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Unique features of the nonmagnetic insulator phase are revealed, and the phase diagram of the t-t� Hubbard
model containing the diagonal transfers t� on a square lattice is presented. Using the path-integral renormal-
ization group method, we find an antiferromagnetic phase for small next-nearest-neighbor transfer t� and a
stripe �or collinear� phase for large t� in the Mott insulating region of the strong on-site interaction U. For
intermediate t� / t�0.7 at large U / t�7, we find a longer-period antiferromagnetic-insulator phase with 2�4
structure. In the Mott insulating region, we also find a quantum spin liquid �in other words, a nonmagnetic
insulator� phase near the Mott transition to paramagnetic metals for the t-t� Hubbard model on the square
lattice as well as on the anisotropic triangular lattice. Correlated electrons often crystallize to the Mott insulator
usually with some magnetic orders, whereas the “quantum spin liquid� has been a long-sought issue. We report
numerical evidence that a nonmagnetic insulating phase gets stabilized near the Mott transition with remark-
able properties: The two-dimensional Mott insulators on geometrically frustrated lattices contain a phase with
gapless spin excitations and degeneracy of the ground state in the whole Brillouin zone of the total momentum.
The obtained vanishing spin renormalization factor suggests that spin excitations do not propagate coherently
in contrast to conventional phases, where there exist either magnons in symmetry-broken phases or particle-
hole excitations in paramagnetic metals. It imposes a constraint on the possible pictures of quantum spin
liquids and supports an interpretation for the existence of an unconventional quantum liquid. The present
concept is useful in analyzing a variety of experimental results in frustrated magnets including organic BEDT-
TTF compounds and 3He atoms adsorbed on graphite.
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I. INTRODUCTION

Among various insulating states, those caused by elec-
tronic Coulomb correlation effects, called the Mott insulator,
show many remarkable phenomena such as high-Tc super-
conductivity and colossal magnetoresistance near it.1,2 How-
ever, it has also been an issue of long debate whether the
Mott insulator has its own identity distinguished from insu-
lators like the band insulator. This is because the Mott insu-
lator in most cases shows symmetry breaking such as anti-
ferromagnetic order or dimerization, where the resultant
folding of the Brillouin zone makes the band full and such
insulators difficult to distinguish from band insulators be-
cause of the adiabatic continuity.

Except for one-dimensional systems, the possibility of an
inherent Mott insulator without conventional orders has been
a long-sought challenge. The Mott insulator on a triangular
lattice represented by Heisenberg spin systems was proposed
as a candidate.3 Although the triangular Heisenberg system
itself has been argued to show an antiferromagnetic �AF�
order,4 intensive studies of geometrical frustration effects
have been stimulated. In particular, the existence of a quan-
tum spin liquid phase has been established in recent unbiased
numerical studies performed on two-dimensional �2D� lat-
tices with geometrical frustration effects.5–7 The spin liquid

has been interpreted to be stabilized by charge fluctuations
enhanced near the Mott transition.

Recently extensive experimental studies of frustrated
quantum magnets such as those on triangular, kagomé, spi-
nel, and pyrochlore lattices8–14 as well as on triangular struc-
ture of 3He on graphite15 have been performed. They tend to
show suppressions of magnetic orderings with large residual
entropy with a gapless liquid feature for quasi-2D systems or
“spin-glass-like� behavior in 3D even for disorder-free com-
pounds. These gapless and degenerate behaviors wait for a
consistent theoretical understanding.

In this paper, by extending and reexamining the previous
studies,5–7 we further show more detailed numerical evidence
for the existence of a new type of inherent Mott insulator
near the Mott transition, a singlet ground state with unusual
degeneracy: namely, gapless and dispersionless spin excita-
tions. Our present results offer a useful underlying concept
for the understanding of the puzzling feature in the experi-
ments.

