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The temperature and field dependence of reversible magnetization has been measured on a YBa2Cu3O7−�

single crystal at six different doping concentrations. It is found that the data above 2 T can be described by a
scaling law based on critical fluctuation theory in a lowest-Landau-level approach in Ginzburg-Landau theory
yielding the values of the slope of upper critical field −dHc2�T� /dT near Tc. A universal scaling has been found
in the five underdoped samples. Based on a simple Ginzburg-Landau approach, we determined the doping
dependence of the upper critical field Hc2�0� and the coherence length �. Our results may indicate a growing
coherence length with increasing underdoping.
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In hole-doped high-temperature superconductors the tran-
sition temperature Tc and the maximum quasiparticle gap
�also called the pseudogap� behave in opposite ways with
respect to doping: the former decreases down but the latter
increases with increasing underdoping.1 Although some con-
sensus has been reached on the doping dependence of some
quantities, such as the transition temperature Tc, the super-
fluid density �s, and the condensation energy, etc., the doping
dependence of the upper critical field and the coherence
length in the underdoped region still remain highly contro-
versial. In practice, however, to directly determine Hc2�0�
has turned out to be a difficult task due to its very large
values. An alternative way to derive −dHc2�T� /dT near Tc is
to measure the reversible magnetization or conductivity and
then analyze the data based on critical fluctuation theory.

Using the Lawrence-Doniach model for layered-structure
superconductors, Ullah and Dorsey obtained expressions for
the scaling functions of various thermodynamic and transport
quantities around Tc.

2 Moreover, Tešanović et al. pointed out
that the scaling of magnetization due to critical fluctuations
near Hc2�T� can be represented in terms of the Ginzburg-
Landau �GL� mean-field theory on a degenerate manifold
spanned by the lowest Landau level �LLL�.3 By using a non-
perturbative approach to the Ginzburg-Landau free energy
function, M�T� curves are evaluated explicitly for quasi-two-
dimensional �2D� superconductors in a closed form as

M

�TH�1/2 = Bf�A
T − Tc�H�
�TH�1/2 � , �1�

f�x� = x − �x2 + 2, �2�

where A and B are independent of T and H, but A is depen-
dent on both the GL parameter � and �dHc2 /dT�Tc

, and B
�1/�. This scaling behavior is expected especially in a high
magnetic field. Many experiments were tried to test these
scaling laws leading to values of the slope −dHc2 /dT.4–7

However, due to the sample diversity, the scaling produced

values of −dHc2 /dT that did not agree with each other. As a
consequence, the universal scaling for superconducting dia-
magnetization fluctuations is still elusive. In this paper, we
systematically investigate the diamagnetization fluctuations
in the vicinity of Tc of a YBa2Cu3O7−� �YBCO� single crys-
tal with six oxygen doping levels. The results indicate the
plausibility of the existence of a universal scaling in the
framework of 2D GL LLL approximation theory. The doping
dependence of Hc2�0� is also reliably obtained.

The YBa2Cu3O7−� single crystal used here was grown by
top-seeded solution growth using a Ba3-Cu5-O solvent. De-
tails for crystal growth are presented elsewhere.8 The crystal
has the shape of a platelet with lateral dimensions of 3.30
�1.98 mm, thickness of 0.44 mm, and the mass around
15.56 mg. The different concentrations of oxygen were
achieved by post annealing the sample at different tempera-
tures in flowing gas followed by a quenching in liquid nitro-
gen. The detailed annealing procedures are as follows. The
as-grown YBa2Cu3O7−� single crystal was first annealed at
400 °C for 180 h with flowing oxygen and slowly cooled
down to room temperature. The resulting crystal �S1� is close
to optimally doped with a Tc=91.5 K. Then the following
dopings of this specific sample were achieved by annealing it
in flowing oxygen in sequence: Tc=84.4 K �520 °C for
about 110 h, S2�, 78.6 K �540 °C for 120 h, S3�, 68.0 K
�580 °C for 110 h, S4�, 58.4 K �680 °C for 130 h, S5�. The
last sample �S6� was annealed at 520 °C for 90 h with flow-
ing N2 gas, yielding Tc=30.3 K.

The magnetization was measured by a Quantum Design
superconducting quantum interference device �SQUID� mag-
netometer in both so-called zero-field-cooled �ZFC� and
field-cooled �FC� modes with fields ranging from 10 G to
5 T parallel to the c axis. In the reversible regime, the data
measured using ZFC and FC modes coincide very well. In
SQUID measurements, a scanning length of 3 cm was taken;
the SQUID response curves in the reversible regime were
fully symmetric to avoid artificial signals.

