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The basic assumption of this paper is that in the presence of Bose-Einstein condensation �BEC� in liquid
4He, the wave functions of occupied many particle states are the superposition of two components; a phase
coherent component, proportional to the ground state wave function and a phase incoherent component. It is
shown that this assumption satisfies necessary conditions imposed by the presence of BEC and that the wave
functions of the ideal Bose gas and wave functions of the Bijl-Feynman type are of this form. It is shown that
this single assumption provides simple microscopic explanations of essentially all the exotic properties of
helium II; why BEC implies two fluid behavior, how the superfluid and condensate fractions are linked, how
Landau theory is linked to the presence of BEC, why the superfluid exhibits flow without viscosity and
macroscopic quantum effects while the normal fluid does not, how the anomalous expansion and loss of spatial
order, observed in helium II as it is cooled, is linked to BEC, and how the presence of sharp peaks observed
in the dynamic structure factor are linked with BEC. The theory provides predictions that are in quantitative
agreement with a wide range of presently unexplained experimental data on helium II.
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I. INTRODUCTION

Liquid helium II �He II� behaves as if it were a mixture of
two fluids freely intermingling without any viscous
interaction.1 The superfluid component has weight �S, zero
entropy, flows without viscosity and participates in macro-
scopic quantum effects such as quantized vortices. The nor-
mal fluid has weight �N=1−�S and does not exhibit these
properties. It is widely accepted that two fluid behavior in
He II is linked to the presence of Bose-Einstein condensation
�BEC� of 4He atoms. In a Bose condensed system, the mo-
mentum distribution of the atoms develops a sharp peak,
which contains a fraction f �the “condensate fraction”� of the
total weight �see Fig. 1�. As the temperature T is raised f
decreases, going to zero at the Bose condensation tempera-
ture TB. Until 1995 BEC had been experimentally observed
only in liquid 4He,2–8 but its observation in dilute trapped
gases has strongly stimulated interest in this phenomenon
and its potential applications.9–11

The experimental and theoretical evidence for the link
between BEC and two fluid behavior is very strong. The
theoretical basis for this link has been extensively investi-
gated by field theoretical methods,12,13 which have shown
that14 BEC implies two fluid behavior in weakly interacting
Bose gases. Convincing evidence for this link in 4He is pro-
vided by neutron scattering measurements2–5,7,8 and path in-
tegral Monte Carlo calculations.15,16 Both show that BEC
appears at the same temperature as a finite superfluid frac-
tion. However, there are still a number of fundamental, un-
answered questions about the nature of this link.

For example, Landau theory17 accurately predicts the
properties of the normal fluid in He II. Landau postulated
that the normal fluid is a gas of “elementary excitations,” of
momentum �q and energy ��. The normal fluid fraction and
many other thermodynamic properties of He II can be quite
accurately calculated18 by assuming that these excitations be-
have as noninteracting Bose particles, with the q ,� relation-
ship obtained from neutron scattering data. However it is not

clear how the presence of BEC is connected to the Landau
theory. Another unresolved problem is the relationship be-
tween the superfluid fraction and the condensate fraction. It
is known that the two fractions are not the same. For ex-
ample, as T→0, �S→1, whereas neutron scattering
measurements2–4,6,8 and calculations15 show that in this limit
f �0.07 in He II. Calculations on weakly interacting Bose
gases in the limits T→0 �Ref. 19� and T→TB �Ref. 20� also
indicate that there is no simple, universal relationship be-
tween �S and f .21 However, it is not clear that the latter
conclusion applies away from these limits, or to a strongly
interacting system such as He II.

Apart from these questions of principle there are many
fundamental experimental properties of He II that have no
accepted explanation. For example, He II expands22 and its
spatial order decreases23 as the temperature is reduced. This
uniquely anomalous behavior has been extensively

FIG. 1. Schematic illustration of the momentum distribution
n�p� in a Bose condensed system. n�p� contains a sharp central peak
in the p=0 state, with width �� /L, where L�V1/3 is the linear
dimension of the N particle system. The integrated intensity of the
condensate peak comprises a fraction f of the total integrated
weight of n�p�.
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discussed,24–32 but there is at present no agreement as to why
it occurs, or how it is linked to BEC.

Another unique property of He II is that inelastic neutron
scattering reveals sharp peaks,33–35 with essentially zero
width36 at sufficiently low temperatures. There is no consen-
sus as to how the occurrence of these peaks is linked to BEC,
or how their intensities vary with temperature. Although re-
cent theory37,38 suggests that the peak intensities should be
proportional to f , there is no general agreement that this is
the case, or that the intensities go to zero at the superfluid
transition.39,40

The present paper is the latest in a series of papers41–46 in
which the basic approach is to investigate the implications of
BEC for the properties of the many particle wave functions
describing the system. The outline of the paper is as follows.
Section II reviews the necessary conditions BEC imposes on
the wave functions of many particle states occupied at a
given T. The basic assumption of the paper is presented in
Sec. III. The remainder of the paper investigates the conse-
quences of this assumption. It is shown in Sec. IV that it
implies two fluid behavior. In Sec. V that it implies that the
superfluid fraction is proportional to the condensate fraction.
It is also shown in this section that the basic assumption
provides a simple quantitative explanation of the anomalous
thermal expansion and loss of spatial order as He II is
cooled. In Sec. VI a physical interpretation is given. In Sec.
VII it is shown that the basic assumption provides a simple
explanation of the presence and temperature dependence of
sharp peaks in the dynamic structure factor of He II and of
the link between BEC and Landau theory. Appendix A con-
sider fluctuations in the condensate fraction. In Appendix B
it is shown that in the presence of BEC, the ideal Bose gas
wave functions and wave functions of the Bijl-Feynman47,48

type satisfy the basic assumption.

