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The competition between spin glass, ferromagnetism and Kondo effect is analyzed here in a Kondo lattice
model with an intersite random coupling Jij between the localized magnetic moments given by a generalization
of the Mattis model �D. J. Mattis, Phys. Lett. 56A, 421 �1977��, which represents an interpolation between
ferromagnetism and a highly disordered spin glass. Functional integral techniques with Grassmann fields have
been used to obtain the partition function. The static approximation and the replica symmetric ansatz have also
been used. The solution of the problem is presented as a phase diagram giving T /J vs JK /J, where T is the
temperature, JK and J are the strengths of the intrasite Kondo and the intersite random couplings, respectively.
If JK /J is small, when temperature is decreased, there is a second-order transition from a paramagnetic to a
spin glass phase. For lower T /J, a first-order transition appears between the spin glass phase and a region
where there are Mattis states which are thermodynamically equivalent to the ferromagnetism. For very low
T /J, the Mattis states become stable. On the other hand, it is found as solution a Kondo state for large JK /J
values. These results can improve the theoretical description of the well-known experimental phase diagram of
CeNi1−xCux.
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I. INTRODUCTION

The properties of many cerium or uranium compounds are
well described by the Kondo-lattice model, with strong com-
petition between the Kondo effect on each site and the
Ruderman-Kittel-Yosida-Kasuya �RKKY� interaction be-
tween magnetic atoms at different sites. The role of disorder
has been studied in disordered alloys containing cerium or
uranium, and different theories have been proposed. In the
Kondo disordered model �KDM�,1,2 disorder produces a
broad distribution of Kondo temperatures and can be respon-
sible for the deviation from the Fermi liquid behavior found
in some heavy fermion systems. Another theoretical ap-
proach is the magnetic Griffths phase,3 where fluctuations of
the magnetic clusters can produce Griffiths-McCoy singu-
larities close to a quantum critical point �QCP�. On the other
hand, we have studied within a mean field approximation the
phase diagrams observed in disordered heavy fermion sys-
tems showing Kondo, spin glass, and magnetically ordered
phases,4–6 and we will discuss these models later on. Earlier
studies have also suggested that a spin glass transition near a
QCP could lead to a non-Fermi liquid �NFL� behavior.7 Our
paper is an attempt to improve the theoretical description of
the spin-glass–Kondo-ferromagnetic competition in order to
obtain a better agreement with the experimental situation of
disordered cerium or uranium heavy fermion systems.

Spin glass and Kondo state have been observed together
in several cerium alloys, such as CeNi1−xCux,

8–11

Ce2Au1−xCoxSi3,12 and in some disordered uranium alloys,
such as UCu5−xPdx �Ref. 13� or U1−xLaxPd2Al3.14 The first
was studied by bulk methods �see Refs. 8 and 9� and, more

recently, by �SR spectroscopy,10 which gives local informa-
tion about the spin configurations. The bulk probes have
shown a presence of antiferromagnetic phase for low Ni con-
tent �for instance x=0.9�. In the region x�0.2, the Kondo
effect becomes important producing magnetic moment re-
duction. For 0.8�x�0.4, the same bulk probes have shown
a presence of the spin glasslike state intermediate in tempera-
ture between a ferromagnetic order �at lower temperature�
and paramagnetism �at higher temperature�. However, the
�SR spectroscopy has shown in the region 0.8�x�0.4 a
scenario favoring the presence of a inhomogeneous “cluster
spin glass” �or called equivalently “cluster glass” in Ref. 10�
rather than a standard spin glass. Quite recent measurements
on the specific heat11 has confirmed the emergence of a spin
glasslike state and a percolative evolution to a ferromagnetic
order at low temperatures.

There has been a theoretical attempt5 to build up a global
phase diagram based on a Kondo lattice model with a ran-
dom Gaussian intersite coupling among the localized spins

with mean 2J0 /N and standard deviation �8J̃2 /N �N is the
number of sites�. The spin operators have been given as bi-
linear combination of creation and destruction fermionic op-
erators. The partition function has been found using path
integral formalism within the static approximation and rep-
lica symmetry ansatz.4 The results have shown that ferro-
magnetism, spin glass, and a mixed phase �a solution with
nonzero magnetization below the Almeida-Thouless line�
have been obtained for small JK / J̃ values and J0 / J̃�1.46

while a Kondo phase is obtained for large JK / J̃ values.
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However, the calculated spin glass freezing temperature
�Tf� is lower than the Curie temperature �Tc� in this highly
frustrated model. Even the transition temperature to the
mixed phase is always below the onset of the ferromagnetic
order at Tc. Thus, our previous model5 gives a ferromagnetic
transition temperature �Tc� above the spin glass transition
temperature �Tf�, in contrast with the experimental situation
of CeNi1−xCux �Refs. 8–11� alloys, where the ferromagnetic
phase is always the lowest one. That would be a clear indi-
cation that Gaussian distributed random couplings, as in the
Sherrington-Kirkpatrick �SK� model,19 is not adequate to de-
scribe the frustration present in that alloy.

