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The frustrated ferromagnetic spin-1 /2 Heisenberg chain is studied by means of a low-energy field theory as
well as the density-matrix renormalization group and exact diagonalization methods. First, we study the
ground-state phase diagram in a magnetic field and find an “even-odd” �EO� phase characterized by bound
pairs of magnons in the region of two weakly coupled antiferromagnetic chains. A jump in the magnetization
curves signals a first-order transition at the boundary of the EO phase, but otherwise the curves are smooth.
Second, we discuss thermodynamic properties at zero field, where we confirm a double-peak structure in the
specific heat for moderate frustrating next-nearest-neighbor interactions.
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The physics of frustrated quantum spin systems is cur-
rently attracting large interest as exotic quantum phases
may emerge.1 Prominent examples are quantum-disordered
ground states with different patterns of broken translational
symmetry and quantum chiral phases �see, e.g., Ref. 2�. In
addition, some frustrated systems have a large number of
low-lying excitations, leading to unusual features in thermo-
dynamic quantities.

In one dimension, the paradigmatic model is the frustrated
spin-1 /2 chain

H = �
l

�J1s�l · s�l+1 + J2s�l · s�l+2� − h�
l

sl
z. �1�

s�l are spin s=1/2 operators at site l, while h denotes a mag-
netic field.

Much is known about the ground-state properties and the
magnetic phase diagram of the frustrated antiferromagnetic
�AFM� chain with J1 ,J2�0.2 We highlight the appearance of
a plateau in the magnetization curve at magnetization
M =1/3 and the existence of an “even-odd” �EO� region at
small J1 with spins flipping in pairs in a magnetic field h.3

Relatively little attention has been paid to frustrated fer-
romagnetic �FM� chains, i.e., J1�0 and J2�0, until the
recent discovery of materials described by parameters
with this combination of signs. We mention in particular
Rb2Cu2Mo3O12 which is believed to be described by
J1�−3J2,4 and LiCuVO4 which lies in a different parameter
regime with J1�−0.3J2.5 In both cases, the saturation field
hsat is within experimental reach. A recent transfer-matrix
renormalization group �TMRG� study6 of the thermodynam-
ics of Eq. �1� was motivated by the experimental results for
Rb2Cu2Mo3O12.

In this paper we study the zero-temperature phase dia-
gram in a magnetic field and the thermodynamics of Eq. �1�
at zero field. The former is obtained by a combination of a
low-energy field theory and the density-matrix renormaliza-

tion group �DMRG� method,7 while the latter is computed by
exact diagonalization �ED�. We develop a minimal effective
field theory description for the region of small J1 and
h�hsat and predict the existence of an EO phase. Note that at
J1=−4J2, the system undergoes a transition to a FM ground
state.8 The field theory predictions are verified by our
DMRG results. Further, our ground-state phase diagram dif-
fers qualitatively from recent mean-field predictions.9 In our
study of thermodynamic properties,10 we focus on the ex-
ample of J1=−3J2 and present data for system sizes up to
N=24 sites. The specific heat of LiCuVO4 will be discussed
elsewhere.11

First we discuss an effective field theory describing the
long-wavelength fluctuations of Eq. �1� in the limit of strong
next-nearest-neighbor interactions J2� �J1�.

Just below the saturation field, the problem can be
mapped onto a dilute gas of bosons.12 This mapping, which
is asymptotically exact in the subspace of two magnons,
shows that magnons bind in pairs for any J1�0. Although
the two-magnon state is not always realized as a ground state
in a magnetic field,13 Chubukov12 found that in this subspace
and for −0.38J1�J2, the ground-state momentum is com-
mensurate while for −0.25J1�J2�−0.38J1, it becomes in-
commensurate. Based on the discontinuous nature of the
change of momentum for the lowest two-magnon bound
state, Chubukov further predicted a first-order phase transi-
tion between a chiral and a dimerized nematiclike phase.

