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We present a study of the magnetic order and the structural stability of two-dimensional quantum spin
systems in the presence of spin-lattice couplings. For a square lattice it is demonstrated that the plaquette
deformation yields the strongest gain in magnetic energy. The analysis of the dimer-dimer response function
further shows that lattice distortions may generally coexist with magnetic long-range order, in contrast to the
one-dimensional case. Similarly, the coupling to Einstein phonons is found to reduce, but not to eliminate, the
staggered magnetic moment. In addition, we consider the renormalization of the square lattice phonon spec-
trum due to spin-phonon coupling in the adiabatic approximation. Toward low temperatures, significant soft-
ening mainly of zone boundary phonons is found, especially around the �� ,0� point of the Brillouin zone. This
result is compatible with the tendency to plaquette formation in the static limit. We also point out the impor-
tance of a “magnetic pressure” on the lattice due to spin-phonon coupling. At low temperatures, this results in
a tendency toward shear instabilities of the lattice.
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I. INTRODUCTION

Considering the immense wealth of materials newly syn-
thesized or found in nature with low-dimensional magnetic
structure, one finds that the simple Heisenberg Hamiltonian,
widely accepted as the paradigm of quantum magnets,1,2 is
often complicated by further interactions. Many compounds
thus show ground states and phases, different from the ge-
neric long-range magnetic order of Heisenberg systems.

In this paper, we study the coupling of the magnetic de-
grees of freedom to lattice vibrations as a prominent example
of an interaction “beyond the Heisenberg Hamiltonian.” This
coupling, often referred to as “spin-phonon” interaction, is
generic to all magnetic materials and thus the problem of to
what extent the magnetic structure is changed by its presence
concerns all low-dimensional magnetic compounds.

Though spin-phonon couplings are ubiquitous in nature,
the possibilities of treating them with some theoretical rigor
are limited. The main reason is that magnetic and phononic
excitation energies are not well separated. In contrast, for
electron phonon coupling we can dwell on the fact that the
bulk of the electronic excitations lies much higher in energy
than the phonon modes. This allows us, in general, to use the
adiabatic approximation when calculating the renormaliza-
tion of phonon frequencies due to electron-phonon coupling.
For spin-phonon coupling, however, this concept cannot be
applied, in general.

One approach quite often used is to include local,
Einstein-type phonons as quantum-mechanical objects. This
model may be applied for certain vibrations of ligand atoms
around the magnetic ions, but it is not very realistic as it
violates the infinitesimal translational invariance of the lat-
tice.

For relatively low-lying acoustic phonons, which are
dominated by the heavy magnetic ions, the response of the
spin system may be treated in an adiabatic approximation. In
one dimension, the paper of Cross and Fisher3 has treated the

spin-phonon coupling along such lines. In higher dimen-
sions, no study of spin-phonon coupling in the adiabatic limit
has been presented as yet.

In addition, any effect of the magnetic pressure on the
phonon vibrations has been ignored so far. The magnetic
energy of a square lattice of spins with first-nearest-neighbor
�1NN� antiferromagnetic coupling J�a� is given as Em

=U�T�J�a�, which is typically of the order −0.1 eV per atom.
We may compare this magnetic energy with the energy
EMad=−�M�e2 /a� of a cubic lattice of positive and negative
elementary charges where the Madelung constant �M is of
order of unity. For rock salt we find, e.g., EMad�−8 eV.
However, the pressure �U /�V for the electrostatic system is
�0.1 eV/Å3, while �0.015 eV/Å3 for the magnetic system.
Although there is a factor of �100 difference in the binding
energies, the magnetic pressure is only a factor 10 smaller
compared to the pressure of the electrostatic system. The
main reason for the relatively large magnetic pressure is the
large spin phonon coupling caused by the strong distance
dependence of the superexchange J�a�, which cannot be ne-
glected in describing realistic quantum spin systems.

As an important special case, we also discuss the limit of
very strong spin phonon coupling, which leads to a dimer-
ization of the lattice. Typically, the response of the ground-
state energy of a two-dimensional magnetic system to dimer-
ization is of second order and thus much weaker than in the
one-dimensional case. Two-dimensional models with dimer-
ization are thus essentially different compared to their one-
dimensional analogues; in particular, in two dimensions
dimerization does not necessarily lead to a breakdown of
magnetic long-range order. Also the dimerization pattern,
which leads to the lowest ground state, is not clear in two
dimensions.