In this paper, we also show that several different antifer-
romagnetic phases appear in the region of large U / t. This
includes normal antiferromagnetic order stabilized for small
t� / t with Bragg wave number Q= �� ,��, collinear �stripe�
order for large t� / t with Q= �0,��, and longer-period antifer-
romagnetic order for intermediate t� / t with Q= �� ,� /2�.
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II. FRUSTRATED HUBBARD MODELS

In the present study, we investigate the Hubbard model on
two-dimensional frustrated lattices. The Hamiltonian in stan-
dard notation reads

H = HK + HU,

HK = − �
�i,j�,�

t�ci�
† cj� + H.c.� + �

�k,l�,�
t��ck�

† cl� + H.c.�

HU = U�
i=1

N �ni↑ −
1

2
��ni↓ −

1

2
� �1�

on an N-site square lattice with a nearest-neighbor �t� and
two choices of diagonal next-nearest-neighbor �t�� transfer
integrals in the configuration illustrated in Figs. 1�a� and
1�b�. The energy unit is taken by t. Hereafter we call the
Hubbard models with the lattice structures illustrated in Figs.
1�a� and 1�b�, models �A� and �B�, respectively. The t� trans-
fer integrals bring about geometrical frustration. The i, j rep-
resent lattice points, and ci�

† �cj�� is a creation �annihilation�
operator of an electron with spin � on the ith site.

III. PATH-INTEGRAL RENORMALIZATION GROUP
METHOD

The model requires accurate and unbiased theoretical cal-
culations because of large fluctuation effects expected from
the low dimensionality of space and the geometrical frustra-
tion effects due to nonzero t�. Recently, the path-integral
renormalization group �PIRG� method16 opened a way of
numerically studying models with frustration effects more
thoroughly without the negative sign problem and without
relying on Monte Carlo sampling. The efficiency of the
method was established through a number of
applications.5,6,17,18 Furthermore, a quantum number projec-
tion method has been introduced into the PIRG method and
symmetries of the model can be handled explicitly and the
precision of solutions can be significantly enhanced.19

Here we briefly introduce the PIRG method and quantum
number projections. The ground state 	�g� can be, in general,
obtained by applying the projector e−�H to an arbitrary state
	�initial� which is not orthogonal to the true ground state as

	�g� = e−�H	�initial� . �2�

To operate exp�−�H�, we decompose exp�−�H� into exp
��−�H��
exp�−	�HK��i exp�−	�HUi

��N for small 	�,
where �=N	�. When we use the Slater determinant as the
basis functions, the operation of exp�−	�HK� to a Slater de-
terminant simply transforms to another single Slater determi-
nant. On the other hand, the operation of exp�−	�HUi

� can
be performed by the Stratonovich-Hubbard transformation,
where a single Slater determinant is transformed to a linear
combination of two Slater determinants. Therefore, the op-
eration of exp�−�H� increases the number of Slater determi-
nants. To keep manageable number of Slater determinants in
actual computation, we restrict number of Slater determi-
nants by selecting variationally better ones. This process fol-
lows an idea of the renormalization group in the wave func-
tion form. Its detailed algorithm and procedure are found in
Ref. 16. After the operation of exp�−�H�, the projected wave
function can be given by an optimal form composed of L
Slater determinants as

	��L�� = �

=1

L

c
	�

�L�� , �3�

where c
’s are amplitudes of 	�

�L��. Operation of the ground-

state projection can give optimal c
’s and 	�

�L��’s for a given

L.
In most cases, Eq. �3� can give only an upper bound of the

exact energy eigenvalue. Therefore, to obtain an exact en-
ergy, we consider an extrapolation method based on a rela-
tion between the energy difference �E and energy variance

	E.16,20 Here the energy difference is defined as �E= �Ĥ�

− �Ĥ�g and the energy variance is defined as 	E=
�Ĥ2�−�Ĥ�2

�Ĥ�2

Here, �Ĥ�g stands for the true ground-state energy. For 	��L��,
we evaluate the energy E�L� and energy variance 	E�L�, re-
spectively.

If 	��L�� is a good approximation of the true state, the
energy difference �E�L� is proportional to the energy variance
	E�L�. Therefore extrapolating E�L� into 	E�L�→0 by increas-
ing L systematically, we can accurately estimate the ground-
state energy.