II. NECESSARY PROPERTIES OF THE WAVE FUNCTIONS
IN THE PRESENCE OF BEC

The momentum distribution, n�p��, of atoms in a many
particle system can be expressed in terms of the wave func-
tions by the following rigorous expressions:

n�p�� = �
i

�i�T� � niS��p��ds� , �2.1�

where

niS��p�� =
1

V
�� �i�r�,s�exp�ip� · r��dr��2

. �2.2�

The subscript i denotes an N particle eigenstate with energy
Ei, �i�T��exp�−Ei /T� is the probability that the state i is
occupied at temperature T, and V is the volume within which
the system is enclosed. �i�r� ,s� is the many particle wave
function of state i, r� is a randomly selected particle coordi-
nate �say r�1—which coordinate is chosen is irrelevant due to
the Bose symmetry of the wave function�, and s�
=r�2 ,r�3 , . . . ,r�N denotes the coordinates of the other N−1 par-
ticles. Equations �2.1� and �2.2� follow simply from the stan-
dard definition of n�p�� in terms of the one particle density
matrix.49

In the presence of BEC, a finite fraction fof the particles
occupies a single momentum state, which for simplicity is
taken as p=0. Thus n�p�� develops a sharp central peak as
illustrated in Fig. 1. The integrated weight of this peak is f
and the width of the peak is �� /L where L�V1/3, is the
linear dimension of the N particle system. In trapped gases,
which may contain only a few thousand atoms, the width of
the condensate peak can be significant. However, in liquid
4He, where there are typically �1023 atoms, the width of the
condensate peak is immeasurably small and the condensate
is effectively a � function in momentum space. Formally it
follows from Eqs. �2.1� and �2.2� that the condensate fraction
is

f�T� = n�0� = �
i

�i�T�Fi, �2.3�

where

Fi =� ds�
1

V
�� �i�r�,s�dr��2

. �2.4�

The wave functions �i�r� ,s� of states occupied at a given T
determine the momentum distribution via Eqs. �2.1� and
�2.2�. The question addressed in this section is as follows:
what implications does the presence of a momentum distri-
bution of the form shown in Fig. 1, have for the properties of
these wave functions? This question can be simplified by
taking account of the generally accepted fact, that in a mac-
roscopic system both thermal and quantum fluctuations in f
are negligible. For definiteness, it will be assumed through-
out that

	f

f
�

1
�N

, �2.5�

although the results are valid providing that 	f →0 as
N→
. The sum in Eq. �2.3� represents the thermal average
over all states i occupied at a given T. If thermal fluctuations
in f are �1/�N, it follows that all states that contribute im-
portantly to this sum must give the same value of Fi to
within terms �1/�N. That this is at a given T, such states
must satisfy

Fi = f�T� ± � 1/�N . �2.6�

Since every state occupied at a given T has the same prop-
erties for the purposes of this paper, the subscript i will be
dropped to simplify notation. The sum over i can be trivially
inserted into the final expressions if required. We consider
the contribution of a single “typical” state, selected at ran-
dom from those occupied at the given T and denote its wave
function as ��r� ,s��. Thus, for example, Eq. �2.2� is written as

nS��p�� = �� ��r�,s�exp�ip� · r��dr��2

. �2.7�

As T changes and different many particle states are occupied,
the properties of ��r� ,s� for a typical state and nS��p�� will
change correspondingly �see Appendix A�.

It is clear from the inspection of Eq. �2.2� that when
N=1, the calculation of nS��p�� reduces to the standard single
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particle expression. In a many particle system the calculation
of nS��p�� involves the additional quantum average over pos-
sible s� in Eq. �2.1�. In particular, the condensate fraction is
determined by a weighted average over s� of the quantity �see
Appendix A�

f�s�� =
nS��0�

� nS��p��dp�

. �2.8�

f�s�� is the fraction of the weight of nS��p�� in the p=0 state. If
quantum fluctuations in f are negligible, it follows that �see
Appendix A�

f�s�� = f ± � 1/�N . �2.9�

Equation �2.9� implies that nS��p�� must have the form illus-
trated in Fig. 1 for essentially every s� that can occur. The
question we are addressing thus reduces to the following:
what properties must the wave function ��r� ,s�� possess, if
nS��p��, defined in Eq. �2.7�, contains a peak in momentum
space of width �� /L and fractional weight �f? It has been

shown previously44,45 that there are three conditions that
must be satisfied.

�1� ��r� ,s� must be a “delocalized” function of r�, that
is nonzero over length scales �L.

A more precise statement of this condition is45 that ��r� ,s�
must be a nonzero function of r� within a total volume �fV.
This condition follows directly from the properties of Fourier
transforms and is in fact the standard argument that is used in
elementary derivations of the Heisenberg uncertainty prin-
ciple. The localization in momentum space implied by the
presence of a peak in nS��p�� of width �� /L implies a corre-
sponding delocalization in r� space.

�2� ��r� ,s� must possess “long range phase coherence”
in r� over length scales �L.