One important point in the set of experimental works has
been to clarify the effect of the disorder in the
CeNi1−xCux.

8–11 When Cu is randomly replaced by Ni in that
alloy, not only is the cell volume modified, but also the num-
ber of conduction electrons, which makes the competition
between the RKKY and Kondo effect complex for that par-
ticular alloy.11 As a consequence, one localized spin at any
site can be subject to a set of effective local magnetic fields,
which results in the complicated combination of states pre-
viously cited.

In the Mattis model,15 which has been proposed as a solv-
able model to the spin glass problem, the bonds joining the
localized spins have been defined as separable random vari-
ables �i. This model could allow one to gain some insight
into the local effects of disorder as long as it would be pos-
sible to construct local applied fields dependent on the ran-
dom variable �i. Unfortunately, at zero magnetic field, a
gauge transformation of the Ising spins classical variables
leads Mattis model free energy to behave rather as the usual
ferromagnet.16,17 Therefore, this model is trivially disordered
in the sense that it is unable to produce the essential compo-
nent of the spin glass, which is frustrating. Nevertheless, the
generalization of the Mattis model18,20 has proved to be an
interesting alternative. In this model, the coupling between
spins are given by

Jij =
1

N
�
��

J���i
�� j

�, �1�

where �i
�= ±1 ��=1,2 , . . . , p; i=1,2 , . . . ,N� are independent

random distributed variables. For the classical Ising model, if
�=�=1, the original Mattis model15 is recovered. However,
if J��=J��� and p=N with the N2 random variables �i

� hav-
ing mean zero and variance one, in the limit of N large, Jij
tends to a Gaussian variable with mean zero and variance
N−1/2J as in the SK model.19 Therefore, we can consider this
model as an interpolation between ferromagnetism and
highly disordered spin glass.22

An important particularity of this model �see Eq. �1�� is
J��=J���, which has been used in a different context, i.e.,
the statistical mechanics theory of complex systems22 using
classical Ising spins. In this problem, randomness effects can
be better understood at T=0 temperature when the local field
applied in a particular spin given by hi=�i�jJijSj is
analyzed.21 In the state Si=�i

1 �choosing J=1�, the local field
becomes hi=�i

1�1+�i�, where �i is a random variable with
variance ��i

2��= p−1
N . Two situations can be identified when

N→	 �N is the number of sites�. If p is finite, the spin is
perfectly aligned with �i

1. However, if p increases linearly
with N �p=aN�, the term �i can become important and the
alignment can be destroyed. This random component of the
local field can be a source of frustration and, in that sense,

the ratio �N / p is the analog of J0 / J̃.22 When temperature is
turned over, there is an additional mechanism to avoid the
aligning.

Actually, the thermodynamics of the generalized classical
Mattis model can be described by a mean field theory21–24 in
terms of the parameter a= p /N. For a particular value called
ac, two clearly distinct regimes can be identified. When a
�ac, the frustration is dominant below a certain temperature
Tf leading the problem to a spin glass behavior. Neverthe-
less, when 0
a
ac, a much more complex scenario can
appear depending on the temperature. For instance, it can be
found as solution not only a spin glass phase, but also Mattis
states �which corresponds to the stable aligning between �’s
and spins� with a first-order transition between them. These
Mattis states have the same thermodynamics as the ferro-
magnetic phase.21–24

The mean field description of the previous situation intro-
duces the order parameter m�= 1

N�i�i
��Si�, which gives a

measure of the difference between the configurations of the
set 	�i

�
 and the spins. In that approach, one particular solu-
tion can be, for example, only m1 with a possible nonzero
value, while the remaining m� ���1� are of order 1 /�N.
This choice corresponds to the situation where the spins can
be perfectly aligned only with �i

1. Nevertheless, these m�’s
���1� still have a role in the problem yielding a possible
spin glass solution in the problem depending on the tempera-
ture and, particularly, on the parameter a. Therefore, this
approach would be mathematically convenient to apply in a
problem where we would be interested in getting control
about the degree of frustration.