Next we consider a simple combination of the PIRG and
quantum number projection. The PIRG gives an approximate
wave function for a given L which is composed of L linear
combinations of 	�


�L��. Though spontaneous symmetry
breaking should not occur in finite-size systems, symmetries
are sometimes broken in PIRG calculations because of the
limited number of basis functions, if symmetry projections
are incompletely performed. However, extrapolations to the
thermodynamic limit recover the true ground state, in which
possible symmetry breakings are correctly evaluated.

For finite-size systems, to handle wave functions with
definite and exact symmetries, we can apply quantum num-
ber projection to this wave functions as

FIG. 1. Lattice structure of geometrically frustrated lattices on a
square lattice. The nearest- and next-nearest-neighbor transfers are
denoted by t and t�, respectively.
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P	��L�� = �

=1

L

c
P	�

�L�� , �4�

where P is a quantum-number projection operator. We can
use the same amplitudes c
’s and the same bases 	�


�L��’s
which the PIRG determines, while these amplitudes c
’s can
be easily reevaluated by diagonalization by using quantum-
number-projected bases; that is, we determine c
’s by solv-
ing the generalized eigenvalue problem as

H
�
P x� = N
�

P x� , �5�

where N
�
P = ���	P	�
� and H
�

P = ���	HP	�
�. The latter pro-
cedure gives a lower-energy eigenvalue. By adding this pro-
cedure for the PIRG basis, we evaluate the projected energies
and energy variances Eproj

L and 	Eproj
L for each L. We can

estimate accurate energy by extrapolating the projected en-
ergy into zero variance. Consequently we can exactly treat
the symmetry and extract the state with specified quantum
numbers by the PIRG. We call this procedure PIRG+QP.

IV. PHASE DIAGRAM ON THE t�-U PLANE

For t�=0, the metal-insulator transition occurs at U=0.
The t� offers an additional dimension for parameter spaces of
Hubbard models. Recently the existence of a nonmagnetic
insulator �NMI� near the metal-insulator transition bound-
aries was reported5,6 on the two-dimensional frustrated Hub-
bard model on a lattice by using the PIRG method. In the
present paper, we thoroughly investigate the two-
dimensional parameter spaces spanned by U / t and t� / t.

To obtain the ground state for each point �U / t, t� / t�, we
carry out calculations for 6�6, 8�8, and 10�10 lattices by
the PIRG+QP method. By extrapolating the ground-state en-
ergies per lattice site, we determine its thermodynamic value.
By a thorough search of the parameter space and improved
accuracy of the computation, the phase diagram is clarified

for model �A� in a wider region of parameter space than the
previous study.5 It becomes quantitatively more accurate and
contains a new feature, which has not been revealed in the
previous results.5 In Fig. 2, we show the phase diagram,
where various types of phase appear. For small U / t, a para-
magnetic metallic phase appears, and for larger U / t and
small t� / t, an antiferromagnetic insulating �AFI� phase ap-
pears. As t� / t increases, a nonmagnetic insulating phase ap-
pears. This feature has already been reported in Ref. 5. In
addition to these phases, we find two additional phases: one
is another type of antiferromagnetic insulating phase and the
other is a stripe-ordered insulating phase. The nature of these
new phases will be reported in the following sections.

We determine the phase boundary in the following way.
The ground-state energies per site in the thermodynamic
limit are obtained for each mesh point of this parameter
space at �U / t , t� / t�= �n1 ,n2�0.1� where n1 ,n2=1 , . . . ,10 af-
ter the size extrapolation. The phase boundary is determined
by interpolating these energies per site.

V. AFI PHASE

For t� / t=0, the AFI phase of the configuration illustrated
in Fig. 3�a� appears. By the PIRG+QP method, we can
evaluate an energy gap between the ground state �S=0� and
the first excited state �S=1� for the AFI phase.

