from
N— N+1 also shown in Fig. 8. However, we notice a change
in the magic numbers observed when we plot the polarizabil-
ity anisotropy. Here we see that B(N) is zero for N=1,4,6,
and 13. For the 19 and 23 atom clusters, where a sharp mini-
mum was observed in the plot of the change in polarizability
from N— N+1, we observe a maximum in the polarizability
anisotropy. Thus the anisotropy is more sensitive to deforma-
tion along one axis such as in the prolate 19-atom cluster or
the oblate 23-atom cluster, while the isotropic polarizability
remains small.

In contrast to the Zny cluster polarizabilities in Ref. 27,
we find a smooth convergence to a limiting value in our plot
of polarizability per atom, with deviations due only to the
magic numbers. However, these become smaller with in-
creasing cluster size. Papadopoulos et al. 2’ consider sharp
changes in the Zny, cluster polarizabilities as an indication of
changes in the strength of bonding, and thus a transition from
van der Waals to covalent type bonding. In our case we do
not see a clear transition and the change is rather smooth.

In contrast to what is expected for metal clusters, the per
atom polarizability here increases with size. This is clearly
explained as the interaction of two closed-shell atoms pro-
duces a diffuse antibonding orbital and thus increases the
polarizability. The classical limit of a conducting sphere has
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FIG. 8. Top: The isotropic polarizabilities (per atom) of LJ clus-
ters, calculated with PW91. Center: The change in polarizability as
a(N)—a(N-1). The “magic numbers” corresponding to highly
symmetric structures are marked. Bottom: The polarizability aniso-
tropy B(N). Here the anisotropy goes to zero for the cases of highest
symmetry N=1,4,6,13.

been frequently used to justify the parametrization a:Rgff,
where R =R, + 8 and R,, is the core radius (the Wigner-Seitz
radius in the case of the bulk). Then & represents the electron
spill out from the ionic boundary. Within this model the per
atom polarizability for metal clusters must decrease as a
function of N from the atomic value®* (33.92 a.u.) to the
bulk limit>® (18.61 a.u.; r,=1.40 A at 78 K). It can be imag-
ined that the per atom polarizability will therefore increase
while the covalency of the cluster is increasing at small sizes,
as is seen here, start to decrease when the transition from
covalent to metallic bonding takes place, and only then (after
the experimentally suggested value of around 400 atoms, for
example) begin to descend towards the bulk limit.

IV. CONCLUSIONS

In analogy with the noble gas clusters, the most stable
isomers for small sizes of mercury clusters are the symmet-
ric, LJ type at all levels of theory, that is DFT, MBPT2, and
CCSD(T). The best description of their structure and energy
is obtained using coupled cluster methods or alternatively
our HF plus two-body correlation approach, which should
also work for larger systems. Improved calculations will only
be convincing with the use of a high-level correlation
method (e.g., multireference configuration interaction) with a
basis set larger than here to minimize the BSSE, which is
currently prohibitive. In the case of DFT the choice of func-
tional plays an important role; PW91 seems to describe the
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bonding of small systems best, albeit not that accurately.
Such an ad hoc choice of functional is a very unsatisfactory
situation and has to be addressed in future DFT development.
The use of a two-body potential to correct Hartree-Fock for
correlation looks very promising. Although our results are
preliminary, they do cover a wide range of structures. Both
for the clusters and for the bulk, the two-body correction
seems to be very accurate with reference to the best data that
we have to compare with. This simple ansatz of a two-body
correlation potential can be expected to have wide applica-
bility for mercury clusters and for the simulation of solid to
liquid phase transitions.

The polarizability of the calculated mercury clusters in-
creases over the range studied, with no transition from van

PHYSICAL REVIEW B 74, 024105 (2006)

der Waals type to covalent bonding visible. This is in agree-
ment with the accepted value (around 400 atoms) for the
transition in mercury according to experiment, but is in con-
trast to some recent results for zinc.?’
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