This paper is organized as follows. In Sec. II A, we study
statically dimerized models; in particular, we determine the
optimal dimerization pattern in two dimensions. Section II B
is devoted to Einstein phonons coupled to two-dimensional
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spin systems. In Sec. III, we calculate explicitly the phonon
spectrum and study structural instabilities driven by the spin-
phonon coupling including the effect of the “magnetic pres-
sure.”

II. STATICALLY DIMERIZED MODELS AND EINSTEIN
PHONONS

A. The dimerized model with optimal deformation patterns

To approach the problem, we assume in the first place that
in two dimensions similar to one-dimensional systems the
spin lattice interactions lead to a transition to a dimerized
state, i.e., to a pattern of strong and weak bonds, and we
address the problem of the two-dimensional correspondence
of a dimerized chain.

Stair, plaquette, and meander configurations �see Fig. 1�
are obvious choices for such models, which have been dis-
cussed controversially in the literature.4–6

Here we show by a straightforward Monte Carlo calcula-
tion 7 that the plaquette models have lowest energy. This is
convincingly demonstrated in Fig. 2, where the extrapolated
energies of the three configurations are shown.

It is not clear, however, whether configurations with larger
unit cells or even disordered systems can still have lower
energies. To clarify this point, we analyze Hamiltonians of
the type

H��� = 2J�
ij

��1 + Aij��S� ijS� i+1,j + �1 + Bij��S� ijS� i,j+1� �1�

for all possible Aij ,Bij = ±1, with an equal number of strong
and weak bonds, M =�i,j�Aij +Bij�=0. Here Aij and Bij

specify the pattern and � gives the strength of the deforma-
tion. This Hamiltonian of course includes the configurations
of Fig. 1 as special cases.

This more general study stems from an expansion of the
free energy of the system Eq. �1� in �,

F��,T� = F�0,T� +
1

2
a�T��2 +

1

24
b�T��4 + O��6� . �2�

Writing down a�T� explicitly, we observe that it can be
viewed as a Hamiltonian of a two-layer Ising model with
Ising spins Aij and Bij,

a�T� = � �2F

��2�
�=0

= 4J2 �
ijd1d2

�Kxx�d1,d2�AijAi+d1,j+d2

+ Kyy�d1,d2�BijBi+d1,j+d2
+ Kxy�d1,d2�AijBi+d1,j+d2

+ Kyx�d1,d2�BijAi+d1,j+d2
	 , �3�

where the couplings of the Ising model are given by dynamic
dimer correlations,

Kqr�d1,d2� = − 

0

�

d��D00
q �0�Dd1d2

r ���� , �4�

evaluated in the two-dimensional Heisenberg model, i.e., for
�=0. Here q and r are either x or y corresponding to dimer

operators Dij
x =S� ijS� i+1,j or Dij

y =S� ijS� i,j+1. This means the quan-
tum nature of the model is incorporated in the long-ranged
Ising couplings, which depend on the Euclidean dynamical
dimer correlation functions of the isotropic Heisenberg
model. This “perturbative approach” is somewhat restrictive,
but we are interested in the phenomenologically relevant
small dimerizations. Also, with some more numerical effort,
quadruple and higher correlations could be studied and for
large dimerizations the problem becomes rather trivial, since
it is reduced to one-dimensional Heisenberg chains whose
properties are well known.

The dimer correlations Eq. �4� of the Heisenberg model
�as well as the data shown in Fig. 2� were evaluated using a
quantum Monte Carlo �QMC� loop algorithm,8,9 based on a
path integral representation of the partition function.10 Ap-
plying the loop algorithm, autocorrelation effects play a mi-
nor role due to global spin updates, and expectation values of
diagonal and off-diagonal operators are calculated efficiently
within the framework of improved estimators.11,13 Further,
by taking the continuous time version of the algorithm,12

finite-size effects in the Trotter direction are avoided.
With the dimer correlations Eq. �4� as coupling constants

of the Ising model, we performed a standard classical Monte
Carlo simulation together with some cooling procedure.14,15

FIG. 1. Plaquette, stair, and meander configu-
rations as possible dimerization patterns with
minimal unit cell in two dimensions.

FIG. 2. �Color online� Extrapolated ground-state energies for the
three dimerization patterns shown in Fig. 1.
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This analysis gives clear evidence for crossing stripe patterns
in the plane of the A and B spins as the ground state of the
Ising model.16 This amounts to a plaquette structure as the
lowest pattern of the model Eq. �1�.

In contrast to the one-dimensional case where a�T� is
divergent17 when T approaches zero, a�T� stays finite in two
dimensions, which a posteriori justifies our ansatz.