The finite-size gap for an ��� system in the chiral per-
turbation theory21 in the form

	E =
c2

�21 −
3.900265c

4��
+ O� 1

�2�� �6�

is fitted with the calculated results in Fig. 4. The finite-size
gap nicely follows the form �6� in the AFI phase. For ex-
ample, at U=4, t=1, and t�=0, the fitting in Fig. 4 shows
spin-wave velocity c�0.74 and spin stiffness �c /8.15,
which are equivalent to the estimate of the Heisenberg model
at the exchange coupling J=0.45 in the spin-wave theory.
The fitted values of c and J well reproduce the previous
estimates �i.e., J�0.4� obtained from the susceptibility and
the staggered magnetizations.22 For U / t=6.0, we obtain the
spin-wave velocity c�0.97 and the spin stiffness 
�c /5.44, while for U / t=8.0, c�1.03 and spin stiffness 
�c /4.61. The excitations in the AFI phase well satisfy the
tower structure of low-energy excitation spectra based on the
nonlinear � model description.

The AFI phase is extended in the region of nonzero and
moderate amplitude of t� / t with large U / t in the phase dia-
gram.

FIG. 2. �Color online� Phase diagram of the Hubbard model
with the lattice structure illustrated in Fig. 1�a� in the parameter
space of U scaled by t and the frustration parameter t� / t. AFI, AFI2,
Stripe, PM, and NMI represent two types of antiferromagnetic in-
sulating, stripe shape insulating, paramagnetic metallic, and non-
magnetic insulating phases, respectively.

FIG. 3. Configurations of the AFI phase �A�, new AFI phase
�B�, and stripe phase �C�.
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VI. AFI PHASE WITH LONGER PERIOD

In Fig. 2, the AFI phase with longer period �AFI2� ap-
pears. Its schematic configuration is depicted in Fig. 3�b�.

To examine this configuration, we consider the equal-time
spin structure factor defined, in momentum space, by

S�q� =
1

3N
�
i,j

N

�Si · S j�eiq�Ri−Rj�, �7�

where Si is the spin of the ith site and Ri is the vector repre-
senting the coordinate of the ith site. In Fig. 5�b�, the mo-
mentum dependence of S�q� for the ground state at U / t
=9.0 and t� / t=0.7 is shown, where we see distinct peaks at
�� ,� /2� and �� ,3� /2�. In Fig. 6, we plot the finite-size
scaling of these peak amplitudes, which indicates the exis-
tence of long-ranged order. A usual AFI phase has a configu-

ration pattern in Fig. 3�a�, which has 2�2 superstructure. On
the other hand, this new AFI phase has 2�4 superstructure.
Therefore, for smaller lattices, it is difficult to identify it. For
a 4n�4n �n is an integer� lattice, this structure is naturally
realized and the peak positions of the spin correlation sharply
appear at �� ,� /2� and �� ,3� /2�, while for a �4n+2�
� �4n+2� �n is an integer� lattice, the peak positions of the
spin correlation become wider from �� ,� /2−�� to �� ,� /2
+�� and from �� ,3� /2−�� to �� ,3� /2+�� �� is around
� /4�. Thus there is an irregularity in the spin correlation as a
function of lattice size. In Fig. 6, we show the summed am-
plitude of S�q� over the peak for 6�6 and 10�10 lattices.

For each basis 	�� of Eq. �3�, we apply the shift operation
T	i,	j on the lattice and evaluate an overlap ��	T	i,	j	��. This
overlap becomes quite large when 	i=2 or 	j=4, which
reflects a basic configuration in Fig. 3�b�.