The Tc’s of the sample in the six annealed states were
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determined by the intersection of the highest-slope line
drawn through the data below Tc with the normal-state back-
ground extrapolation9 �as shown in Fig. 1�a�, ZFC mode, H
=10 Oe�. One can see that the superconducting transitions
are rather sharp near the transition point. The gradually
rounded foot of the M�T� curves in the more underdoped
samples may be attributed to the easy flux motion since the
system becomes more 2D-like. The relationship between the
Tc’s and the oxygen doping level p �determined by using the
phenomenological relation10 Tc /Tc

max=1−82.6�p−0.16�2,
taking Tc

max=93.6 K� has been summarized in Table I.
Presented in Fig. 1�b� are the M�T� curves in the revers-

ible regime under the applied magnetic fields H=0.5, 1, 2, 3,
4, and 5 T. A crossing point �or a small area� at or near
�T* ,M*� appears in each set of M�T� curves. Such crossing
behavior of the M�T� curves in high magnetic field has been
well described by 2D or 3D GL LLL scaling theory, and is a
general consequence of fluctuations in the vortex state. How-
ever, the value of M* /T* is not a constant in our six sets of

M�T� data. This phenomenon does not necessarily mean the
failure of the 2D GL LLL scaling theory;3 it has been widely
observed in YBa2Cu3O7−x,

11 HgBa2Ca2Cu3O8+x,
12 and

Bi2Sr2CaCu2O8 �Bi2212� single crystals.13 It may be attrib-
uted to the bilayer structure and the doping-induced change
of the fluctuation region.

Despite the deviation mentioned above, excellent 2D scal-
ing curves are obtained for each set of data with different p
and H�2 T, as shown in Fig. 2, where M�H ,T� / �TH�1/2 is
scaled as a function of the variable �T−Tc�H�� / �TH�1/2. We
also performed 3D scaling of M�T� for our six samples. The
quality of the 2D scaling is, however, better than that of 3D
scaling for the five sets of M�T� curves of S2, S3, S4, S5, and
S6. For S1 �close to optimally doped� the quality of 3D scal-
ing is as good as that of 2D scaling with a narrower scaling
region. This suggests a 2D-3D crossover between p=0.126
and 0.143 for our deoxygenated YBCO crystals.

To satisfy this 2D scaling, two variables Tc0 and dHc2 /dT
are employed in Tc�H� as the fitting parameters: Tc�H�=Tc0

−H�dHc2 /dT�−1. The values of Tc0 and −dHc2 /dT resulting
from the fit are also listed in Table I. The critical fluctuation
region �T	Tc0−Tc increases with decreasing p, indicating a
larger fluctuation regime for more underdoped YBCO. As
shown in Table I, both Tc0 and �dHc2 /dT�Tc

drop down with
increasing underdoping. Another interesting phenomenon
shown by Fig. 2 for the scaled curves is that there is a dif-
ferent type of crossing point for different samples. This type
of crossing point may indicate a universal scaling among
different samples.

As all M�T� data are measured on the same platelet of a
YBCO single crystal, this allows us to test the universal scal-
ing for six sets of M�T� curves based on 2D LLL scaling as
shown in Fig. 2. In the following we will check the feasibil-
ity of the universal scaling �full 2D LLL scaling� for these
six samples. In full 2D LLL scaling for our data, the vertical
axis M / �TH�0.5 �y axis� is dependent only on the GL param-
eter �, and scaling of the unit on the horizontal axis �x axis�
is written as3

FIG. 1. �Color online� �a� Temperature dependence of the mag-
netization measured in the warming-up process with a ZFC mode at
H=10 Oe for the samples at six different doping levels. �b� Mag-
netization vs temperature at magnetic fields of 0.5, 1, 2, 3, 4, and
5 T. A crossing point �or a narrow area� marked as �T* ,M*� appears
for each sample showing a typical behavior of critical fluctuation.

TABLE I. Parameters in six different annealed states.

Sample Tc �K� p Tc0 �K� �dHc2 /dT� �T/K�

S1 91.5 0.143 92.7±0.6 3.45±0.01

S2 84.4 0.126 85.7±0.3 3.23±0.01

S3 78.6 0.116 80.0±0.5 3.03±0.01

S4 68.0 0.102 70.1±0.5 2.00±0.01

S5 58.4 0.093 62.6±0.5 1.82±0.02

S6 30.3 0.070 36.7±1.0 1.43±0.05

FIG. 2. �Color online� Scaling curves based on the 2D GL LLL
critical fluctuation theory �see text� for the samples at six different
doping levels. From this scaling one can determine the slope
�dHc2�T� /dT�Tc

for each sample. Interestingly, a different type of
crossing point exists for the scaled curves of different samples.
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x =
L