In other words, the phases of ��r� ,s� and ��r�� ,s� are not
randomly oriented, even when �r�−r�� � �L. The influence of
phase incoherence on the momentum distribution is illus-
trated in Fig. 2. If ��r� ,s� has a finite “coherence length” rC,
that is, if the phase of ��r� ,s� is correlated with that of
��r�� ,s� only over distances �r�−r�� � �rC, any peak in nS��p��
will have a width of at least �1/rC.

�3� The ground state wave function �0�r� ,s�� must be
delocalized and “phase coherent” over length scales �L. In

FIG. 2. �a� One-dimensional model wave function g�x�, which was generated numerically using a random number generator. 8192 pixels
are occupied randomly with probability f =0.1 and with the same amplitude and phase. Only the first 300 pixels are shown. �b� A�p�, the
modulus square of the numerical Fourier transform of g�x�. There is a “condensate peak” �which contains a fraction f of the total integrated
intensity in this model�. �c� The same model with the exception that a random walk of the phase was performed. Pixels separated by greater
than the coherence length rC�100 pixels have uncorrelated phases. Only the real part of g�x� is shown; note the different scale to �a�. �d�
A�p� for the wave function in �c�. There is no condensate peak. Instead the distribution is broad with a width �1/rC�0.01. Note that the
random variation of A�p� from one momentum state to the next seen in �b� and �d� would be unobservable in a real macroscopic system,
since the momentum states would be so closely spaced that it would not be possible to resolve this fine structure. Instead only the mean
value, for example, the dashed line in �b�, would be observed.

BOSE-EINSTEIN CONDENSATION AND TWO FLUID ¼ PHYSICAL REVIEW B 74, 014516 �2006�

014516-3



other words, the phase of �0�r� ,s�� is precisely determined by
the phase of �0�r�� ,s��, even when �r�−r�� � �L. This condition
is a consequence of the fundamental result of quantum
mechanics48,50 that the ground state wave function of any
Bose system has a constant phase, independent of the par-
ticle coordinates �r� ,s��. This is not true in Fermi systems and
in the view presented here, is the fundamental reason why
BEC can occur only in Bose systems.

It follows from condition �3� that as T→0, the wave func-
tion ��r� ,s�� of a typical occupied state must approach delo-
calization and phase coherence. Moreover it follows from
condition �2� that for 0�T�TB, ��r� ,s�� must retain long
range correlations in its phase. Above TB either condition �1�
is not satisfied and ��r� ,s�� is localized, or condition �2� is not
satisfied and ��r� ,s�� is phase incoherent. The obvious ques-
tion arises as to how the properties of the wave function of a
typical occupied state change as the temperature is varied.

III. BASIC ASSUMPTION

The basic assumption of this paper is that for 0�T�TB,
the wave function ��r� ,s�� of a typical occupied state is the
superposition of two components

��r�,s�� = b�s���0�r�,s�� + �R�r�,s�� . �3.1�

�0�r� ,s�� is the phase coherent ground state, whereas �R�r� ,s��
is phase incoherent in the coordinate r� and hence does not
contribute to the condensate peak. The integrated weight of
the ground state component

wC =� �b�s���2 ds�� ��0�r�,s���2 dr� �3.2�

is assumed to decrease smoothly as the temperature is raised,
approaching zero for states occupied near the condensation
temperature.

The a priori justifications for this assumption are as fol-
lows:

�1� It satisfies the necessary conditions discussed in
the previous section; as T→0, wC→1 and occupied states
approach the phase coherent ground state. For 0�T�TB,
��r� ,s�� retains a phase coherent component and hence pos-
sesses long-range phase coherence. As T→TB, wC→0, and
the wave function approaches phase incoherence, with no
BEC.

�2� It is shown in Appendix B that the wave functions
of the ideal Bose gas are of the form given in Eq. �3.1�.

�3� It is also shown in Appendix B that wave functions
of the type introduced by Bijl47 and Feynman48 are of the
form given in Eq. �3.1�.

The ideal Bose gas is the only system for which the many
particle wave function is known exactly, although it could be
argued that this is not a very convincing example, since it
describes a system that is Bose condensed but not a super-
fluid. As is well known, the standard Landau criterion for
superfluidity �see Sec. VII� gives a critical velocity of zero
for superflow in the ideal Bose gas. This criticism does not
apply to wave functions of the Bijl-Feynman type. These
accurately predict the phonon-roton curve in He II and hence

describe a system that is both Bose condensed and super-
fluid. Again this does not prove that the wave functions de-
scribing He II have the form assumed in Eq. �3.1�. For ex-
ample, wave functions of the Bijl-Feynman type are not
energy eigenstates of any known Hamiltonian and Eqs. �2.1�
and �2.3� are valid only for energy eigenstates. However, the
fact that wave functions of the Bijl-Feynman type accurately
describe the excitation spectrum in He II �Refs. 51–56�
strongly suggests that they do incorporate the essential phys-
ics of the He II wave function.

Ultimately the validity of the basic assumption must be
judged on its success in describing the experimental proper-
ties of He II. It will be shown in the following sections that
this single assumption provides simple microscopic explana-
tions for essentially all of the exotic properties, which make
He II such a unique fluid. It also has quantitative conse-
quences that are accurately satisfied by a number of presently
unexplained and fundamental experimental properties of
He II.