In the strong-correlation limit �U / t→��, the frustrated
Hubbard models become the J1-J2 Heisenberg model in lead-
ing order by

H = J1��i,j�Si · Sj + J2���i,j��Si · Sj , �8�

where �¯� ��¯�� denote the nearest-neighbor sites and next-
nearest-neighbor sites, respectively. Here, J1=4t2 /U and J2
=4t�2 /U are both antiferromagnetic interactions so that mag-
netic frustration arises. For J2 /J1�0.4 the Néel order with
peak structure in S�q� at q= �� ,�� was proposed, which cor-
responds to the AFI phase in the Hubbard model. On the
other hand, for J2 /J1�0.6, the stripe order with q= �0,�� or
�� ,0� peak in S�q� was proposed, which corresponds to the
stripe shape23 in the next section. For the intermediate region
of 0.4�J2 /J1�0.6, no definite conclusion has, however,
been drawn on the nature of the ground state. The possibility
of the columnar-dimerized state,24–26 the plaquette singlet

FIG. 4. �Color online� Size scalings of the energy gaps for total
spin S=1, 2, and 3 in the AFI phase �A� �U=4, t=1, t�=0� and �B�
�U=6, t=1, t�=0�. The solid curves are fitting by the form �6�, and
the dashed curves illustrate curves obtained from the S=0 fitting
multiplied with the factor 4S�S+1� /3.

FIG. 5. Equal-time spin corre-
lations in momentum space on
10�10 at half filling for AFI
phase �A� �U=6.0, t� / t=0.5�, new
AFI phase �B� �U / t=9.0, t� / t
=0.7�, stripe phase �C� �U / t=9.0,
t� / t=1.0�, and NMI phase �D�
�U / t=6.0, t� / t=0.7�.
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state,27 and the resonating-valence-bond state were dis-
cussed. In the present study, we find a new type of AFI phase
with longer period between the AFI and stripe phases. This
new AFI phase could have some connection to the region
0.4�J2 /J1�0.6. In terms of the effects of frustrations, sta-
bilization of the longer-period AF structure is a natural con-
sequence in the classical picture, where the well-known axial
next-nearest-neighbor Ising �ANNNI� model exhibits a dev-
il’s staircase structure.28 The complicated longer-period
structure may melt when quantum fluctuations are switched
on, while the present result indicates the survival of 2�4
structure for large U.

To investigate the possibility of the dimerized state and
the plaquette state, we consider the dimer correlation func-
tion D
,� for 
 ,�=x ,y defined by

D
,� = �O
O�� , �9�

where

O
 =
1

N
�
i=1

N

�− 1�iSi · Si+
̂ �10�

and 
̂ shows the unit vector in the 
 direction. Dyy clearly
indicates that dimer order in the y direction is absent, as we
see in Fig. 7. On the other hand, in this definition of D, Dxx
should also show long-range order if the 2�4 AF order is
stabilized. This is indeed seen in our data. In the limit of
strong coupling, this region is mapped to the Heisenberg
model with nearest-neighbor exchange J1 and next-nearest-
neighbor exchange J2, with J2 /J1�0.5. In this region, the
columnar dimer state has been proposed as the candidate of
the ground state.24–26 Our result also shows the dimer long-
range order supporting the existence of the columnar dimer
phase. However, in this phase at finite U, the antiferromag-
netic long-range order with longer period with 2�4 struc-
ture shown in Fig. 3�b� is also seen. Since the dimer-order
parameter defined by Dxx is automatically nonzero in this
extended antiferromagnetic phase, the primary order param-
eter should be identified as the longer-period antiferromag-

netic order. We naturally expect a continuous connection of
the Hubbard model to the Heisenberg model, while as far as
we know, serious examination of such longer-period AF or-
der is not found in the literature. It is an intriguing issue to
examine this new possibility of longer-period AF order in the
Heisenberg limit.

VII. STRIPE PHASE

For larger t� / t and U / t, another phase appears, whose
basic configuration is the stripe shape in Fig. 3�c�. In Fig. 8,
we show strong AF bonds for the t and t� directions. For the
AFI phase, spins on the bonds along the t direction become
antiferromagnetic to each other and gain energy while spins
on the bonds in the t� direction become parallel and lose
energy. On the other hand, for the stripe shape, spins on the
bonds for the t� direction become all antiparallel with com-
promised antiparallel spins on the bonds for the t direction.
In this situation, as t� / t becomes larger, the stripe phase be-
comes energetically favored. As shape �B� is between �A�
and �C�, it becomes energetically favored at a medium value
of t� / t.