A crucial point that further distinguishes the one-
dimensional case from the two-dimensional is the presence
of both long-range magnetic order and a finite dimerization
in the two-dimensional plaquette model, whereas in one di-
mension any finite � leads to a spin liquid ground state with
a gapped excitation spectrum.

For static phonons we definitely observe a breakdown of
long-range magnetic order for sufficiently strong deforma-
tion �. The critical value �c takes rather large and in general
different values for different patterns. For the stair configu-
ration �c takes its maximal value 1, at which the system
decouples into one-dimensional subsystems. For the
plaquette configuration, �c is considerably smaller than 1 �in
the cluster series expansion approach �c�0.3�, 18,19 while we
determined from our data �c=0.291�3�.

B. The effect of Einstein phonons in two dimensions

To study the impact of a spin-phonon coupling on the
magnetic long-range order, we next consider a two-
dimensional �2D� model coupled to Einstein phonons. Al-
though the model is not realistic in many respects, it has still
attracted a lot of attention, and for the physics of its one-
dimensional form, a fairly clear picture has emerged by now.
In particular, it is well known that the quasi-long-range or-
der, leading to a logarithmic divergence in the structure fac-
tor at q=�, is destroyed by a relatively small spin-phonon
coupling. This brings about the problem of to what extent the
strong long-range order of 2D systems is influenced in the
presence of Einstein phonons. To answer this, we calculate
the expectation value of the staggered magnetization opera-
tor,

M� st = �
x,y

�− 1��x+y�S�x,y , �5�

which is a measure of Néel order in the ground state. We
adopt the common procedure �see Refs. 20 and 21� and com-

pute the expectation value of M� st
2 ,

M2
ª

1

N4 �0M� st
2 0� , �6�

for the full quantum Hamiltonian of spins S� ij at sites ij
coupled to Einstein phonons bij

x and bij
y by a spin-phonon

coupling g,

H = 2J�i,j=1

N
S� ijS� i+1,j�1 + g�bij

x + bij
x†��

+ 2J�i,j=1

N
S� ijS� i,j+1�1 + g�bij

y + bij
y†��

+ ��i,j=1

N
�bij

x†bij
x + bij

y†bij
y � . �7�

To study this Hamiltonian, we employ a Monte Carlo
method, which was developed in Refs. 22 and 23. It allows
us to treat up to 50 phonons per site, and is practically free of
truncation errors. As expected, we find Heisenberg-like be-
havior in the case of small spin-phonon couplings g and
large values of the phonon frequency �. It is remarkable,
however, that for parameters for which in the one-
dimensional model22,24 one finds clear evidence for a finite
correlation length at T=0, the staggered magnetization is
again nonzero, and its extrapolated value is only about 10%
reduced compared to the two-dimensional Heisenberg
model. Also, M2 displays a dominant 1 /N finite-size
behavior21,25,26 derived from the nonlinear sigma model de-
scription of the Heisenberg model �see Fig. 3�.

Though we cannot exclude a breakdown of long-range
order by studying even larger spin-phonon couplings or dif-
ferent, maybe more elaborate, coupling mechanisms, we find
that a realistic coupling strength comparable to the ones
found in one-dimensional magnetic materials will not lead to
a breakdown of long-range order. So, the new feature we
expect in two dimensions is the possibility of a structural
phase transition driven by spin-phonon interactions without
breakdown of long-range order.

III. STRUCTURAL PHASE TRANSITIONS

To investigate the structural phase transition also from a
phenomenological point of view, we consider the following
two-dimensional Heisenberg Hamiltonian coupled to classi-
cal phonons,

H = 2J�
l,m

1

2
�1 + ��u� l − u�m�R̂lm�S� lS�m, �8�

with S� l a spin-1
2 operator at position r�l, R� lm=R� l−R� m the dis-

tance vector between sites l and m at equilibrium, R̂lm

=R� lm / R� l−R� m, and u� l=r�l+R� l the displacement vector of the
�l�th spin from equilibrium. The summation in Eq. �8� runs

FIG. 3. Staggered magnetization M2 for the model Eq. �7� as a
function of linear lattice size. The black circle is the value for the
Heisenberg model from Ref. 21.
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over nearest neighbors l and m. �Note that to simplify the
notation, we abbreviate from now on the two spatial indices
�i , j� used, e.g., in Eq. �1� by only one index and continue to
use the coupling strength 2J per bond.�

The total Hamiltonian consists of a sum of the Hamil-
tonian H for all layers plus the phonon contributions 	,
which we assume to be derivable from a simple model with
central force potentials 	1�r�l−r�m  � and 	2�r�l−r�m  �, which
depend on the nearest-neighbor and the next-nearest-
neighbor �diagonal� distances between the ions,