IV. TWO FLUID BEHAVIOR

For a wave function of the form in Eq. �3.1�, since only
the phase coherent component contributes to the condensate
peak, Eqs. �2.4�, �2.6�, and �3.1� imply that to within �1/�N,

f =� �b�s���2ds�� 1

V
� �0�r�,s��dr��2

. �4.1�

If quantum fluctuations in f are �1/�N, it follows from �4.1�
by similar reasoning to that used in the derivation of Eq.
�2.9� that �see Appendix A�

�b�s��2 = wC ± � 1/�N , �4.2�

where wC is defined in Eq. �3.2�. Equations �3.1� and �4.2�
imply that

� ���r�,s���2 dr� = wC� ��0�r�,s���2 dr� +� ��R�r�,s���2 dr�

+ X�s�� ± � 1/�N . �4.3�

The “cross terms” in Eq. �4.3� are of the form

X�s�� =� �0�r�,s���R�r�,s��dr� + c.c., �4.4�

where c.c. denotes the complex conjugate. Since the phase of
�0�r� ,s�� is constant, the phase of the integrand in Eq. �4.4�
varies randomly with r� over length scales r�C, where r�C is the
coherence length of �R�r� ,s��. This implies that X�s�� has an
average value of zero and amplitude �1/�N compared to the
other terms in Eq. �4.3�. Hence X�s�� simply adds to the fluc-
tuations and Eq. �4.3� reduces to

� ���r�,s���2 dr� = wC� ��0�r�,s���2 dr� +� ��R�r�,s���2 dr� ±

� 1/�N . �4.5�

It follows from Eqs. �4.5� and �2.7�, by application of Parse-
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val’s theorem for Fourier transforms, that, to within terms
�1/�N, nS��p�� and hence n�p�� splits into two independent
components

n�p�� = wCn0�p�� + wRnR�p�� , �4.6�

where wR is defined as

wR = 1 − wC. �4.7�

Since the macroscopic fluid flow is proportional to the first
moment of n�p��, Eq. �4.6� also implies that the flow can be
split into the sum of two independent components. It can
further be shown, by similar arguments to those used in the
derivation of �4.5�, that, to within terms �1/�N, the total
fluid energy splits into two independent components

E = wCE0 + wRER. �4.8�

Similarly the entropy, S= ��E /�T�V, splits into two indepen-
dent components. Furthermore, the entropy of the ground
state component ��E0 /�T�V is zero. Clearly the two compo-
nents have identical properties to the superfluid and normal
fluid components of the standard two fluid model. Thus the
phase coherent component can be identified with the super-
fluid and the phase incoherent component with the normal
fluid

�S = wC, �N = wR. �4.9�

Further evidence for this identification is provided by the
wave functions discussed in Appendix B. For both the ideal
Bose gas and wave functions of the Bijl-Feynman type, the
weight wR is determined by the number of excitations, as is
the case for �N in Landau theory.

V. MEASURABLE CONSEQUENCES

The most fundamental consequence of the basic assump-
tion of Sec. III is that the condensate fraction should be
proportional to the superfluid fraction. Only the phase coher-
ent component contributes to f . This component has weight
�S and makes an identical contribution to that from the
ground state. Hence it follows that

f = �Sf0. �5.1�

Equation �5.1� is accurate to �1/�N and follows formally
from Eqs. �4.1�, �4.2�, and �4.9�, as is shown in Appendix A.
Note that Eq. �5.1� determines f only to within a proportion-
ality constant f0, the condensate fraction for the exact ground
state. Figure 3 shows neutron scattering measurements of
f / f0 as a function of T. Also shown is the superfluid fraction,
�S. It can be seen that Eq. �5.1� is accurately obeyed in He II.
Only “state of the art” measurements are shown, although
other measurements2–4 and calculations15 are also consistent
with Eq. �5.1�.

In a macroscopic system Eq. �5.1� should be highly accu-
rate and more accurate calculations or measurements of f�T�
in He II would be of great interest to test its validity. It
should be noted that Eq. �5.1� is not valid as T→TB, where
the assumption that fluctuations in f are negligible breaks
down. It should also be noted that wR is not well defined by

Eq. �4.7� in the limit T→0 and hence cannot be compared
with calculations of19 �N in this limit. Furthermore the cross
terms X�s���1/�N in Eq. �4.3� are significant in the critical
regions, again implying that wC is not well defined in the
limit T→TB, and wR is not well defined in the limit T→0.

The basic assumption of Sec. III has much wider conse-
quences than just the prediction of two fluid behavior. It
implies that all physical properties of the many particle sys-
tem split into two independent components to within terms
�1/�N. For example, Eq. �4.8� implies that in a macro-
scopic system, the superfluid and the normal fluid behave as
two independent thermodynamic systems. In particular, it
follows from �4.8� that the pressure exerted by the fluid,
P=−��E /�V�S, splits into two independent contributions

P = �SP0 + �NPR. �5.2�

It has been shown previously46 that with the additional as-
sumption that the normal fluid pressure PR is identical to the
pressure at TB, Eq. �5.2� supplies quantitative agreement with
the observed T dependence of the fluid density in He II. The
pressure is the sum of two partial pressures, with P0
 PR.
Thus, as the superfluid fraction increases, P also increases,
and at constant external pressure, He II will undergo an
anomalous thermal expansion as T is reduced. The additional
pressure in the superfluid has a purely quantum origin due to
the presence of the condensate. It is known from
experiments57 that f0 decreases with decreasing volume. The
corresponding increase in the kinetic energy of atoms adds
an extra contribution to the derivative P0=−��E0 /�V�S. Since
the normal fluid does not contribute to f , PR does not contain
this contribution.