In this work, we consider the Kondo lattice model with a
random intersite interaction between the localized spins
where the coupling Jij is given by Eq. �1�. That would allow
us to investigate the competition between Kondo effect and
magnetism combining the approach of Ref. 4 with Ref. 23.
Therefore, the degree of frustration a= p /N is a parameter,
which together with JK /J �JK is the strength of the intra-site
Kondo coupling�, constitutes the parameter space where the
solutions can be located. In Ref. 4, the solutions for the order
parameters have been found only in the limit of strong frus-
tration �the random Gaussian coupling�, which corresponds
to the a�ac situation. We will show a more complex situa-
tion in the limit of weak frustration. For small JK /J, there is
an intermediate spin glass phase between paramagnetism and
the region where there are Mattis states, which corresponds
to the ferromagnetism. Furthermore, the transition from the
spin glass to the ferromagnetism is first order. Therefore,
there is a large region in temperature where the ferromag-
netic solution is thermodynamically metastable. It becomes
stable at very low temperature. For large JK /J, we get a
Kondo state, as already discussed in Ref. 4.

It is not obvious that the properties of the classical Mattis
model and its generalization can be extended to the quantum
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version of these models. However, it has been shown that the
long-range quantum Mattis model has the same qualitative
behavior of his classical counterpart.25 Moreover, in the
present fermionic spin glass mean field approach with the
static approximation, which is reliable at high temperature,
the spin variables have the essential features of classical
ones.26,27

It should be remarked that the extension of the method
given in Ref. 23 to the present fermionic problem is not
straightforward. In fact, the model developed here is differ-
ent from that one, introduced in Refs. 4–6. Indeed, both
models study the competition between Kondo effect and spin
glass, with eventually an additional magnetic phase. But, the
description of the spin glass onset is different in the two
cases. In the present one, parameter a can tune the spin glass
or the ferromagnetic component of the long-range internal
field, which has a completely different dependence on the
spin glass order parameter as compared to Refs. 4–6. Actu-
ally, for large values of parameter a, the Gaussian distribu-
tion of spin couplings is recovered. That corresponds to the
strong frustration situation studied in Ref. 4. Thus, the theo-
retical description is not simple, but the present model is able
to give a more local description of the problem. Finally, as it
will be discussed later on, we will obtain a ferromagnetic
phase below the spin glass solution in terms of temperature,
in contrast to the results of the previous model and in im-
proved agreement with the experimental phase diagram of
CeNi1−xCux alloys.

On the other hand, we can say that the experimental situ-
ation of CeNi1−xCux or similar alloys are also very complex.
In fact, the so-called spin glass phase is more exactly a “clus-
ter spin glass,” which tends to a real ferromagnetic order by
a percolative process when temperature decreases.

The outline of the paper is as follows. In Sec. II, the
model is introduced and developed in order to get the free
energy with the relevant order parameters for the problem.
The results obtained are presented and discussed in Sec. III,
and we finish it up with a conclusion in Sec. IV.

II. GENERAL FORMULATION

The model is the Kondo lattice used previously to study
the competition between spin glass and Kondo effect.4 The
Hamiltonian is given by

H = �
k,�

knk�
c + �

i,�
0ni�

f + HSG + JK�
i

�Ŝf ,i
+ ŝi

− + Ŝf ,i
− ŝi

+� ,

�2�

where the sum is over the N sites of a lattice.
The term HSG corresponds to the intersite interaction be-

tween localized spins, thus

HSG = �
i,j

JijŜfi
z Ŝf j

z . �3�

The random coupling Jij present in Eq. �3� is given by Eq.
�1� with J��= J

2���,22 where �i
�= ±1 are random independent

variables, which follow the distribution,

P�� j
�� =

1

2
���j

�,+1� +
1

2
���j

�,−1� . �4�

The spin operators in Eq. �2� are defined �see Refs. 4–6�
as bilinear combinations of the creation and destruction op-
erators for localized �conduction� fermions f i↑

† , f i↓ �di↑
† , di↓�

with the spin projection �=↑ or ↓: Ŝfi
+ = f i↑

† f i↓; Ŝfi
− = f i↓

† f i↑; ŝci
+

=di↑
† di↓; ŝci

− =di↓
† di↑;

Ŝfi
z =

1

2
�f i↑

† f i↑ − f i↓
† f i↓� . �5�

The chemical potential for the localized and conduction
bands are � f and �c, respectively. As it has been done in
Refs. 4–6, the energy 0 is referred to � f and k is referred to
�c.