	 =
1

2 �
l�m

�	1�r�l − r�m� + 	2�r�l − r�m�� . �9�

Thus in equilibrium the total energy E�a� per site is given
by

E�a� = 2	1�a� + 2	2��2a� + 2U�T�J�a� , �10�

where U�T�
0 is the internal energy per site of the Heisen-
berg model with J=1 and a is the lattice constant. The mag-
netic energy U�T�J�a� has the tendency to compress the lat-
tice as the superexchange coupling J�a�, which may be
derived from a Hubbard-type model, increases with decreas-
ing lattice constant a. When we treat this magnetic pressure
as an external pressure acting on the lattice, the equilibrium
condition dE /da=0 yields

2B + 4B� +
2

a
J�U�T� = 0. �11�

Here �=d ln J�a� /da is again the spin-phonon coupling,
and following 27 the force constants B and B� are defined as

B�i�
ª

1

Rlm

d	�i�

dRlm
�12�

with Rlm= R� l−R� m the equilibrium separation for either first-
or second-neighbor pairs. The full force constant matrix 	��

�i�

is given by 27

	��
�i� = A�i�R̂lm

� R̂lm
� + B�i����� − R̂lm

� R̂lm
� � �13�

with

A�i� =
d2

dRlm
2 	�i��Rlm� . �14�

In any reasonable model of 1NN and 2NN force constants
A ,B and A� ,B�,

B 
 A and B� 
 A� �15�

can be expected from the requirement that longitudinal pho-
non frequencies are in general considerably larger than trans-
verse ones. One should keep in mind that our model for a
square lattice of magnetic ions ignores additional forces act-
ing via the closed-shell ligands, which may also contribute to
the equilibrium condition Eq. �11�, so that without the mag-
netic pressure, B+2B� could be chosen positive. When, how-
ever, the magnetic pressure is turned on, by lowering T, B
+2B� will become negative �or strongly reduced�, which will
affect, in particular, the stability of the lattice against shear.

The elements of the dynamical matrix G0
���q�� of the

“bare” phonons are given by

G0
xx�q�� = 2A�1 − cos x� + 2B�1 − cos y� + 2�A� + B���1

− cos x cos y� ,

G0
yy�q�� = 2A�1 − cos y� + 2B�1 − cos x� + 2�A� + B���1

− cos x cos y� ,

G0
xy�q�� = 2�A� − B��sin x sin y �16�

with x=qxa and y=qya.
We find the following phonon-dispersion relations for lon-

gitudinal and transverse modes. For q� = �x ,0�,

m�L
2�q�� = 2�A + A� + B���1 − cos x� , �17�

m�T
2�q�� = 2�B + A� + B���1 − cos x� . �18�

For q� = �x ,x�,

m�L
2�q�� = 2�A + B��1 − cos x� + 4A�sin2x , �19�

m�T
2�q�� = 2�A + B��1 − cos x� + 4B�sin2x . �20�

At long wavelength, the transverse frequencies are given
as

m�T
2�x,0� = ��B + 2B�� + A� − B��x2, �21�

m�T
2�x,x� = �2�B + 2B�� + A − B�x2. �22�

In addition to the magnetic pressure, which is first order
in �, the spin-phonon coupling renormalizes the “bare” pho-
non frequencies similar to the renormalization due to
electron-phonon coupling.

Similar to the analysis described in the first part of the
paper, we again expand the free energy of the system Eq. �9�
in terms of the lattice displacement and find an expression
that is similar to Eq. �3�. However, here the Aij of Eq. �3� are
replaced by ui+1,j

x −uij
x and the Bij by ui,j+1

y −uij
y . That is com-

pared to Eq. �3� in which the classical displacements are no
longer Ising variables but take continuous values. Thus to
second order in the spin-phonon coupling we find for the
dynamical matrix

G�q�� = G0�q�� − �2g�q�� , �23�

where the entries of the spin-phonon contribution

gxx = 2�1 − cos x�K˜xx�x,y� ,

gyy = 2�1 − cos y�K˜yy�x,y� ,

gxy = gyx = 1
2 �1 − eix��1 − e−iy�K˜xy�x,y� + c . c. �24�

involve the Fourier transforms K˜qr�x ,y� of the dimer-dimer
correlations Eq. �4�. Note that the matrix g is real and sym-
metric, and from the symmetries of the dimer correlations

follows K˜xy�� ,��=0.
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Typical eigenvalues for the spin-phonon coupling matrix
g�x ,y� along the symmetry lines of the square lattice are
shown in Fig. 4. Several features are noteworthy.