Another simple consequence is that the static structure
factor S�q��, and hence the pair correlation function g�r�, split
into two independent contributions from the normal fluid and
superfluid. S�q�� can be expressed in terms of the wave func-
tions as43

FIG. 3. The crosses �Ref. 7� and circles �Ref. 6� are measure-
ments of f�T� / f�0�. The solid line shows the superfluid fraction as a
function of temperature �Ref. 18�.
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S�q�� = �
i

�i�T� � ��i�r�,s���2
1

N��n

exp�iq� · r�n��2
dr�N.

�5.3�

By similar arguments to those used in the derivation of Eq.
�4.5�, the contribution of a single state to S�q�� is �dropping
the subscript i�

S�q�� = �S� ��0�r�,s���2
1

N��n

exp�iq� · r�n��2
dr� ds�

+� ��R�r�,s���2
1

N��n

exp�iq� · r�n��2
dr� ds�

= �SS0�q� + �NSR�q� , �5.4�

where Eq. �5.4� defines S0�q�� and SR�q��. It has been shown
previously44–46 that, with the assumption that the contribu-
tion SR�q�� from the incoherent component is identical to S�q��
at the condensation temperature, Eq. �5.4� gives quantitative
agreement with available measurements of S�q�� in He II. The
uniquely anomalous loss of spatial correlations in He II as it
is cooled can be attributed to the lower spatial order of the
superfluid compared with the normal fluid. As T is lowered
and �S increases, measured spatial order therefore decreases.
The physical reasons for the lower spatial order of the super-
fluid in He II will be discussed in the following section.

VI. PHYSICAL INTERPRETATION

The relevant physics of the wave function of He II can be
understood by considering the simple model of the ground
state introduced by Feynman48 and used by Penrose and
Onsager58 in the first accurate calculation of the condensate
fraction in He II

�0�r�,s�� = 0, if �r�n − r�m� � a ,

�0�r�,s�� = C, otherwise. �6.1�

a is the hard core diameter of a helium atom, C is a normal-
ization constant, and r�n, r�m denote any two particle coordi-
nates. In the Feynman model �0�r� ,s�� is nonzero only for r�,
where it would be possible to insert the center of an impen-
etrable sphere, given N−1 impenetrable spheres already
present at coordinates s�=r�2 ,r�3 , . . . ,r�N. �0�r� ,s�� is zero for
any point r� within a distance a of one of the other atoms at s�
and has the same amplitude and phase at all other points, as
illustrated in Fig. 4. Helium atoms have a hard-core interac-
tion, hence one would expect that the wave functions in
He II will be similar to that shown in Fig. 4. The main dif-
ferences are that �0�r� ,s�� in He II will have an amplitude that
falls smoothly to zero as r� approaches the hard core exclu-
sion region of another atom and that wave functions of states
occupied at finite T will have a phase that varies with r�.

The spatial ordering of the many particle system is deter-
mined by the probability ���r� ,s���2 of different particle con-
figurations r� ,s�=r�1 ,r�2 , . . . ,r�N, as Eq. �5.3� demonstrates. For
a wave function of the form in Eq. �3.1�, it follows from Eq.

�5.4� that the spatial order of the superfluid is determined by
��0�r� ,s���2, while that of the normal fluid is determined by
��R�r� ,s���2. As discussed in Sec. V, measurements of S�q��
imply that the superfluid is more disordered than the normal
fluid. Thus ��0�r� ,s���2 and ��R�r� ,s���2 must have significant
amplitude for different particle configurations r� ,s�. The first
condition for BEC in Sec. II, implies that for s�, where
�0�r� ,s�� has significant amplitude, the “spaces” �see Fig. 4�
in the liquid structure must comprise at least f0�7% of the
total fluid volume in He II. Thus the structure of the ground
state must be relatively open, with many spaces as illustrated
in Fig. 5�a�. There is no such necessary condition on
�R�r� ,s��, which makes no contribution to the condensate.
Configurations of particles �r� ,s�� for which �R�r� ,s�� has sig-
nificant amplitude, could define a structure with few spaces
	Fig. 5�b�
.

Spaces in a structure imply a loss of spatial correlations—
for example, the development of vacancies in a crystal struc-
ture implies that the amplitudes of Bragg peaks in S�q�� are
reduced, whereas the diffuse intensity between Bragg peaks
increases. Spaces in a liquid structure will similarly reduce
the oscillations observed in S�q�� and hence the measured
spatial order. It has been shown previously44–46 by the use of
lattice models, that the assumption that the ground state con-
tains sufficient spaces in its structure to give the observed
value of f0�7%, while the normal fluid contains negligible
spaces, is quantitatively consistent with the observed T de-
pendence of S�q�� in He II. Furthermore, this is true only at
the known hard-core diameter and packing density in He II.
Changing the hard-core diameter a by only 10% is sufficient
to destroy the agreement with experiment. This provides
strong circumstantial evidence that this explanation is cor-
rect.