In the functional integral formalism, the partition function
is expressed using anticommuting Grassmann variables
�i���� �related to conduction electrons� and �i���� �related to
the localized electrons�4 as

Z =� D��*��D��*��exp�ASG + AK + A0��*,�� + A0��*,��� ,

�6�

where in the static approximation4

A0��*,�� = �
ij�

�
�

�i�
* ����i� − ��0��ij� j���� , �7�

A0��*,�� = �
ij,�,�

�i�
* �����i� − ��k��ij − tij�� j���� , �8�

AK
stat �

JK

N
�
i�

�
�

��i−�
* ����i−�����

� �
j�

�
��

�� j�
* ����� j������ , �9�

ASG
stat = �

ij

JijSiSj , �10�

with

Si =
1

2 �
�=±

�
�

��i�
† ����i���� . �11�

In Eq. �11�, the Matsubara’s frequencies are given, as usual,
by �= �2m+1�� with m=0, ±1, ±2, . . ..

The problem is treated closely to the mean field approxi-
mation of Ref. 4. Therefore, the Kondo order parameter ��

and its conjugate are introduced using the integral represen-
tation of the � function as
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�N�� − �
�

�
i=1

N

�i�
* ����i�����

=� �
�

dv�

2�

�exp�i�
�

v��N��
* − �

�
�
i=1

N

�i�
* ����i������ ,

�12�

where the presence of the order parameter �� is related to the
formation of d− f singlet throughout the whole lattice. This
mean field order parameter is presently recognized to pro-
vide good description of the Kondo effect on each site.29

Therefore, the resulting partition function becomes

Z =� �
�

d��
†d��exp�− N�JK�

�

��
†���Zstat, �13�

where

Zstat =� D��*��D��*��exp�A0��*,�� + ASG
stat + A0��*,��

+ �JK�
�
��−�

† �
j,�

� j�
† ���� j����

+ ���
j,�

� j�
† ���� j������ . �14�

In fact, in this work the Kondo order parameter is considered
��=�.4–6

The integration over the Grassmann fields �* and � in Eq.
�14� can be performed, which results in

Zstat

Z0
=� D��*��exp�A0

eff + ASG
stat� , �15�

where

A0
eff = �

ij�
�
�

�i�
* ���gij

−1���� j���� , �16�

with

gij
−1��� = �i� − �0��ij − �2JK

2 �*��ij��� . �17�

The Fourier transform of the Green’s function �ij��� in Eq.
�17� is

�k��� =
1

i� − ��0 − ��k
. �18�

In order to introduce the proper set of order parameters in
our problem,23 the action ASG

stat in Eq. �10� is written using Eq.
�1� to give

ASG
stat =

�J

2N
�
�=1

p

�
i

�i
�Si�2

−
�Jp

2N
�

i

�Si�2, �19�

where Si has been defined in Eq. �11�.
The free energy can be obtained following the replica

method,

�f = 2�Jk�
*� − lim

n→0

1

Nn
���Zstat

n ��� − 1� , �20�

where ��¯��� is the averaged over �’s. The fundamental is-
sue consists of the evaluation of the quadratic form present
in the first term of ASG

stat. First, the sum over � is separated
into two parts:23 ��=1

p =��=s
p +��=1

s−1.
It is possible to linearize the problem introducing n� p

auxiliary fields m�
� and m�

� �� is a replica index�, which
correspond to the parameter discussed in Sec. I. Therefore,

exp�ASG
stat� = exp�−

�Jp

2N
�
�=1

n

�
i=1

N

�Si
��2��

−	

	

Dm�
�exp��JN�

�=1

s−1

�
�
�−

1

2
�m�

��2+
1

N
�

i

�i
�Si

�m�
���

��
−	

	

Dm�
�exp��JN�

�=s

p

�
�
�−

1

2
�m�

��2 +
1

N
�

i

�i
�Si

�m�
��� , �21�

where

Dm�
���� = �

����
�
�

dm�
����/�2� .

In this work, the structure of solutions for auxiliary fields
m�

�’s and m�
�’s is the same as in Ref. 23. We assume that the

relevant contributions come from m�
� , which are order unity,

whereas m�
� is of order 1 /�N. Therefore, the average over the

p−s independent random variables �i
� can be done using Eq.

