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The superconducting proximity effect is investigated for SN double layers in a regime where the resulting
transition temperature Tc does not depend on the mean free paths of the films and, within limits, not on the
transparency of the interface. The experimental results for Tc are compared with a numerical evaluation which
was recently developed in our group. The results for the SN double layers can be divided into three groups. �i�
When N=Cu, Ag, Au, Mg a disagreement between experiment and theory by a factor of the order of 2.5 is
observed. �ii� When N=Cd, Zn, Al the disagreement between experiment and theory is reduced to a factor of
about 1.5. �iii� When N=In, Sn a reasonably good agreement between experiment and theory is observed.
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I. INTRODUCTION

The properties of a superconducting film or thin wire S
are modified when they are in contact with a normal metal N.
This phenomenon was first observed in the pioneering ex-
periments by Meissner1 who explored the properties of su-
perconducting wires covered with normal metals. It is gen-
erally called the “superconducting proximity effect” �SPE�. It
was intensively studied in the 1960’s.2–8 During the last de-
cade it has experienced a renewed interest theoretically,9–22

as well as experimentally.17,19,23–30 Recently the SPE has
been extended to SN multilayers.31–33

A few years ago, our group29 investigated the proximity
effect between Pb and several alkali metals. For a better
analysis of these measurements we developed a quantitative
numerical method for the calculation of the transition tem-
perature of an SN double layer.34 Our numerical results show
that, when a superconductor S is covered with a normal
metal N, that the initial slope dTc /ddn is independent of the
mean free paths of the two metals and the transmission of the
interface �if the transmission is not dramatically changed�. If
one defines a normalized initial slope Ssn=

ds

Ts
�

dTc

ddn
� then Ssn is

independent of the thickness ds of the superconductor up to
relatively large values of ds.

When we compared our experimental initial slope
dTc

ddn
�dn=0

with our numerical calculation we observed that the experi-
mental results were considerably smaller than the theoretical
predictions. Surprised by the discrepancy we searched the
literature and found early experiments from the 1960s, par-
ticularly by Hilsch2,3 and Minigerode,7 from which the nor-
malized initial slope can be derived. These measurements
showed a similar disagreement in the initial slope with the
theory �see Ref. 34�.

Since we were rather amazed by the discrepancy between
our experiments and theory in the SPE and also by the fact
that this discrepancy had not been detected previously, we
decided to reinvestigate the SPE. In this paper we investigate
the SPE in the range where a minimum of experimental pa-
rameters is needed to perform a quantitative comparison with
the theory. We focus on the normalized initial slope Ssn of SN
double layers and the transition temperature of very thin NS
double layers in the thin film regime.

In the present investigation we use only simple �s , p� met-
als for the superconductors and normal conductors. The su-

perconducting properties of an �s , p� metal can be reasonably
well described by a single attractive electron-electron inter-
action VBCS and a single density of states. In contrast a tran-
sition metal has not only an �s , p� band but also several d
bands. Each band has its individual BCS interaction and den-
sity of states. The large number of �not well known� param-
eters makes a numerical treatment of the SPE in transition
metals difficult and rather inconclusive. Furthermore, when a
transition metal film is in contact with an �s , p� metal film its
d electrons have first to be scattered into its �s , p� band be-
fore they can cross the interface. This takes a finite time �sd.
The superconducting behavior of the double layer depends
strongly on the relative size of 1 /�sd and 1/�Tc

�where �Tc
= � / �2�kBTc� is characteristic time of a superconductor at
the temperature Tc�. The magnitude of 1 /�sd depends
strongly on the mean free path in the transition metal film
and is difficult to measure. Furthermore the d density of
states can strongly depend on the disorder, i.e., the mean free
path of the transition metal. For this reason we use only
simple �s , p� metal films in this investigation. In first ap-
proximation a finite mean free path does not change their
properties dramatically.

II. EXPERIMENT AND RESULTS

For the investigation of the SPE it is very important that
the metal films are homogeneous and smooth. In particular
the formation of islands and a diffusion between films at the
interface has to be excluded. For this reason we use the
method of quenched condensation onto a substrate of helium
temperature. Our initial substrate is a crystalline quartz plate.
In a zero evaporation step the quartz plate is covered with ten
atomic layer of amorphous insulating Sb. The Sb film acts as
a fresh substrate and insures that the following quench con-
densed films are flat and homogeneous. The �s , p� metals
which are condensed on top of the amorphous Sb become
already conducting at a thickness between two and four
atomic layers. Generally we increase the thickness of the first
metal film at least to four times this thickness of first con-
ductance.