FIG. 4. A schematic illustration of the wave function ��r� ,s�� in
He II. The black circles denote N−1 atoms centered at positions
s�=r�2 ,r�3 , . . . ,r�N. The wave function is nonzero only for r�, where it
would be possible to insert place the center of an atom without
hard-core overlap with the N−1 atoms already present. In liquid
He II at T=0, these “spaces” �the white regions of the figure� must
comprise at least �7% of the total fluid volume.
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As discussed in Sec. III, the ground state of any Bose
condensed system must be phase coherent over length scales
�L. Phase coherence in the wave function is generally asso-
ciated with connectivity—that is, it is possible to follow a
path over which �0�r� ,s�� is always nonzero, between any two
phase coherent points r� and r��. This is plausible in He II at
the known values of f0, packing density, and hard-core
radius.45 Assuming that this is the case, then for s�, where
�0�r� ,s�� has significant amplitude, it is possible to perform
integrations over macroscopic loops in r�, such as that illus-
trated in Fig. 5�a�. It is easily shown45 that this implies that
the circulation must bequantized over macroscopic length
scales, leading to macroscopic quantized vortices and other
macroscopic quantum effects in the superfluid. In contrast,
the phase incoherence of �R�r� ,s�� implies no connectivity
over macroscopic length scales. Hence macroscopic loops
such as those shown in Fig. 5�a� are not possible and the
normal fluid cannot contribute to quantized vortices or other
macroscopic quantum effects. The normal fluid properties
are a phase incoherent sum of contributions from localized
regions of size �rC, where rC is the phase coherence length
of �R�r� ,s��. For the wave functions discussed in Appendix B,
rC��T, where �T is the well-known “thermal wavelength,”
�5–10 Å for T
1 K in He II.

VII. BEC AND LANDAU THEORY

The fundamental premise of the Landau theory of super-
fluidity is that excitations exist with a well-defined relation-
ship between their momentum �q and energy ��. An equiva-
lent statement is that the intensity in the dynamic structure
factor S�q ,�� follows a well-defined line in �q ,�� space,
with a narrow width in both q and �. The rigorous expres-
sion for S�q ,�� in terms of the wave functions is43

S�q�,�� =
1

N
�

i

�i�T��
f

�Ãif�q���2���� + Ei − Ef� , �7.1�

where the “scattering amplitude” Ãif�q�� for a transition be-
tween states i and f is

Ãif�q�� =� �i
*�r�1,s���

n

exp�iq� · r�n�� f�r�1,s�� dr�1 ds� .

�7.2�

The initial and final state wave functions are �i�r� ,s�� and
� f�r� ,s��, respectively, with corresponding energies Ei and Ef.
The � function expresses conservation of energy. Using the
Bose symmetry of the wave function and denoting r�1 as r�
and r�2 ,r�3 . .r�N as s�, it follows from �7.2� that43

Ãif�q�� = N� �i
*�r�,s��� f�r�,s��exp�iq� · r��ds� dr� . �7.3�

The influence of the phase coherence properties of �i�r� ,s��
on S�q ,�� can be understood by first considering the case
when �i�r� ,s�� is phase incoherent in r�, with coherence length
rC. This implies that the function

g�r�� = N� �i
*�r�,s��� f�r�,s��ds� �7.4�

is also phase incoherent with coherence length rC. Then for
similar reasons that the function g�x� shown in Fig. 2 gives
no sharp peaks in p space, any peak in

�Ãif�q���2 = �� g�r��exp�iq� · r��dr��2

�7.5�

must have a width of at least 	q�1/rC. Thus the normal
fluid, where rC�10 Å, makes a diffuse contribution to
S�q ,��, with minimum width 	q�1 Å−1, at constant �. In
contrast, the superfluid, for which rC�L, can contribute to
peaks with minimum width �1/L. It also follows, by similar
arguments to those used in Sec. IV that the superfluid and
normal fluid contribute separately to S�q ,��.59 Thus S�q ,��
will be the sum of two components with quite different prop-
erties: a diffuse component of minimum width 	q�1/rC
�1 Å−1 and integrated weight �N and a sharp component of
weight �S. This is what is observed in neutron scattering
measurements of S�q ,�� in He II. The measured intensity
contains sharp and diffuse components and the intensity of
the sharp component is proportional to �S to within an ex-
perimental error of �2%.33,35

In terms of Landau theory, this implies that the momenta
of Landau excitations in the normal fluid are uncertain to
within �� /rC, whereas excitations in the superfluid have
momentum that can be defined precisely, to within �� /L. It
follows that the basic premise of Landau theory—that exci-
tations with a well-defined q ,� relationship exist—can be
satisfied only in the presence of BEC and the associated
phase coherent component. The uncertainty in the momen-
tum of normal fluid excitations also provides a simple expla-

FIG. 5. The left hand figure illustrates a typical configuration s�
of N−1 particles, for which �0�r� ,s�� has significant amplitude. The
structure is open with many spaces. Macroscopic loops over r�
where �0�r� ,s���0 are possible, as illustrated, leading to quantized
vortices. The right hand figure illustrates a typical configuration s�
for which �R�r� ,s�� has significant amplitude. The structure has
fewer spaces and regions where �R�r� ,s���0 are not connected.
Macroscopic loops such as those shown in the left hand figure are
not possible. The �1% lower density of the normal fluid, compared
with the superfluid, has been exaggerated for purposes of illustra-
tion. In fact, calculations based on lattice models �Ref. 45� suggest
that the extra spaces within the superfluid are produced essentially
by a rearrangement of atoms at almost constant fluid density.
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nation of why the normal fluid is viscous. The Landau crite-
rion for superflow17 is that the flow velocity must be less
than the critical velocity given by

vC = ��/q�min.