Apart from the issue of the two-magnon states being re-
alized as ground states, the mapping onto a dilute gas of
bosons is controlled just near the saturation field h�hsat. We
apply a complementary bosonization procedure which is
controlled for h�hsat and confirm that the hallmark property
of the commensurate region—pair binding of magnons—is
universal and extends well below the saturation field. A good
starting point is the limit of J2� �J1� and a finite magnetic
field h�0.13 In this limit, the system may be viewed as two
AFM chains subject to an external magnetic field and weakly
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coupled by the FM zigzag interaction J1. It is well known
that the low-energy effective field theory for a single isolated
spin-1 /2 chain �J1=0� in a uniform magnetic field is the
Tomonaga-Luttinger liquid14

H =
v
2
� dx	 1

K
��x��2 + K��x��2
 . �2�

Above we have introduced a compactified scalar bosonic
field � and its dual counterpart �, with ���x� ,��y��= i��y
−x�, where ��x� is the Heaviside function.

The Luttinger liquid �LL� parameter K�h� and spin-wave
velocity v�h� can be related to microscopic parameters of
the lattice model J2 and h using the Bethe-ansatz solution
of the Heisenberg chain in a magnetic field.15,16 We recall
here that K�h� increases monotonically with the magnetic
field from K�h=0�=1/2 to the universal free-fermion value
K=1 for h approaching the saturation field hsat=2J2. The
Fermi wave vector kF= �

2 �1−M� is determined by the mag-
netization M. Note that we normalize the magnetization to
M =1 at saturation, i.e., M =2Sz /N with Sz=�lsl

z.
Now we perturbatively add the interchain coupling term

to two chains, each of which is described by an effective
Hamiltonian of the form Eq. �2� and fields �i, i=1,2. For
convenience, we transform to the symmetric and antisym-
metric combinations �±= ��1±�2� /�2 and �±= ��1±�2� /�2.
In this basis and apart from terms H0

± of the form �2�, the
effective Hamiltonian describing low-energy properties of
Eq. �1� contains a single relevant coupling with the coupling
g1�J1	v:

Heff = H0
+ + H0

− + g1� dx cos�kF + �8��−� , �3�

and the renormalized LL parameter

K− = K�h��1 + J1K�h�/��v�h�� . �4�

The Hamiltonian �3� yields the minimal effective low-energy
field theory describing the region J2� �J1� of the frustrated
FM spin-1 /2 chain for M �0. The relevant interaction term
cos �8��− opens a gap in the �− sector. Since sl+1

z −sl
z

��x�−, relative fluctuations of the two chains are locked,
leading to pair binding of magnons. These bound pairs of
magnons themselves are gapless, since sl+1

z +sl
z��x�+. This

phase was observed for an AFM J1 in Ref. 3 and dubbed the
EO phase.

In addition, we confirm this picture numerically. The sim-
plest possible lattice model that is described by a low-energy
effective Hamiltonian of type �3� is a spin ladder with a
dominant biquadratic leg-leg interaction.17 We compute the
magnetization curve with DMRG �results not presented here�
and verify that only even magnon sectors are realized as
ground states for all fields h�0.

Equation �4� shows that the LL parameter K− decreases
with an increasing absolute value �J1� of the FM interchain
coupling, in contrast to an AFM coupling. However, the
bosonization procedure becomes inapplicable once K− van-
ishes. This signals an instability of the EO phase when in-
creasing �J1�. Moreover, we conclude that for FM J1, the EO

phase extends up to the saturation field hsat �since K−�1 for
J1�0 such that there is always a relevant coupling in the
antisymmetric sector�, in contrast to the AFM case.

To check this scenario and determine the phase bound-
aries, we perform DMRG calculations for up to 156 sites
imposing open boundary conditions. The finite-system
algorithm7 is used and we keep up to 350 states. DMRG
gives direct access to the ground-state energies E0�Sz ,h=0�
at zero magnetic field in subspaces labeled by Sz. After shift-
ing the ground-state energies E0�Sz ,h=0� by a Zeeman term
through E0�Sz ,h�=E0�Sz ,h=0�−hSz, it is straightforward to
construct the magnetization curve.