When a second metal is quench condensed onto the first
metal it does not diffuse into the first one. �Alkali metals
which are not used in this investigation may be an excep-
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tion.� The two metals form an interface with atomic rough-
ness but no mixing. This is extremely important because
double or multi layers which are prepared at room tempera-
ture are generally interdiffused and form an alloy several
atomic layers thick. Such an alloy can be a superconductor
with a very different transition temperature spoiling the in-
vestigation.

We use thermal evaporation to condense the thin films
onto the substrate at liquid helium temperature. To obtain
clean films all the evaporation sources are surrounded with
liquid N2 and the vacuum in our system is better than
10−11 Torr.

In a series of experiments a film of the superconductor Pb
is first condensed onto the Sb substrate. Afterwards the Pb is
covered in several step with an increasing thickness of the
normal metal Ag. The thickness of the films is measured with
a quartz oscillator. The accuracy of the thickness measure-
ment is about 15%. After each evaporation the superconduct-
ing transition curve of the double layer is measured. Figure 1
shows a plot of Tc versus the Ag thickness dAg on top of a
25.1-nm-thick Pb film. The big full circles are the experi-
mental points �which are obtained from a single experiment�.
This plot yields graphically the initial slope dTc /ddn�dn=0 and
the normalized initial slope Ssn

Ssn =
ds

Ts
�dTc�dn = 0�

ddn
� , �1�

where dPb=ds is the thickness of the Pb films and Ts
=7.2 K is the transition temperature for Pb. The other curves
will be explained in the discussion.

This experiment is repeated for different thicknesses of
the superconductor Pb. In Fig. 2 Ssn is plotted for different
thicknesses dPb of the Pb substrate. It is essentially indepen-
dent of the Pb thickness. This is in agreement with our nu-
merical results. The value of the normalized initial slope is
SPbAg=0.66±0.05.

In a second set of experiments we investigate the super-
conducting proximity effect in the thin film regime. For this
purpose a thin film of the normal metal �about 3-nm thick� is
quench condensed onto the insulating Sb substrate. Then it is
covered in a sequence of evaporations with increasing Pb
thickness. For the first layer �the normal metal� we use Ag,
Au, Cu, Mg. Furthermore we included also as N supercon-
ductors with a transition temperatures Tn which lie below the
value of Tc for Pb. These metals are Zn, Cd, Al, In, and Sn.
Figure 3–6 shows some of the results for Ag/Pb, Mg/Pb,
Zn/Pb, and Sn/Pb double layers. In these figures �Ts−Tc�−1

is plotted versus the Pb thickness dPb. The big full points are

FIG. 2. The normalized initial slope Ssn for the Pb/Ag double
layers as a function of the Pb thickness.

FIG. 3. The inverse Tc reduction 1/ �Ts−Tc� versus the Pb thick-
ness dPb for double layers of Ag/Pb. The big circles give the ex-
perimental points. The other symbols are explained in the
discussion.

FIG. 1. Tc versus dAg for an PbAg double layer. The big full
circles are the experimental results. The numbers below T give the
reduction of transmission through the interface.

FIG. 4. The inverse Tc reduction 1/ �Ts−Tc� versus the Pb thick-
ness dPb for double layers of Mg/Pb.
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the experimental results. Within the coherence length of the
Pb which is about 13 nm �see below� �Ts−Tc�−1 of the ex-
perimental points is a linear function of dPb. The other sym-
bols will be discussed below.

III. DISCUSSION

When the superconducting proximity effect was first in-
vestigated the original goal was to study the length depen-
dence of superconductivity. In a double layer of a normal and
a superconductor the gap function � depends on z, the posi-
tion perpendicular to the layers. If the thickness of the super-
conducting layer surpasses the coherence length then ��z�
approaches the equilibrium value �at the free surface of the
superconductor� and Tc of the double layer approaches Ts,
the transition temperature of the pure superconductor.