�� /q�min is the minimum value of the ratio of the energy and
momentum of any process by which the fluid can exchange
energy and momentum, for example, with the walls of a tube
along which the liquid is flowing. The uncertainty in the
momentum of normal fluid excitations implies that excita-
tions of arbitrarily low energy have a finite probability of
exchanging significant momentum �� /rC. Hence the nor-
mal fluid has a critical velocity �0. In contrast, the well-
defined momentum of excitations in the superfluid implies
that the superfluid has a nonzero critical velocity, which as is
well known is given by the ratio � /q at the roton minimum.
Thus the superfluid can undergo nonviscous flow, while the
normal fluid cannot.

VIII. SUMMARY

The basic assumption of this paper is that in a Bose con-
densed system at a given temperature, many particle wave
functions of occupied states are the superposition of two
components. One component is phase coherent over macro-
scopic length scales and identical to the ground state wave
function. The other component has phase coherence only
over length scales comparable to the thermal wavelength. It
has been shown that this assumption satisfies necessary con-
ditions that must be obeyed by the wave functions of any
Bose condensed system. It is shown in Appendix B that wave
functions of the ideal Bose gas and wave functions of the
Bijl-Feynman type are of this form. This single assumption,
together with the assumption that quantum and thermal fluc-
tuations in the condensate fraction are negligible, is sufficient
to explain essentially all the features that make He II such a
unique liquid. It provides a simple microscopic explanation
of why two fluid behavior occurs, why BEC is necessary for
the validity of Landau theory, and why the superfluid under-
goes macroscopic quantum effects and nonviscous flow,
while the normal fluid does not. It also provides explanations
of a number of fundamental and presently unexplained ex-
perimental properties of He II. It implies that the superfluid
fraction is proportional to the condensate fraction, in accu-
rate agreement with experiment, provides quantitative expla-
nations of the anomalous expansion and loss of spatial cor-
relations in He II as it is cooled, and of the presence and
temperature dependence of sharp peaks in the dynamic struc-
ture factor of He II.

APPENDIX A

1. Thermal fluctuations in f

The sum over states iof energy Ei in Eq. �2.3� can be
converted in the usual way to an integral over the density of
states g�E�

�
i

�i�T� =� g�E���E�dE . �A1�

g�E� increases very rapidly with energy E, whereas ��E�
falls very rapidly. At a given T, the product of these two
functions is a sharply peaked function of E that is centered at
E�T�. The size of thermal fluctuations in the macroscopic
energy E is determined by the width of this band, which,
according to standard arguments, is �E�T� /�N.60 Thus all
states i within the band have energy

Ei = E�T� ± � 1/�N . �A2�

The assumption that thermal fluctuations in f are �1/�N
implies that all states within the occupied band have wave
functions �i�r� ,s�� that give the same value of Fi, to within
terms �1/�N, where Fi is defined in Eq. �2.4�. The T depen-
dence of f and of the corresponding nature of wave functions
�i�r� ,s�� of occupied states, is due to the fact that, as T
changes, the band moves to a different energy E�T�. Thus
different many particle states are occupied and these states
give a different value of Fi� f�T�.

2. Quantum fluctuations in f

We consider a randomly chosen state in the occupied band
and drop the subscript i to simplify notation. It follows from
Eqs. �2.7� and �2.8� that

f�s�� =

1

V
�� ��r�,s��dr��2

� ���r�,s���2 dr�

, �A3�

where Parseval’s theorem has been used to convert the de-
nominator of Eq. �2.8� to an integral over r�. Defining

P�s�� =� ���r�,s���2 dr� , �A4�

it then follows from Eqs. �2.4�, �A3�, and �A4� that �dropping
the subscript i�

F =� f�s��P�s��ds� . �A5�

According to the standard physical interpretation of the wave
function, ���r� ,s���2 is the probability that a particular con-
figuration r� ,s� of particles will occur in the state under con-
sideration. It therefore follows from �A4� that P�s�� is the
probability that a particular s� will occur. Thus Eq. �A5� de-
fines F as the average of the quantity f�s��, over the probabil-
ity distribution for s�. The mean square quantum fluctuation
in F therefore can be defined as

		f
2 =� P�s��	f�s�� − F
2 ds� . �A6�

If 	f �1/�N, it follows from �A6� that

J. MAYERS PHYSICAL REVIEW B 74, 014516 �2006�

014516-8



f�s�� = F ± � 1/�N �A7�

for all s� for which P�s���0. Equation �2.9� follows trivially
from Eqs. �A7� and �2.6�.

The physical origin of the small quantum fluctuations in f
is the delocalization of the wave function in the presence of
BEC. Since BEC implies that ��r� ,s�� must be a nonzero
function of r� over a volume �fV 	see condition �1a� of Sec.
III
, the integrals in Eq. �A3� are averages over a macro-
scopic volume. The microscopic details of the structure de-
fined by s� become irrelevant in these macroscopic averages,
provided that L=V1/3 is much greater than the interatomic
separation.61 In contrast, fluctuations in f are not negligible if
��r� ,s�� is a localized function of r� or if ��r� ,s�� is phase
incoherent. In the latter case the integral over ��r� ,s�� in the
numerator of Eq. �A9� is the sum of �N randomly phased
contributions. In this case f�s���1/�N, with fluctuations
comparable to its amplitude.