�4�, which results in

��exp��J�
�=s

p

�
�
�

i

�i
�Si

��m�
����

�

= exp��
i

�
�=s

p

ln�cosh�J�
�

Si
�m�

���� . �22�

The argument of the exponential in the right-hand side of
Eq. �22� can be expanded up to second order in m�

�. The
result is a quadratic term of the spins variables Si

� in the last
exponential of Eq. �21�. This term can be linearized by in-
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troducing the spin glass order parameter q�� using the inte-
gral representation of the � function as we have done with
the Kondo order parameter; thus,

1 = �
−	

	

�
��

�q�� −
1

N
�

i

Si
�Si

�� , �23�

where q�� is equivalent to the usual spin glass order param-
eter introduced in the classical SK model,19 which gives the
transition to spin glass phase when m�

�=0.
Therefore, after rescaling m�

�→m�
� /�N, the exponential

involving m�
� in Eq. �21� can be written as

exp��JN�
�=s

p

�
�
�−

1

2
�m�

��2 +
1

N��i
�i

�Si
��m�

���
=

1

2�
�

−	

	

����
dq��dr̄���exp�−

�J

2 �
�=s

p

m�
����m�

�i

��
��

r̄��q�� −
1

N
�

i

Si
�Si

��� , �24�

where the matrix element

��� = ��� − �Jq��. �25�

Introducing Eqs. �24� and �25� into Eq. �21�, the m�
� fields

can be integrated to give

��exp ASG
stat��� = exp�−

�Jp

2N
�
�=1

n

�
i=1

N

�Si
��2����

−	

+	

Dm�
�exp��JN�

�=1

s−1

�
�
�−

1

2
�m�

��2 +
1

N�
i

�i
�Si

��m�
�����

�

��
−	

+	 �
��

dq��dr̄��

2� �exp�i�
��

r̄��q�� −
1

N
�
i=1

N

S�
i S�

i � − �1

2
�p − s�Trln �=�� . �26�

Therefore, the averaged partition function �see Eq. �20�� is
obtained from Eqs. �15�–�17� and �26� as

��Z��� = �
−	

+	 �
��

dm�
���

−	

+	 �
��

dq��dr̄��

2� �
�exp�− �N� J

2�
�

�m�
��2 +

p − s

2N�
Trln �=

−
i

N�
�
�

r̄��q�� −
i

N�
�

���

r̄��q����������,

�27�

where

� =� D��*��exp�− i �
���

r̄�� 1

N
�

i

Si
�Si

��
− �

�
�Jp

2
+ ir̄��� 1

N
�

i

�Si
��2 + �J�

i

�i
�Si

��m�
�

+ �
ij

�
��

�
�

�i��
* ���gij

−1���� j������ . �28�

The free energy �see Eq. �20�� is evaluated at the saddle
point and given by the condition that the first derivatives of
integrating variables are zero. Therefore, for instance, we
have

− ir̄�� =
�2J2

2 ��
�

�m�
��2� =

�2J2

2
pr�� �29�

and

− ir̄�� =
�2J2

2 ��
�

�m�
�m�

��� =
�2J2

2
pr��; � � � .

�30�

The parameter m�
� has been found as in Sec. I. The problem

is treated assuming the replica symmetric ansatz; therefore,
the order parameters are q��=q, q��= q̄, r��= r̄, r��=r, and
m�

� =m�. On the other hand, the trace of the matrix �= is
obtained in terms of its eigenvalues22 �see Eq. �25��. In con-
sequence, the free energy can be written as

�f = 2�JK���2 +
�J

2 �
�

�m��2 −
a

2
� �Jq

1 − �J�q̄ − q��
+

a

2
ln�1 − �J�q̄ − q�� +

�2J2a

2
r̄q̄ −

�2J2a

2
rq

− lim
n→0

1

nN
ln�����r, r̄,m�, �������� , �31�

where a= p /N.
The sum over replica index produces quadratic forms into

the function ��r , r̄ ,m� , �� � �. This term can be linearized by a
Hubbard-Stratonovich transformation,4–6 where new auxil-
iary fields are introduced in the problem. Therefore, we have
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��r, r̄,m�, ���� = �
−	

+	

�
j=1

N

Dzj�
−	

+	

�
j=1

N

�
�=1

n

Dwj
�� D��*��

�exp��
ij

�
�,�

�
�

�i��
* ���Gij

−1���� j������
�32�

with Dz= dz
�2�

e−z2/2 and

Gij
−1��� = gij

−1��� − ��h̄i
��r, r̄� + ��

�

�i
�m���ij , �33�

where gij
−1��� is given by Eq. �16� and the local spin glass

component of the internal field

h̄i
��r, r̄� = ��Ja��J�r̄ − r� − 1�wi

� + �J�arzi. �34�

The functional integral in Eq. �32� can be performed,4–6

so we get

��r, r̄,m�, ���� = �
−	

+	 �
j=1

N

Dzj��
−	

+	 �
j=1

N

�
�=1

n

Dwj
��

�exp��
�

�
�,�

ln�det Gij
−1����� . �35�

The local field h̄i
��r , r̄� applied in the n replicated lattices is,

in fact, associated with the replica diagonal and nondiagonal
spin glass order parameters. The presence of the local field is
the fundamental technical issue which must be solved in or-
der to proceed the calculations. Therefore, we consider the
following decoupling:4–6