The mechanism which determines the gap function ��z�
is a complex interplay of the propagation of the pair ampli-
tude �of the Cooper pairs� between the superconducting and
normal conducting layers, its exponential decay due to the
finite temperature as exp�−t /�T� �where 1/�T=2�kBT /��,
and the fresh condensation due to the attractive BCS inter-
action VBCS. The physics can be treated as a dynamic process
between decay and creation of the pair amplitude. At the

transition temperature decay and creation exactly balance
each other. One of the authors recently interpreted the super-
conducting proximity effect as such dynamic interplay be-
tween decay and balance.34 A numerical procedure for the
calculation of the transition temperature and the gap function
was derived. A number of examples were evaluated. The
physical picture behind this approach is briefly reviewed in
the Appendix.

A. Thin film regime

The distance which an electron �or a pair amplitude�
propagates during the time �Ts

= � / �2�kBTs� determines a su-
perconducting coherence length �. For a pure superconductor
it is the ballistically traveled distance �0, while for a disor-
dered superconductor it is the diffusively traveled distance
�0�, where

�0 = vF�Ts
= � vF/�2�kBTs� ,

�0� = �D�Ts
= �vF�Ts

l/3 = ��0l/3 = ��vFl/�6�kBTs� . �2�

Here vF is the Fermi velocity, D=vFl /3 is the diffusion con-
stant, l is the mean free path, and Ts is the transition tem-
perature of the pure superconductor S. In the superconductor
S we denote both length �0 and �0� as the pair coherence
lengths. The corresponding lengths in N at the same tempera-
ture are called thermal coherence lengths.

The spatial dependence of ��z� depends on a different
coherence length, often called the Ginzburg-Landau coher-
ence length. In the vicinity of Ts it is given by �GL

= �
2 �0��Ts−T � /T�−1/2 and diverges at Ts. In first approxima-

tion the gap function varies in the superconductor as cos��z
+ds� /�GL� and in the normal conductor as cosh��z
−dn� /�GL� �see, for example, Werthamer35�.

When the thicknesses of the superconductor and normal
conductor are both much smaller than their Ginzburg-Landau
coherence lengths the system is in the thin film limit or Coo-
per limit. In that case the gap function is essentially constant
in each film.

Cooper43 considered the thin film limit first and averaged
the BCS interaction over both films as

Veff =
Vsds + Vndn

ds + dn
.

DeGennes36 pointed out that it is the product NV that
should be averaged and the weight is proportional to the
product of thickness times density of states. When the metal
N has vanishing BCS interaction, Vn=0, deGennes obtained
for the effective interaction parameter �NV�eff

�NV�eff = �NV�s
Nsds

Nsds + Nndn
�3�

which yields the implicit condition for the transition tem-
perature Tc

FIG. 5. The inverse Tc reduction 1/ �Ts−Tc� versus the Pb thick-
ness dPb for double layers of Zn/Pb.

FIG. 6. The inverse Tc reduction 1/ �Ts−Tc� versus the Pb thick-
ness dPb for double layers of Sn/Pb.
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1

�NV�eff
= �n=0

nc 1

n +
1

2

, �4�

where the upper limit of the summation nc=�D / �2�Tc�, de-
termines the transition temperature.

A special case of the thin film limit is the weak coupling
limit where �D�2�Tc. In this case, which we denote as
Cooper limit, the transition temperature of the double layer is
given by the BCS-Cooper equation

Tc = 1.14�Dexp	−
1

�NV�eff

 . �5�

The resulting normalized initial slope for an S /N double
layer is in the Cooper limit

SCp =
ds

Ts
�dTc

ddn
� = ds�d�ln�Tc��

ddn
� =

Nn

Ns

1

�NV�s
. �6�

SCp is proportional to the ratio of the density of states Nn /Ns
and inversely proportional to the BCS interaction parameter
�NV�s. If one is not in the weak-coupling limit, but still in the
thin film limit �using Eq. �4� for the transition temperature�
the normalized initial slope is still proportional to Nn /Ns. But
�NV�s

−1 is replaced by a value which has to be determined
numerically.

In the thin film limit �including the Cooper limit� the tran-
sition temperature and the normalized initial slope do not
depend on the mean free paths or the coherence lengths of
the two films.

For the case that both metals S and N are superconducting
deGennes derived two equations for the gap functions in the
thin film limit. In this case one has a constant gap in each
film, �s in S and �n in N. We rederive deGennes’ results in
the Appendix as a special example of our numerical method.