�i� There is a considerable T dependence not only con-
cerning the magnitude of the renormalization, but also the q
dependence.

�ii� There is a maximum of the renormalization around
T /J=1.

�iii� Along �x ,0� there is no renormalization of the trans-
verse branch, similar to the absence of the electron-phonon
coupling for transverse modes in a nearly-free-electron
model.

�iv� At small T, a significant splitting of the eigenvalues

along �x ,x� evolves, indicative of an increase of K˜xy at low T.
�v� Also, the renormalization of the longitudinal branch

along �x ,0� shows an increase of the effective 3NN force
constant toward low T.

Points �iv� and �v� indicate that the effective forces be-
tween the atoms transmitted via the spin system become
longer ranged at low T.

The phonon renormalization due to spin-phonon coupling
may lead to significant softening and even to lattice instabili-
ties.

The magnetic pressure effect lowers specific transverse
phonon modes at long wavelengths, i.e., it destabilizes the
lattice against certain shear deformations. This can be seen in
Fig. 5, where the undisturbed spectrum of a square lattice
�zeroth order in �� which follows from Eq. �16� by setting
B=B�=0 is shown together with the spectra including the
external pressure and the second-order contribution. Here the
equilibrium condition Eq. �11� is a strong constraint on the
system and the shear instability dominates the phonon renor-
malization.

We should keep in mind, however, that realistic planar
quantum antiferromagnets usually are ternary or even quater-
nary oxides and that the equilibrium condition of the lattice
may be dominated by ligand contributions, not included in
Eq. �11�. As a consequence, we may ignore the magnetic

pressure effect and consider solely the phonon renormaliza-
tion due to the second-order effect. Here primarily zone
boundary phonons are lowered, as may be seen from Fig. 6.
For the calculation we have chosen typical values for the
model force constants, which approximately reproduce the
acoustic phonon modes of typical cubic oxides with rock salt
structure28 such as MgO or BaO.

For a wide variety of A� /A ratios, we find that the soften-
ing is strongest near �� ,0�; only for somewhat pathological
choices of A ,A� ,B ,B� such as A�−B��0, A�+B��A do we
find that the �� ,�� frequency goes unstable first. The �� ,0�
instability would lead to plaquette-like distortions, while the
�� ,�� instability would yield staircase distortions.

This means that our results from spin-phonon coupling
agree with the observation discussed above, that the

FIG. 4. Eigenspectra �1,2
2 of the matrix g for T /J=0.1, T /J

=0.9, and T /J=2.0 along a triangular path in q� space.

FIG. 5. Eigenspectra �1,2 in zeroth �dashed line�, first �solid
line� and second order �circles� along a triangular path in q�-space
for spin-phonon coupling �=−0.6, A� /A=0.8, B /J=−0.075, B� /J
=−0.163 and T /J=0.1. Note, that in the region of instability with
�1,2

2 
0 we plot −�−�1,2.

FIG. 6. Energies �1,2 of the matrix G for B=B�=0. Again for

�1,2
2 
0 we plot −�−�1,2.
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plaquette is the energetically most favorable dimerization
pattern.

IV. SUMMARY

In this paper we have studied magnetic and structural in-
stabilities of two-dimensional quantum antiferromagnets. Of
the various dimerization patterns, the energetically most fa-
vorable one at T=0 is the plaquette order. It was also shown
that the various dimerisation patterns do not necessarily lead
to a breakdown of long-range magnetic order. In contrast to
one dimension, the coupling to Einstein phonons is found to
reduce, but not to destroy, the staggered magnetic moment.

The tendency to form dimerization patterns at sufficiently
large spin-phonon coupling is also reflected in the large
renormalization of specific phonon frequencies, in particular
near �� ,0� and �� ,��. Our results indicate that again,
plaquette formations are the most favorable structural distor-
tions.

In this paper, we also point out the importance of a “mag-
netic pressure” on the lattice caused by the relatively large

spin-phonon coupling. This pressure effect builds up with
decreasing T and may lead to a significant decrease, if not
instability of specific shear elastic constants. Presently we
have treated the magnetic pressure as an external one. In
principle, it can also be included into the calculation of pho-
non frequency renormalization, e.g., by carrying out so
called frozen phonon calculations, which is the ultimate form
of the adiabatic approximation.

We finally remark that, wherever in the Brillouin zone
there occur renormalization effects due to spin-phonon cou-
pling, a significant increase of the phonon linewidth is also
expected.
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