ln�det Gij
−1���� �

1

N
�

i

ln�det ������, h̄i
��r, r̄�,�i

��� , �36�

which means that a constant field is applied in a fictitious
Kondo lattice so the problem can be solvable by a Fourier
transform. The particular form of the decoupling is also use-
ful because it allows the use of self-averaging property
1
N�i f��i�= ��f������,

22 which is valid in thermodynamic limit
for finite s−1, the upper value of �. Actually, from now on, it
is assumed that s=2. The self-averaging in Eq. �36� allows
us to drop the site index i in Eq. �35�.

The resulting sum over k in Fourier transformed

�k,��� , h̄��r , r̄� ,�� can be replaced by an integral using a
constant density of states for the conduction electrons ���
= 1

2D for −D

D. On the other hand, the sum over the
Matsubara’s frequencies in Eq. �35� can be performed by
closely following the procedure given in Refs. 4–6. Finally,
the free energy can be found as

�f = 2�JK���2 +
�J

2
�m1�2 +

a

2
ln�1 − �J�q̄ − q�� −

a

2

�Jq

1 − �J�q̄ − q�
+

�2J2a

2
r̄q̄ −

�2J2a

2
rq − �

−	

+	

Dz

���ln�
−	

+	

Dw exp� 1

�D
�

−�D

+�D

dxln�2 cosh x + h�r, r̄,��
2

� + 2 cosh����r, r̄,��2 + ��JK����2������
�

, �37�

where

��r, r̄,�� =
x − h�r, r̄,��

2
�38�

and

h�r, r̄,�� = ��Ja��J�r̄ − r� − 1�w + �J�arz + �Jm1�

�39�

is a long-range internal field composed by two parts, a spin
glass one already introduced in Eq. �34� and other one asso-
ciated with the order parameter m1. This result can be com-
pared to Ref. 5. In that work, a random Gaussian intersite
coupling among the localized spins has been used. The
equivalent internal field found there can be also decomposed
in two parts: a ferromagnetic one, and a spin glass term
associated with q and the static susceptibility �=��q̄−q�.
However, the dependence of the internal field with q and q̄
is entirely distinct in the present work as it will be shown
below.

The coupled set of equations for the order parameters can
be found from Eq. �37� using the saddle point conditions. In
particular, there is a relationship between the following order
parameters:

r =
q

�1 − �J�q̄ − q��2 �40�

and

r − r̄ =
1

�J

1

�1 − �J�q̄ − q��
. �41�

If we replace Eqs. �40� and �41� in Eqs. �37�–�39�, the theory
becomes explicitly dependent on the q and q̄. Therefore, the
minimum set of order parameters to be solved in order to
obtain a global phase diagram is the spin glass order param-
eters q, q̄ �related to diagonal matrix q���, the Kondo order
parameter ���, and the m1=m. The average over � in Eq. �37�
can be now performed using the parity properties of the func-
tions dependent on z and w. Therefore, the dependence on �
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can be dropped. The remaining set of coupled equations for
the order parameters are given by the corresponding saddle
point equations.

III. DISCUSSIONS

In this paper, the competition between ferromagnetism
and spin glass in a Kondo lattice model with a random cou-
pling between localized spins has been investigated. The
coupling is constructed �see Eq. �1�� as a product of two
random independent variables �i

�, where i=1, . . . ,N �N num-
ber of sites� and �=1. . . p, which is a generalization of the
Mattis model15 for random magnetic systems. In the strongly
frustrated limit p→	 �when N→	 and p /N=1�, a spin glass
solution is recovered as the S-K model.18 The problem is
solved using functional integral formalism, the static ap-
proximation and the replica ansatz. The order parameters are
obtained by combining methods proposed in Refs. 4 and 22,
which allow us to introduce an additional parameter a
= p /N to control the level of frustration.

The numerical solutions of the order parameters q, q̄, m,
and ��� �from now on �� � =�� give as solutions the following
thermodynamic phases: �i� a spin glass where q�0 with �
=0 and m=0; �ii� a Kondo state with ��0 and q=0 and m
=0; and �iii� ferromagnetism, which is given by the existence
of the Mattis states described by m�0 and q�0 with �=0.
The solutions are displayed in diagrams T /J vs JK /J for
several values of a, where T is the temperature, and JK and J
are the strength of the intrasite Kondo coupling and the in-
tersite random coupling between localized spins �see Eqs.
�2�–�4��, respectively. Therefore, for a given JK /J, it is pos-
sible to probe solutions for the order parameters equations q,
q̄, m, and � in several situations ranging from weak frustra-
tion to strong one just by varying the parameter a.