All our experiments are performed in the thin film regime.
For this regime the thin film results are a good approxima-
tion. However, since all experimental films have a finite
thickness, one has to expect �small� deviations between the
predictions of the thin film limit and the full theory �not
restricted to the thin film limit�. Therefore we always use the
full theory for the theoretical predictions. In selected ex-
amples we discuss the agreement �deviation� between the
thin film limit and the full theory. The full numerical theo-
retical treatment is discussed in details in Ref. 34 and the
essential points are reviewed in the Appendix.

B. Initial slope

The measurement of the initial slope in our PbAg double
layers is an experiment in the thin film regime. In Fig. 1 the
transition temperature of a PbAg double layer is plotted as a
function of the Ag thickness dAg. In Ref. 34 we calculated
the normalized initial slope Ssn= �ds /Ts� �dTc /ddn� as a func-
tion of the of the thickness of the superconductor and ob-
served that Ssn is essentially constant up to relatively large
values of ds. This means that the thin film regime extends in
this case much further than one would naively expect. The
physical reason is following. Let us consider different PbAg

double layers with a small constant thickness dn of the nor-
mal conductor. For a given thickness ds of the supercon-
ductor the reduction of the transition temperature is �Tc
= �Ts−Tc�=SsnTs /ds. At this temperature the Ginzburg-
Landau coherence length is �GL= �

2 �BCS�Ts / �Ts−Tc�
= �

2 �BCS
�ds /Ssn. This means that the relevant coherence

length grows with increasing thickness of the superconductor
and can by far exceed the pair coherence length. For example
the first Ag point in Fig. 1 with dAg�2 nm has a reduction of
�Tc�0.4 K. This yields �GL�7�0�.

The full big circles in Fig. 1 represent the experimental Tc
values. It has an normalized initial slope of Sexp=0.66. The
lower curve with the up triangles gives the theoretical pre-
diction using the full theory. It yields for the normalized
initial slope the values Stheo=1.75. For a comparison Fig. 1
shows also the thin film limit results for the transition tem-
perature as the dotted curve marked as TFL. Its transition
temperatures are calculated with Eq. �4� using the effective
interaction parameter of Eq. �3�. The TFL curve has the same
normalized initial slope of STFL=1.75 as the full theory but
for larger Ag thicknesses it deviates considerably from the
full theory.

Obviously the theory yields a much larger reduction of Tc.
As discussed above the input parameters are the thickness
dPb, dAg, the Debye temperature �D of Pb ��D of Ag does
not enter the gap equation for �s�, the �experimental� density
of states NPb, NAg and the transition temperature of Pb. The
interaction parameter �NV�Pb is self-consistently determined
from the transition temperature TPb. The density of states are
taken from Kittel37 and include the electron-phonon en-
hancement. The ratio between the experimental and the the-
oretical slope is 0.38. This is a remarkably large discrepancy
between experiment and theory.

Transmission of the interface. A major concern in the
study of the SPE is the transmission through the interface
between the layers of S and N. The probability to find an
electron in film S or N is proportional to the product of
thickness and density of state, i.e., dsNs and dnNn. Detailed
balance requires that the ratio of the transmission probability
from S to N and vice versa is Ts→n /Tn→s=Nn /Ns. This means
that the transmission from the metal with the higher density
of states is always less than 1.

In our numerical treatment of the SPE we studied the
effect of a reduced transmission. Both transmissions, Ts→n
and Tn→s, were reduced by the factor T�1. The result was
that a reduction of the interface transmission did not alter the
initial slope �dTc /ddn�, but it reduced the thickness range
where one can observe the linear dependence of Tc on dn.
Since the role of the transmission T on the initial slope is
important in the present investigation we have calculated and
drawn in Fig. 1 the theoretical dependence of Tc on dAg for
different transmissions of the interface. The numbers at the
right side of the theoretical curves give the reduction factor T
for the transmission through the interface into the Pb. The
curves show that the initial slope remains constant. But with
reduced transmission the transition temperature approaches a
higher saturation value for Tc quicker. If one compares these
theoretical curves of reduced transmission with the experi-
mental curve one recognizes that the experimental curve
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does not show the increased curvature of a reduced transmis-
sion.