The minimum block of stripe shape is 2�1. Therefore,
there is no irregularity of spin correlation for different lattice
sizes. The spin correlation has a sharp peak at �0,�� as we

FIG. 6. Finite-size scaling of S�� ,� /2� for U / t=9.0 and t� / t
=0.7 at half filling. The result suggests 2�4 AF long-range order.
Open circles for 6�6 and 10�10 lattices are the peak values while
solid symbols are the intensity of the peak summed over k points at
�� ,� /2� and its nearest-neighbor k points.

FIG. 7. �Color online� System-size dependence of the dimer-
correlation functions �Dxx and Dyy� for t=1.0, t�=0.7, and U=9.0 at
half filling on N=4�4, 6�6, 8�8, 10�10, and 12�12 lattices.
The blue open circles, red open diamonds, and green open squares
show the Dxx and Dyy of AF2, stripe, and AF phases, respectively.
The long-range order suggested in Dyy implies the 2�4 AF order.

FIG. 8. �Color online� Strong AF bonds of AFI phase �A�, new
AFI phase �B�, and stripe phase �C�.

GAPLESS QUANTUM SPIN LIQUID, STRIPE, AND¼ PHYSICAL REVIEW B 74, 014421 �2006�

014421-5



see in Fig. 5�c�. The finite-size scaling in Fig. 9 indeed shows
the presence of long-range order in the thermodynamic limit.
The overlap between the basis state and its shifted one also
indicates that the configuration in Fig. 3�c� is realized.

VIII. NONMAGNETIC INSULATOR PHASE

The three phases of the previous sections are semiclassi-
cal. Their main configurations can be intuitively understood
from the classical picture of spin alignment. Next we con-
sider an unconventional phase of frustrated Hubbard models,
which is illustrated in Fig. 2 as the nonmagnetic insulator.
This phase does not have any distinct peak structure in S�k�
as we see in Fig. 5�d�. Because this NMI phase appears in a
window sandwiched by the metal and insulating antiferro-
magnetic phases, it is clearer than the previous studies5,6 that
the phase is stabilized by charge fluctuations enhanced near
the Mott transition.

A. Spin excitation gap

Now in the NMI phase, the system size dependences of
the spin excitation gap 	E between the ground state and the
lowest triplet are shown in Fig. 10. Figure 10 indicates that
the triplet excitations become gapless in the thermodynamic
limit. The gap appears to be scaled asymptotically with in-
verse system size N−1: namely, 	E�� /N. At least the ex-
trapolated gap ��0.01t� is much smaller than the typical gap
inferred in the spin-gapped phase of the corresponding
Heisenberg limit ��0.1J�.29 The gapless feature shares some
similarity to the behavior in the AFI phase. However, a de-
tailed comparison clarifies a crucial difference as we will
show later. The fitting in the NMI phase to the form �6� gives
unphysical values such as c�1.5. We note that the uniform
magnetic susceptibility is given by 2/3�, which implies a
nonzero and finite uniform susceptibility.

Except for 1D systems, the present result is the first un-
biased numerical evidence for the existence of gapless exci-
tations without apparent long-range order in the Mott insula-
tor. Although a tiny order cannot be excluded if it is beyond
our numerical accuracy, in the present NMI phase, the ab-
sence of various symmetry breakings including the AF order

has already been suggested by the size scalings of models
�A� �Ref. 16� and �B� �Ref. 6�. It was shown30 for model �A�
that as well as dimer and plaquette singlet orders, s- and
d-density waves are also numerically shown to be unlikely
for four types of correlations probed by

C
�q� = 	�J
�q�J

†�q��	 ,

J
�q� =
1

N
�
k,�

ck,�
† ck+q,�f
�k� , �11�

with

f1�k� = cos�kx� + cos�ky� ,

f2�k� = cos�kx� − cos�ky� ,

f3�k� = 2 cos�kx�cos�ky� ,

f4�k� = 2 sin�kx�sin�ky� . �12�

The calculated results all indicate the absence of long-ranged
order with the correlations staying rather short ranged. How-
ever, it does not strictly exclude an extremely small and non-
zero order parameter, although it may melt with further de-
creasing U.