The physical origin of the phases discussed in the previ-
ous paragraph can be understood from the model introduced
in Eqs. �2� and �3� in which there are two interactions. The
first one is on-site Kondo coupling while the second one is
the disordered coupling between localized spins. Therefore,
it is possible to identify several energy scales in the problem
as T, JK, and J. When temperature is high enough, there is
only paramagnetism. As long as the Kondo energy scale be-
comes dominant in relation to the remaining ones, the emerg-
ing ordering is the complete screening of the localized spins
in the whole lattice due to the Kondo effect. However, in a
certain range of JK /J, there are two possible magnetic order-
ings. In the spin glass one, the competing interactions be-
tween the spins can give rise to frustration in which there is
a large number of degenerate states for the spin configura-
tions. Therefore, there is no long-range order correlation
among spins orientations due to the presence of frustration,
which leads the spins to be frozen in random orientations. In
contrast, in the ferromagnetic regime, the Mattis states cor-
respond to the situation in which the spins stabilize aligned
with the �i’s due to the low frustration level. The prevalence
of one or the other regime discussed above depends on the
parameter a, which controls the frustration level for the ran-
dom coupling given in Eq. �1� as well as T.

It should be remarked that the previous investigation, us-
ing the same model, has adopted the standard Gaussian ran-

dom coupling4,5 �as the S-K model� for the intersite interac-
tion between localized spins. Nevertheless, in this strongly
frustrated approach Tc�Tf �Tc and Tf are the Curie and
freezing temperatures, respectively� in disagreement with ex-
perimental results for CeNi1−xCux. Therefore, the motivation
for the present work is to understand better the role of dis-
order as source of frustration in a Kondo lattice model and,
for that reason to possibly address the experimental findings
of the CeNi1−xCux phase diagram.

In Fig. 1, the results for a=0.02 are presented. For high
T /J and small JK /J, the numerical solutions display a para-
magnetic �PARA� behavior with q=0, m=0, and �=0. The
solutions remain the same in this small JK /J region until T
�0.61J, where q starts to be continuously nonzero, indicat-
ing a second-order phase transition to a spin glass phase. The
behavior of the order parameters as a function of the tem-
perature is shown in Fig. 2. In particular, we can see that at
the same temperature where q�0, there is also a cusp in �̄

FIG. 1. The phase diagram with T /J vs JK /J for a=0.02 show-
ing the phases SG �spin glass�, FERRO �ferromagnetism�, and
KONDO �the Kondo state�. In the region SG�Ferro, there is coex-
istence between SG and FERRO. The dotted line means the “pure”
Kondo temperature.

FIG. 2. The behavior of the order parameters q, q̄, and m show-
ing the second-order and first-order transitions for JK=5J.
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=� /�= �q̄−q� �� is static susceptibility�. If the temperature is
lowered, the results remain, yielding a spin glass solution
until T�0.38J. From that point, the parameters m and q
become simultaneously different from zero similar to the fer-
romagnetic solution already found in Ref. 5. However, in the
present case there is an abrupt change in their behavior, in-
dicating a first-order transition. In fact, for 0.31J�T
�0.38J, we have found metastable solutions with m�0 and
q�0, which corresponds to the Mattis states. The emergence
of these metastable Mattis states at temperature T1 can be
seen clearly just by following the free energy �see Fig. 3�. In
Fig. 1, the corresponding region has been named as SG �
Ferro. Finally, at T2, the spin glass solutions become unstable
thermodynamically while the solution with m�0 and q�0
�the Mattis states� becomes stable.

When JK /J is enhanced �see Fig. 1�, it is found a line
transition JKc

�T /J� for the Kondo state. This kind of solution
had already been found in Refs. 4–6. The nature of this line
transition is complex. It is second order at high temperature
changing to first order at low temperature. However, there is
evidence indicating that this complexity could be nonphysi-
cal, in fact, related to the approximations made in the present
approach.28

If the parameter a is increased �for instance a=0.04, in
Fig. 4�, we have, basically, a phase diagram displaying the
same situation already shown in Fig. 1. However, the spin
glass stability range is increased. Finally, for a=0.15, there is
no more Mattis states as solution, the spin glass solution is
entirely dominating for JK
JKc�T� in which JKc�T� is the
phase boundary of the Kondo state. In this limit, it is recov-
ered the results obtained in Ref. 4.