C. The thin film regime

In Figs. 3–6 the experimental results for Ag/Pb, Mg/Pb,
Zn/Pb, and Sn/Pb double layers are plotted. The big full
circles show the inverse Tc reduction �Ts−Tc�−1 as a function
of the Pb thickness dPb. The experimental points lie on
straight lines with a finite intersection of the ordinate. The
mean free path in the Pb film is about 3 nm and the resulting
pair coherence length for the dirty limit is about 13 nm. �The
coherence lengths of the metal N are collected in Table I.� In
the same figures we have plotted the results of our numerical
calculations as full up triangles. We observe two important
results: �i� the theoretical points lie also on a straight line
with the same ordinate intersection as the experimental re-
sults, �ii� for the double layers Ag/Pb, Mg/Pb, Zn/Pb there
is a large discrepancy between the experimental and theoret-
ical results. Only for the Sn/Pb double layer do we observe
a good agreement between experiment and theory. For the
other systems we have included an additional theoretical plot
where we increased the density of states Ns of Pb artificially
until the theoretical values agreed with the experiment. The
experimental density of states of Pb is larger than its free
electron density of states by almost a factor of 2. This is due
to the strong electron-phonon mass enhancement �1+	��2,
where 	=2�0


�2F���d� /� is the electron-phonon parameter
and �2F��� is the Eliashberg function. For the Ag/Pb double
layer we have to use an NPb which is larger than the free
electron density by a factor 4.3, while for Mg the factor was
even 7.5. The resulting numerical results lie on the same
straight line as the experimental points. �However, we do not
give the strongly modified density of states any physical sig-
nificance at this point.�

These results permit us to quantify the discrepancy be-
tween experiment and theory. As discussed in the Appendix

the slopes
d�Ts−Tc�−1

ddPb
are closely related to the initial slope Ssn.

But it is more transparent for demonstrating the discrepancy
between experiment and theory to use the ratio of the experi-

mental and theoretical slopes mexp=
d�Ts−Tc�−1

ddPb
�exp and mtheo

=
d�Ts−Tc�−1

ddPb
�theo. The results for mexp/mtheo are collected in

Table I.
The experimental results disagree dramatically with the

theoretical predictions. It is also important to note that the
experiments are performed in a regime where the theory is
quite simple, essentially only averaging over the two metals
S and N. It is surprising that this disagreement between ex-
periment and theory has not been noticed in the past. The
main reason is that the majority of the experimental and the
theoretical work focused on NS double layers with thick nor-
mal metal films. Then superconductivity is only obtained for
a finite thickness of the superconductor. In this case a com-
parison between experiment and theory requires many fit pa-
rameters such as the transmission of the interface and the
mean free paths of the superconductor and the normal con-
ductor. Therefore it is quite possible to fit the experimental
data by using the wrong parameters that cannot be checked
otherwise.

The physical origin of this disagreement between experi-
ment and theory is not understood. Our theoretical simula-
tion of the SPE uses the frame work of weak coupling su-
perconductivity. Quench condensed Pb, In, and Sn are not
weak coupling. The ratios of 2�0 / �kBTs� for quench con-
densed films are 4.6 for Pb, 3.9 for In, and 4.0 for Sn �Refs.
38 and 39�. An obvious proposal would be to solve the su-
perconducting proximity effect for strong coupling supercon-
ductors. This requires developing and solving a series of
equations for the energy and position dependent gap function
��r ,�l�. This would be an extremely demanding job.

The normalized initial slope is proportional to the density
of states ratio. Although the density of states can be modified
in quench condensed films it is inconceivable that this ex-
plains a factor of 3 in the initial slope.

IV. CONCLUSION

In this paper, the superconducting proximity effect is in-
vestigated for SN double layers in a regime where the result-
ing Tc does not depend on the mean free path of the films
and, within limits, not on the transmission of the interface.
This includes the thin film regime and, in S /N double layers,
the initial slope dTc /ddn at zero thickness dn of the normal
conductor.