�

dHc2

dT



Tc

�T − Tc�H�
�TH�1/2 � , �3�

where L is a constant, related to s, the interlayer spacing.
From this expression for the x axis, it is evident that a full 2D
LLL scaling analysis of diamagnetization fluctuations has to
include a material-dependent scaling factor A= L

� �
dHc2

dT �Tc
. In

doing the universal scaling we first put the 2D-scaled data of
S2 as a reference, i.e., the values of the “x axis” and “y axis”
are multiplied by two free prefactors A�p=0.126� and B�p
=0.126� to get a best fit to the theoretical curve �thick solid
line in Fig. 3�. Based on the 2D LLL scaling scenario, such
full 2D LLL scaling is performed by multiplying by a factor
A �p�=A �p=0.126� �Hc2� �p� /Hc2� �p=0.126�� �� �p=0.126� /��
the value of the x axis, and multiplying by 1/B�p�= �1/B�p
=0.126���� /��p=0.126�� the value of the y axis of each
scaled curve in Fig. 2 to make all curves collapse on a single
branch. Here we use the values of Hc2� = �

dHc2

dT �Tc
obtained in

2D scaling analysis and leave � /��p=0.126� as the only free
fitting parameter for each sample. The resulting collapse of
curves from the six samples is shown in Fig. 3, together with
the doping dependence of � /��p=0.126�. It is found that the
scaling quality is predominantly controlled by �dHc2 /dT�Tc
and � depends weakly on the doping level. Within the ex-
perimental uncertainty the quality of the data collapse is rea-
sonably good and the data fit the universal theoretical curve
�Eq. �2�� of the 2D GL LLL theory very well except for a
deviation for the sample p=0.143 �Tc=91.5 K�, where we
believe the system becomes more 3D-like.

We now discuss the results obtained by the universal
scaling analysis. According to the Werthamer-Helfand-
Hohenberg14 theory, the value of Hc2�0� is given by Hc2�0�
=0.69Tc �dHc2 /dT�Tc

. Displayed in Fig. 4�a� is the depen-
dence of Hc2�0� on p based on the obtained values of

�dHc2 /dT�Tc
and Tc in Table I. Our data show a rough linear

correlation between Hc2�0� and p: Hc2�0�=2620�p−0.058�.
We note that such a linear Hc2�0�− p was also obtained for an
underdoped Bi2212 polycrystal.15

In the underdoped regime the linearity of Hc2�0�− p leads
to a linear dependence of superfluid density �s�0� on p by the
relation: Hc2�0�=	0 /2
�2=	0�2 /2
�ab

2 . Based on the fact
that � is weakly p dependent, which is indeed the case for
our samples and also found previously in underdoped
YBCO,16 it is easy to have �ab

−2�0���s�0�� p. This linear cor-
relation was recently verified in Bi2212,15 La2−xSrxCuO4 and
HgBa2CuO4+�.17

The coherence length �ab�0� of each sample can also be
extracted from the Hc2�0� value of Fig. 4�a�. For example,
we have �ab�0�= �	0 /2
Hc2�0��1/2=12.2 Å for Hc2�0�
=220 T for the sample of Tc=91.5 K. In Fig. 4�b� �ab is
summarized and depicted as a function of p in the under-
doped regime. As Hc2�0� is reduced to zero at the point p
=0.058±0.002, very close to the critical point pc=0.050 for
superconductivity, it is easy to see that Hc2�0� and Tc simul-
taneously drop to zero at the critical point of the phase dia-
gram, indicative of the complete suppression of �s�0� at pc

�0.05. Our results here may indicate a growing coherence
length in the more underdoped region, which is consistent
with our earlier report.18

In summary, we have systematically investigated the criti-
cal fluctuations in a YBa2Cu3O7−� single crystal at six differ-
ent doping concentrations. It is found that the data above 2 T

FIG. 3. �Color online� A universal scaling curve obtained by
collapsing the six scaling curves for different doping concentrations
based on the closed form of the scaling equation of Tešanović et al.
�Ref. 3�. The thick solid line is a theoretical curve after Eq. �2�.
The inset shows the relative � value derived from the universal
scaling.

FIG. 4. �Color online� �a� The doping dependence of the upper
critical field Hc2�0� �phase coherence� derived by doing the scaling.
The solid line is a guide to the eye. �b� Doping dependence of the
coherence length determined from Hc2�0� �see text�. The solid line
is drawn to guide the eye.
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can be described by a universal scaling law based on the 2D
GL LLL critical fluctuation theory. Thus the values of the
slope of upper critical field −dHc2�T� /dT near Tc �and thus
Hc2�0�� can be reliably extracted. The coherence length de-
rived from Hc2�0� increases toward more underdoping.
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