The experimental results for CeNi1−xCux can be now ad-
dressed. The phase diagrams obtained with bulk methods8,9

and �SR technique10 show that the chemical substitution of
Ni produces in the alloy a complex interplay between Kondo
effect and magnetism, where, for example, the spin glass
phase is always found at higher temperature than the ferro-
magnetic one �whatever the nature of the spin glass region

is�. Moreover, it also shows the increase of the freezing tem-
perature with the decrease of Cu content in the alloy until
x�0.4. On the other hand, for x�0.2 there is a considerable
reduction of Ce localized magnetic moments due to the
Kondo effect.

If it is assumed that the substitution of Cu by Ni can be
related to the parameters JK and a, some important aspects of
the experimental scenario can be reproduced, for example, �i�
For JK
JKc�T� and small a �weak frustration�. In this regime
the magnetic solutions are dominant with no trace of a
Kondo solution. However, the combination of high tempera-
ture and the local complex randomness prevents any kind of
stable alignment of the spins �represented by the order pa-
rameter m�. On the contrary, the solutions for the order pa-
rameter show a continuous direct transitions from paramag-
netism to spin glass. Eventually, at lower temperature, the
randomness is not enough to keep avoiding any stable align-
ment of the spins. Therefore, the Mattis states start to appear
first as metastable solutions until becoming the thermody-
namical stable solutions of the problem. As consequence, in
this weak frustration limit, the correct order for the transition
temperatures is recovered as compared to the experimental
situation when 0.8�x�0.4, where x is the content of Cu.9

As long as the level of frustration a is increasing, the spin
glass component of the internal field becomes dominant in
a larger range of temperature. Therefore, it is obtained an
enlargement of the spin glass region �see Figs. 1, 4, and 5�
which precedes the onset of the ferromagnetism. As a con-
sequence, the freezing temperature Tf is also increased,
which resembles the experimental situation when x→0.4.9

�ii� When JK�JKc�T�, the magnetic solutions disappear
and the Kondo state appears as the unique solution in the
problem for any value of a, which means that there is a
complete screening of localized spins due to the Kondo ef-
fect as in the experimental results for the rich Ni region.9

However, there is still some disagreement related to the re-
sults obtained from �Sr spectroscopy10 and specific heat,11

FIG. 3. The free energy as a function of temperature for a
=0.02, a=0.04, and a=0.15 showing the region �between T1 and
T2� where there are multiple solutions for the order parameters.

FIG. 4. The phase diagram with T /J vs JK /J for a=0.04 show-
ing the phases SG �spin glass�, FERRO �ferromagnetism�, and
KONDO �the Kondo state�. In the region SG�Ferro, there is the
coexistence between SG and FERRO. The dotted line means the
“pure” Kondo temperature.
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which suggests the presence of nanoclusters that are frozen
at some temperature.11 For lower temperatures, those clusters
would percolate yielding a ferromagnetism11 in a similar pro-
cess proposed to explain manganites.30 Our results, instead,
in the weak frustrated limit, indicate a continuous transition
to a spin glass phase and then, at lower temperature, the
presence of a first-order one with a coexistence region be-
tween spin glass and ferromagnetism �given by the Mattis
states�. Nevertheless, we believe that the present mean field
theory is a clear improvement in the sense that it provides an
effective mechanism that at least, gives the correct ordering
of the magnetic transition temperatures.

IV. CONCLUSION

In this work, it has been studied the spin glass-
ferromagnetism-Kondo phase transitions in a Kondo lattice
model with a random coupling Jij between the localized
spins. The Jij is given as a product of random variables �i

�

��=1. . . p, i=1, . . . ,N�. This choice for Jij introduces a pa-
rameter a= p /N, which allows us to control the degree of
frustration. Thereby, the balance between the two parameters
JK /J and a controls the emergence of the different solutions
in the problem. For small a �weak frustration� and JK /J, we
have found that there is only the presence of spin glass and
ferromagnetic solutions and, particularly, that the freezing
temperature is higher than the transition temperature where
ferromagnetic solutions are found in good agreement with
experiment in Ce�Ni,Cu� alloys. For large JK /J, there is only
a Kondo state, whatever the value of a is. The results ob-
tained here are interesting for the study of the role of disor-
der, which seems to be better described by taking into ac-
count an average of discrete values �’s, rather than a direct
average of the intersite J values, as suggested also by experi-
mental results in CeNi1−xCux �Ref. 11� alloys.
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