We start the discussion from the limit �J1�
J2. The mag-
netization curves for J1=−J2 are shown in Fig. 1�a�. In par-
ticular, we verify the pair binding of magnons predicted
above: in a wide parameter range in the magnetic phase dia-
gram �h vs J1�, the magnetization changes in steps of
�Sz=2. This can be observed even on systems as small as
N=24, while for an AFM interchain coupling J1�0, the
formation of bound states was only reported for long chains.3

From the inset of Fig. 1�a�, which shows data for J1
=−2.5J2, we conclude that a second phase emerges at lower
fields, signaled by a change of the magnetization steps from
�Sz=1 to 2 at h=hjump. This transition is first order.

In contrast to the frustrated antiferromagnetic chain,3 no
indications of an M =1/3 plateau are found. We find that the
width of the 1/3 plateau as seen in finite systems scales to
zero with 1/N.

The magnetization curve exhibits further features when J1
approaches the transition to the FM regime, occurring at
J1=−4J2. The main observations from Fig. 1�b�, which
shows M�h� for J1=−3J2, and additional data not displayed
in the figures, are as follows. Below saturation, the steps in
M�h� are of size �Sz=3 �see, e.g., the case of J1=−3J2 in
Fig. 1�b��. Upon decreasing J1→−4J2, the magnetization
curve becomes very steep below saturation and the steps of
�Sz may even be larger than 3. For instance, we find steps of
�Sz=4 for J1=−3.75 and N=60 below saturation. Neverthe-
less, the asymptotic behavior of M�h� close to the saturation
field for J1=−3J2 �see Fig. 1�b�� is consistent with a standard
square-root singularity in M�h� �see Ref. 13 and references
therein�.

Our main findings for the magnetic phase diagram are
displayed in Fig. 1�c�, where h is normalized by hsat.

12,18 The
largest part of the phase diagram belongs to the EO phase,
while the transition to the region with �Sz=1 is first order.
The position of this line, i.e., hjump �dotted, with stars� is
consistent with results of Ref. 12 in the high-field limit, but
the transition takes place at lower h /hsat for smaller �J1�. For
larger J1 and fields h�ht, a third region emerges, character-
ized by �Sz=3. Just as for AFM J1,19 one may speculate
about chiral order in some of these regions as well as addi-
tional phases, but substantially larger system sizes might be
needed to fully reveal the nature of this part of the phase
diagram.

Next we discuss thermodynamic properties concentrating
on h=0. We perform full diagonalizations to obtain all eigen-
values and then use spectral representations to compute ther-
modynamic quantities, as described in some detail for the
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entropy in Ref. 20. In order to render the Hamiltonian �1�
translationally invariant, we now impose periodic boundary
conditions. After symmetry reduction, the biggest matrices to
be diagonalized for N=24 are of complex dimension 81 752.
In such high dimensions, we use a custom shared-memory

parallelized Householder algorithm, while standard library
routines are used in lower dimensions.

Figure 2 shows results at J2=−J1 /3 and h=0 for rings
with N=16, 20, and 24. This ratio of exchange constants is
close to values suggested for Rb2Cu2Mo3O12,

4 and the phase
diagram in a magnetic field promises interesting properties in
this parameter regime. Both the magnetic susceptibility �
and the specific heat C have a maximum at low temperatures,
namely, for N=24 at T�0.04�J1� in the case of � and
T�0.023�J1� in the case of C. While these low-temperature
maxima are affected by finite-size effects, the dependence on
N is negligible at higher temperatures. The specific heat ex-
hibits a second broad maximum around T�0.67�J1�. Such a
double-peak structure in the specific heat has already been
observed for J2=−0.3J1 on a finite lattice with N=16 sites,21

and by TMRG at J2=−0.4J1.6 Note that the results for C of
Ref. 6 are restricted to temperatures T0.013�J1� in this pa-
rameter regime, and the TMRG method might be plagued by
convergence problems at low temperatures. Despite the
finite-size effects in our data at low temperatures we can