For the superconducting layer S we always used Pb while
the conductor N included a nonsuperconducting metal such
as Cu, Ag, Au, and Mg and superconductors Cd, Zn, Al, In,
and Sn with a Tc below the transition temperature of Pb. The
experimental results for the transition temperature Tc are
compared with a numerical calculation which was recently
developed in our group. The results for the SN double layers
can be divided into three groups:

TABLE I. The experimental and theoretical slopes
d�Ts−Tc�−1 /dPb are compared. The first five columns give the ex-
perimental code �containing the symbols of the normal conductor N
and superconductor S�, the thickness of N, the thermal coherence
length �T of N in the dirty limit, the transition temperature of N �if
superconducting� and the ratio of the experimental density of states
Nn /Ns �which includes electron-phonon enhancement�. The sixth

column gives the ratio between mexp=
d�Ts−Tc�−1

ddPb
�exp and mtheo

=
d�Ts−Tc�−1

ddPb
�theo.

Exp. dn�nm� �T��nm� Tn�K� Nn /Ns mtheomexp

MgPbUW 3.08 9.1 0 0.572 4

AgPbJB 4.12 12.1 0 0.387 2.2

CuPbJE 3.29 10.8 0 0.603 2.5

AuPbJD 2.95 10.2 0 0.442 2.9

CdPbJJ 3.14 11.2 0.80 0.329 1.25

ZnPbUU 2.60 7.6 1.39 0.430 1.5

AlPbUT 2.15 9.6 2.28 0.833 1.7

InPbUP 3.21 13.6 4.1 0.663 1.2

SnPbUN 3.30 12.0 4.7 0.664 1.0
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When N represents a nonsuperconducting metal film �N
=Cu, Ag, Au, and Mg� we observe grave deviations be-
tween experiment and theory by a factor of the order of 2.5.

When N represents a superconductor with a low Tc �N
=Cd, Zn, Al� the disagreement between experiment and
theory is reduced to a factor of about 1.5.

When N represents a superconductor with a Tc which is
about half the Tc of Pb �N=In, Sn� then we observe a rea-
sonably good agreement between experiment and theory.

Prior to our recent experiments we believed that the prox-
imity effect between a superconductor and a normal conduc-
tor represented an intensively studied phenomenon with a
good theoretical understanding. We are deeply puzzled by
the large observed discrepancy between experiment and
theory. The discrepancy is particularly disturbing since our
experiments are performed in a regime where the theory is
quite simple, essentially only averaging over the two metals
S and N.

It would be very desirable if other theoretical approaches
would give quantitative predictions for this thin film regime
and the normalized initial slope in SN double layers. There
have been a number of theoretical papers published which
extended the proximity effect to more complex systems, for
example between a superconductor and a ferromagnet but
which include implicitly the simpler case of an SN double
layer. These authors should be able to calculate quantita-
tively the normalized initial slope from their theory.

Experimentally it would be desirable to extend the mea-
surements to SN layers where S is a weak coupling super-
conductor. This requires lower temperatures but permits the
use of thicker films because the coherence lengths are larger
at lower temperatures. Aluminum would be a good candidate
for the superconductor if evaporated in ultrahigh vacuum so
that the Al is not granular.
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APPENDIX: BACKGROUND OF THE NUMERICAL
CALCULATION

The superconducting phase transition in zero magnetic
field is generally of second order. The gap function ��r� is
the order parameter of the phase transition. Therefore, close
to the transition temperature Tc of the system, the gap func-
tion ��r� is small and only terms linear in the gap function
contribute. This linear gap equation was first formulated by
Gorkov.40 Following de Gennes,36,8 Lueders,41 and one of the
authors42 we use a different approach which leads to the
following gap equation:34

��r� = V�r�  d3r�
−


0 dt�

�T
�

��n���D

e−2��n��t��

���vF;r,0;r�,t��N�r����r�� . �A1�

Gorkov’s original linear gap equation contains the product
of two Green functions G�n

�r ,r�� and G�n

* �r ,r��. The Green

function G�n
�r ,r�� represents the amplitude of an electron

traveling from r� to r and the product
kBTG�n

�r ,r��G�n

* �r ,r�� describes the pair amplitude of the
Cooper pairs traveling from r� to r. Since the two single-
particle Green functions are conjugate complex to each other,
the product of their amplitudes is proportional to the prob-
ability of a single electron to travel from r� to r. Here we
introduce the propagation density ��vF ;r ,0 ;r� , t�� of an
electron. If an electron starts at the time t��0 from the po-
sition r� and propagates with Fermi velocity vF into all di-
rections then ��vF ;r ,0 ;r� , t�� describes the probability den-
sity to find the electron at the time 0 at the position r. The
propagation of the pair amplitude is governed by the same
“propagation density” ��vF ;r ,0 ;r� , t�� as the propagation of
single electrons.