It follows from Eq. �4.1� that

f =� �b�s���2f0�s��P0�s��ds� , �A8�

where f0�s� and P0�s�� are the ground state values of the
quantities defined in Eqs. �A3� and �A4�. It follows by the
same argument used to derive Eq. �A7� that if fluctuations in
f are �1/�N,

�b�s���2f0�s�� = f ± � 1/�N . �A9�

It also follows from �A7� that

f0�s� = f0 ± � 1/�N . �A10�

It follows from Eqs. �A9� and �A10� that

�b�s���2 =
f

f0
± �

1
�N

. �A11�

Equation �5.1� follows from Eqs. �A11�, �4.2�, and �4.9�.

APPENDIX B

1. The ideal Bose gas

The N particle wave function of the ideal Bose gas is62

��r�1,s�� =
1

�NPVN�
P

exp�ik0 · r�1�exp�ik1 · r�2� ¯ exp�ikJ · r�N� .

�B1�

r�2 , . . . ,r�N is denoted as s� and the sum is over the NP permu-
tations of the N particle coordinates in the occupied states k� j.
��r�1 ,s�� can be rearranged into the form

��r�1,s�� = �
j

� j�s��exp�ik� j · r�1� , �B2�

where �i�s��exp�ik� j ·r�1� is the sum of the terms in �B1� con-
taining the factor exp�ik� j ·r�1�. This sum can be divided into
two parts. Denoting r�1 as r�,

��r�,s�� = �0�s�� + �R�r�,s�� �B3�

�0�s�� is the sum of all terms containing the factor
exp�ik�0 ·r�1�, where k�0=0. Since the phase of �0�s�� is the
same for all r�, this part is phase coherent in r�. The second
part,

�R�r�,s�� = �
j�0

� j�s��exp�ik� j · r�1� , �B4�

has a phase that varies randomly with r�, over distances
rC�1/	k, where 	k is the range of values of k� j included
in �B4�. Hence �R�r� ,s�� is phase incoherent. Since
	k��2MkT�1/2 in the ideal Bose gas, rC��T, where �T is
the well-known “thermal wavelength.”

The weight of �R�r� ,s�� is determined by the number of
particles excited from the condensate state k�0=0. When N
particles are excited, �C�r� ,s��=0 and ��r� ,s�� is phase inco-
herent, whereas with no particles excited �R�r� ,s��=0 and
��r� ,s�� reduces to the phase coherent ground state. The phase
coherence properties of ��r� ,s�� vary smoothly between these
two limiting behaviors as Tis varied and different numbers of
particles are excited. Thus the wave functions of the ideal
Bose gas have the properties assumed in Sec. III.

2. Wave functions of the Bijl-Feynman type

The Bijl-Feynman form for wave functions of excited
states of liquid 4He is63

��r�,s�� = ��r�,s�� � �0�r�,s�� , �B5�

where �0�r� ,s�� is the ground state wave function. The stan-
dard form for ��r� ,s�� is52,55,63 �denoting r�2 , . . . ,r�N as s��

��r�1,s�� = C�
j=1
��

n=1

N

exp�ikj · rn�
nj

. �B6�

C is a normalization factor, nj is the number of phonon-roton
excitations with wave vector k� j, and the total number of ex-
citations is M =�nj.

��r� ,s�� can be expanded as the sum of NM terms, each
containing M factors of the form exp�ikj ·rn�. Writing Eq.
�B6� in the form

��r�1,s�� = C�
n=2
�exp�ikj · r1� + �

n=2

N

exp�ikj · rn�
nj

,

�B7�

it can be seen that �N−1�M of these terms do not contain r�1.
Thus ��r� ,s�� can be divided into two parts, as was the case in
the ideal Bose gas

��r�,s�� = b�s�� + �R�r�,s�� . �B8�

b�s�� is the sum of the �N−1�M terms not containing r�1�=r��,
and hence is phase coherent in r�. The function �R�r� ,s�� is the
sum of all terms containing r�, and has a phase that varies
randomly over distances �rC� � /	k. In this case 	k is the
range of wave vectors of k� j of phonon-roton excitations ex-
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isting at the given temperature. As in the ideal Bose gas,
rC��T�5–10 Å. Since the phase of �0�r� ,s�� is constant,
the phase of ��r� ,s�� defined in Eq. �B5� is the same as the
phase of �R�r� ,s��. Hence ��r� ,s�� also can be divided into
phase coherent and phased incoherent components, as as-
sumed in Sec. III. The fraction of terms containing r�1 and
that therefore contribute to �R�r� ,s�� is

1 −
�N − 1�M

NM �
M

N
�B9�

in the limit N→
. Thus the weight of the phase coherent
component increases smoothly as temperature is raised and
more excitations are created, as is the case for the normal
fluid in Landau theory. The wave function is completely

phase incoherent and BEC ceases to exist, when �N excita-
tions are present.

It is worth noting that in two-dimensional �2D� systems
long-range phase coherence in the wave function is present
only in the ground state, since at any finite temperature there
is no BEC.64 In the ideal 2D Bose gas, there are N particles
excited from the condensed state at finite Tand the phase
coherent component therefore has zero weight. Similarly 2D
wave functions of the Bijl-Feynman type must contain
�N excitations at finite T. In both cases the coherence length
decreases smoothly from �L as T is raised, whereas in three
dimensions the wave function retains a component with co-
herence length �L at all temperatures below the condensa-
tion temperature.
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