FIG. 1. �Color online� �a� Main panel �inset�: Magnetization
curve M�h� for J1=−J2 �J1=−2.5J2�. The horizontal dotted line
marks M =1/3. �b� M�h� for J1=−3J2. �c� Magnetic phase diagram
of the frustrated FM chain. The dotted line �with stars� marks the
first-order transition between the EO phase and the �Sz=1 region,
while the line h=ht �dashed, triangles� separates the �Sz=1 region
from the �Sz�3 part. Uncertainties of the transition lines, e.g., due
to finite-size effects, should not exceed the size of the symbols. The
fields hjump and ht were extracted from N=156 sites �stars� and
N=120 sites �triangles�, respectively. The dashed, vertical line is the
result of Ref. 12 �J2�0.38J1�.

FIG. 2. �Color online� Magnetic susceptibility �top panel�, spe-
cific heat �middle panel�, and entropy per site �bottom panel� for
N=16, 20, and 24 at J1=−3J2, h=0 in comparison to a FM chain
with J2=0 and N=20. Middle panel, inset: specific heat at low
temperatures for J1=−3J2.
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clearly resolve the low-temperature peak in C �see inset of
the middle panel of Fig. 2�.

Our results for � �top panel of Fig. 2� differ qualitatively
from those obtained for J2=−0.3J1 and N=16 in Ref. 21 by
ED. In particular, we find a singlet ground state for all peri-
odic systems with �J1��4J2 investigated, in contrast to Ref.
21. However, we do find good agreement with the more re-
cent TMRG results for �.6

It is not entirely trivial to separate the low- and high-
temperature features in C and � into FM and AFM ones. Let
us compare the case J2=−J1 /3 with an unfrustrated FM
chain �Fig. 2 includes results for J2=0, J1�0, and N=20�.
In both cases, there is a broad maximum in C at high
temperatures, although numerical values are different. Con-
cerning the low-temperature peaks in � and C, note that, for
J1=−3J2, the FM s=N /2 multiplet is located at an energy of
about N�J1� /40 above the s=0 ground state. Since this energy
scale roughly agrees with the temperature scale of the low-
temperature maxima, it is conceivable that they correspond
to FM fluctuations above an AFM ground state.

Finally, we note that the entropy of the frustrated FM
chain �J2=−J1 /3� is larger than that of the simple FM chain
�J2=0� over a wide temperature range �see bottom panel of
Fig. 2�. Only for very low temperatures does the FM ground
state lead to a bigger entropy for J2=0.

To summarize, we have studied the ground-state phase
diagram of a frustrated FM chain in a magnetic field and
found an EO phase characterized by bound pairs of mag-
nons. The boundary of this phase appears to be first order
and terminates for h→hsat at J2�−0.38J1.12 At larger FM

�J1�, changes in the step height of the magnetization curves
signal the presence of further phases, which need to be stud-
ied in more detail. It would also be desirable to better under-
stand the low-lying excitations in the different phases and to
compare to the case of the frustrated antiferromagnetic
chain.3 Our phase diagram differs substantially from recent
mean-field predictions.9 In particular, our DMRG data ex-
hibit a smooth transition to saturation for any J1�−4J2, in
contrast to previous studies.9,18 This observation may also be
relevant for the transition to saturation in the frustrated
square lattice ferromagnet.22 The parameters relevant to
LiCuVO4 �Ref. 5� lie well inside the EO phase where the
theoretical magnetization curves are completely smooth.

Furthermore, we have discussed thermodynamic proper-
ties.10 The most prominent feature for J2=−J1 /3, h=0 is a
double-peak structure in the specific heat.6,21 The excitation
spectrum is not reflected directly in thermodynamic quanti-
ties, but microscopic probes such as neutron scattering or
nuclear magnetic resonance should be able to differentiate
between gapped �Sz=1 excitations and gapless �Sz=2 exci-
tations.
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