During the travel time �t�� from r� to r the pair amplitude
decays because of a thermal loss of coherence between the
two individual electron amplitudes. The subscript �n= �2n
+1��kBT /� in G�n

�r ,r��G�n

* �r ,r�� represents the Matsubara
component of the pair amplitude. Each component decays as
exp�−2 ��n � t� with time and arrives at �r ,0� with the magni-
tude exp�−2��n��t��� /�T*N�r���vF ;r ,0 ;r� , t��. As one recog-
nizes the propagation in space and the decay in time can be
separated. In superconductivity all �Matsubara� components
up to the Debye frequency contribute.

Now the gap equation �A1� can be described in an “as if”
or “ersatz” picture. Let us assume that we inject at the posi-
tion r� during the time interval �t� , t�+dt�� in the past
N�r����r��d3r�dt� /�T electrons into volume element d3r�.
These electrons will propagate from �r� , t�� to an arbitrary
position r at the presence �t=0� according to the single elec-
tron propagation density ��vF ;r ,0 ;r� , t��. Here �see Eq.
�A1�� the arriving density of electrons,
��vF ;r ,0 ;r� , t��N�r����r��d3r�dt� /�T, is multiplied with

e−2��n��t��. Next we sum over all frequencies ��n � ��D, per-
form the integral �d3r� over the whole volume of the system
and the integral �−


0 dt� over time. Then we multiply the re-
sulting density with the BCS interaction V�r� at the position
r. The result has to recover the gap function ��r�, for every
position r. The temperature at which the gap function is re-
covered self consistently is the transition temperature of the
system.

The main numerical task is the calculation of the electron
propagation density ��vF ;r ,0 ;r� , t��. This is a problem
which does not involve superconductivity. The superconduc-
tivity enters the problem only through the damping with the
Matsubara frequencies, the BCS interaction and, of course,
the self-consistency of the gap equation.

The Matsubara component with the smallest frequency
for n=0 yields the decay rate 2�0=2�kBT /�. It decays as
exp�−�t� � /�T�, where �T= � / �2�kBT� is the thermal coher-
ence time.

1. Thin film limit

We turn to a double layer of two thin films S and N, which
are both superconducting. This is shown in Fig. 7. We will
evaluate the linear gap equation �A1� in the thin film limit.
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The thicknesses and density of states of the films are ds, dn
and Ns, Nn. For normalization purposes the double layer may
have an area A �in the x-y plane�. In this geometry the gap
function is only a function of the z direction. Therefore we
take instead of the volume element d3r� a sheet with the
volume Adz� located between z�, z�+dz�. The sheet can be
located in either N or S. For the discussion we choose N. The
number of electrons which start during the time t�, t�+dt�
�t��0� from this sheet is Nn�n�z��Adz�dt� /�T. If both films
are in the thin film limit then after a very short time all these
electrons are evenly distributed over both film.The equilib-
rium distribution in each film is proportional to the density of
states. So their density has constant values in each film:

�n→s =
Ns

Nsds + Nndn
Nn�n�z��dz�dt�/�T,

�n→n =
Nn

Nsds + Nndn
Nn�n�z��dz�dt�/�T.

Here �n→s is the density in S for electrons starting N. Similar
density contributions are obtained from the electrons which
start in S.

If the time it takes to achieve the equilibrium distribution
is much shorter than �T then the densities are essentially
constant for the whole dt� integration. The time integration
yields ��n

1/ �2 ��n � �. Then the dz� integrations can be per-
formed and one obtains for �s�z�

�s�z� = Vs���n���s

1

�T

1

2��n�� Ns

Nsds + Nndn
	Ns

−ds

0

�s�z��dz�

+ Nn
0

dn

�n�z��dz�
� .

This yields on the left side a constant value for �s�z� which
is given by the average of �s�z�� and �n�z��. Therefore con-
sistency can only be achieved when both �s and �n are con-
stant. This yields the solution for the thin film limit:

�s = Vs���n���s

1

�T

1

2��n�� Ns

Nsds + Nndn
�dsNs�s + dnNn�n�� ,

�n = Vn���n���n

1

�T

1

2��n�� Nn

Nsds + Nndn
�dsNs�s + dnNn�n�� .