B. Lowest S=1 and S=0 excitations

The lowest-energy S=1 excitations at each momentum
sector E1�k� show a further dramatic difference between the
AFI and NMI phases. The lowest-energy states with speci-
fied momenta E�k� are calculated from the spin-momentum-
resolved PIRG. When E�k� becomes the maximum at kmax

and the minimum at kmin, we introduce the width W
�E�kmax�−E�kmin�.

FIG. 9. Finite-size scaling of S�0,�� for U / t=9.0 and t� / t
=1.0 at half filling. The result suggests that the stripe has long-range
order at this parameter value.

FIG. 10. �Color online� Size scalings of the S=1 excitation gaps
for several choices of parameters. The triangles show the case of
model �B� while others are for model �A�. The dashed curves are
fittings to Eq. �6�. The circles, squares, and triangles are results
obtained inside the NMI phase.
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We first make a general remark on W expected from the
known phases. Note that in the AFI phases as well as in the
stripe phase, the lowest S=1 excitations E1�k� give nothing
but the spin wave and the momentum dependence is given
by the spin-wave dispersion. Therefore, W represents the dis-
persion width. On the other hand, in the Fermi liquid, it is
given by the lowest edge of the continuum of the Stoner
excitations �particle-hole excitations�, and in a certain range
of the momenta, they are gapless. For example, for the case
of noninteracting fermions at half filling on the square lat-
tice, W becomes zero. In numerical calculations of the Fermi
liquid, however, it has, in general, a finite width W�0 due to
the finite-size effect and the width is expected to vanish as
W�1/N1/d—namely, being scaled by the inverse linear di-
mension of the system size.

In the AFI phase, the dispersion is essentially described
by the spin-wave spectrum similar to

	E�k� = 4J�1 − �k
2, �13�

with

�k =
1

2

cos�kx� + cos�ky�� �14�

for the spin-wave theory of the Heisenberg model, but modi-
fied because of finite U. The calculated dispersion width at
U=4, t=1, and t�=0 shows a small system-size dependence
and is around 1.5, which can be compared with the disper-
sion width ��1.6 for J=0.4� of the ordinary spin wave ob-
tained from the mapping of the Hubbard model to the
Heisenberg model.31

In marked contrast, the width W for S=1 excitation in the
NMI phase has a strong and monotonic system size depen-
dence as in Fig. 11. For systems larger than an 8�8 lattice,
the dispersion becomes vanishingly small. The vanishing W
is consistent with what is expected in the Fermi liquid, al-
though the spin liquid phase is certainly insulating. It implies
that only the “spinon” excitations form an excitation con-
tinuum in the presence of the charge gap. Although it is not
definitely clear, the size dependence seems to show a very
quick collapse of the dispersion with increasing system size
and may not be fitted by a power of the inverse system size
as in single-particle Stoner excitations in metals. Such quick

collapses of W are observed solely in the NMI phase irre-
spective of the models 
namely, commonly seen in models
�A� and �B��. The collapse implies that the triplet excitations
cannot propagate as a collective mode. We also note that the
gap of S=1 excitations from the ground state—namely,
	E—is scaled by 1/N as described above. Therefore, the
momentum degeneracy within S=1 sectors seems to be
much higher than the spin degeneracy in the thermodynamic
limit.

The presence of such degenerate excitations well accounts
for the quantum melting of simple translational symmetry
breakings including the AF order, because a long-ranged or-
der in the two-dimensional systems is destroyed when the
excitation becomes flatter than 	E�k�=k2. This is because of
the infrared divergence of fluctuations in the form
�kd−1dk 1

	E�k� with d=2.

The total singlet state �S=0� at any total momentum k
also shows degenerate structure in the ground state for larger
system sizes as in Fig. 11. We similarly introduce the width
W as W�E�kmax�−E�kmin� within the singlet S=0 sector.
The width W vanishes in the NMI phase in model �A� as well
as in �B�. This again implies the excitation continuum, which
has larger degeneracy than the spin excitations.