�A2�

These are exactly the two gap equations which deGennes
derived for the thin film limit. We extended the equation to
the case that the two metals have different Debye tempera-
tures.

2. Structure of the numerical calculation

In the numerical solution of the dynamic linear gap equa-
tion �A1� the time integration is changed from �−


0 dt� to
�0


dt�. The propagation density ��vF ;z ,0 ;z� , t�� depends
only on the z coordinate. It is calculated semiclassically in a
propagation simulation which covers the whole range from
diffusive to ballistic propagation. Details can be found in
Ref. 34.

The calculation is performed in a number of steps. �i� The
superconductor is divided into Zs layers of thickness 	s,
where 	s=ds /Zs �ds is the thickness of the superconducting
film�. �ii� The BCS interaction Vs for the superconductor�s� is
fitted, using the density of states Ns and the Debye tempera-
ture �D. �iii� The time interval �d =2	s /vF,s is the time step
of the numerical calculation �vF,s is the Fermi velocity of the
superconductor�. �iv� For the normal conductor �supercon-
ductor with lower Tc� the same time step is used by dividing
its thickness in layers of thickness 	n=vF,n�d /2. �v� An initial
gap function ��=��z�� is introduced. Each cell is occupied
at the time t�=0 with O��0�=N�z��	���z�� electrons. �N�z��
is the local density of states, i.e., equal to Ns in the super-
conductor�. �vi� A procedure for diffusive and ballistic propa-
gation of electrons in the different films is derived. �vii� The
maximal transmission of an electron through the interface in
each direction is calculated. It can be scaled down to include
a barrier at the interface. �viii� The occupation O��m� of the
cell � is calculated in discrete steps for the time t�=m�d. �ix�
Due to thermal dephasing this density is, at each step, mul-
tiplied with the time factor ��e−2����t��. �x� The sum over the
time steps �mO��m���e−2����t�� is formed, multiplied with
��d /�T�/	� and, in the superconductor�s�, multiplied with Vs,
the attractive electron-electron interaction. �xi� The resulting

function �̃� is the input �� for the next iteration. �xii� Since

the eigenvalue has to be 1 the ratio r=���̃�z�� /����z�� is
calculated. If r�1 �r�1� one increases �lowers� the tem-
perature. �xiii� The iteration process is completed when ini-
tial and final �� agree with a relative accuracy of 10−5. This
is generally achieved after a few iterations. The details are
described in Ref. 34.

FIG. 7. The dynamics of the linear gap equation.
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3. Relation between normalized initial slope and the slope
of the 1/ „Ts−Tc… versus ds plot

The slope m=d�Ts−Tc�−1 /dds in the plots of �Ts−Tc�−1

versus ds is closely related to the normalized initial slope
Ssn= �Ts /ds� �dTc /ddn�. The thickness of the metals N in this
series is very small, about 3 nm. Imagine that we condensed
the same double layer in opposite sequence. Then the thin
normal layer would reduce the transition temperature Ts of
the superconductor S by �Ts−Tc� and since dn is so small we
expect that the Tc reduction is still in the linear range. This
means that

Ts − Tc � �dTc

ddn
�dn = SsnTs

dn

ds

which yields

�Ts − Tc�−1 �
1

SsnTsdn
ds.

This suggests that a plot of �Ts−Tc�−1 versus ds should yield
a straight line which goes through the origin with the slope
�SsnTsdn�−1. In experiment and theory we observe indeed a
straight line but it has a finite intersection with the ordinate.
The reason is the following: When we reduce the thickness
of the superconductor then dn is no longer much smaller than
ds. In this case the resulting Tc no longer lies on the linear
tangent of the Tc reduction but the dependence of Tc on dn is
already nonlinear. The smaller the thickness dn is, the closer
lies Tc to the tangent �at dn=0�. For the parameters of our
experiments the deviation �agreement� between Ssn and
1/ �mTsdn� is about 10%. For the AgPbJB experiment �sec-
ond row of Table I� we obtain from the experimental slope
d�Ts−Tc�−1 /dds the normalized initial slope of Ssn=0.67.
This is in good agreement with the results of Fig. 2.
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