C. Spin renormalization factor

The spin renormalization factor Zs�q� is defined as

Zs�q� = 	�S = 1,q	Z	S = 0,q = 0�	 , �15�

where

Z �
1
�2

�
k

�ck+q,↑
† ck,↑ − ck+q,↓

† ck,↓� . �16�

It is rewritten in the site representation as

Zs�q� =
1
�2��j

�S = 1,q	�n↑j − n↓j�	S = 0,q = 0�e−iqRj� .

�17�

The PIRG wave functions for S=0 and S=1 are given by the
spin-projection operator. As the derivation of its matrix ele-
ment is somewhat lengthy and needs spin algebra, it is sum-
marized in the Appendix.

In analogy with the renormalization factor of the quasi-
particle weight in the Fermi liquid, Zs measures whether the
spin excitation is spatially extended and can propagate co-
herently or not. If Zs has nonzero values, the spin excitation
can propagate coherently. Figure 12 indeed shows that Zs
remains nonzero for these ordered phases. In fact, in the AFI,
AFI2, and stripe phases, the magnons are well-defined el-
ementary excitations in momentum space and spatially
propagate coherently, which are reflected in nonzero values
of the extrapolated Zs to the thermodynamic limit. In con-
trast, the renormalization factor appears to scale to zero for
the NMI phase, which implies that the spin excitations
dressed by other spins are spatially localized.

FIG. 11. �Color online� Size scalings of W for S=0 and S=1
excitations in the NMI phase for model �A�.
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IX. DISCUSSIONS AND SUMMARY

The present excitation spectra show the following double-
hierarchy structure: Although the singlet ground state is
unique, there exist enormous number of low-energy excita-
tions within the S=0 sector leading to a nearly dispersionless
momentum dependence of singlet excitations. Although the
energy of the lowest-energy state at each total momentum
has a substantial momentum dependence in finite-size sys-
tems, and thus forms a dispersionlike structure arising from
the finite-size effects, the momentum dependence quickly
collapses with increasing system size. Another degeneracy
near the ground state appears in the excitations with S�0.
The lowest-energy states with S=1,S=2, . . . denoted by
E1 ,E2 , . . . have a towerlike structure, E1�E2�¯. in finite-
size systems. However, these spin excitation gaps again col-
lapse with increasing system size, supporting gapless spin
excitations in the thermodynamic limit. With increasing sys-
tem sizes, the singlet excitation energies become vanishing
with a much faster rate than that of vanishing excitation en-
ergies for the excitations to nonzero spins such as triplet. In
other words, the collapse of the excitation energies for the
spin dependence seems to be much slower than the collapse
in the momentum dependence. This generates a hierarchy
structure of the excitation energies.

Here we discuss a possible interpretation of the proper-
ties. The vanishing gap may allow the following interpreta-
tion: The ground state is given by a superposition of dynami-
cal singlet bonds, which cover the whole lattice. Those
singlet bonds with vanishingly small singlet binding energy
have a nonzero weight, because of the distribution of the
singlets over long distance, where, for example, weights de-
cay with a power law with increasing bond distance as in a
variational long-ranged resonating valence bond �RVB� wave
function.32

The collapse of W and vanishing renormalization factor Zs
show that the ground state is nearly degenerate with other

low-lying states obtained by spatial translations and they
have vanishing off-diagonal Hamiltonian-matrix elements
each other. Although translational symmetry is retained in
the original Hamiltonian, the present orthogonality may im-
ply a large degeneracy near the ground state. The absence of
the spin renormalization factor Zs=0 implies first that the
Goldstone mode like magnons in the symmetry-broken phase
does not exist. Furthermore, it also excludes the existence of
coherent single-spin excitations as in the idea of particle-
hole-type excitations at the hypothetical spinon Fermi
surface.33,34 The result rather suggests that a spin excitation
obtained from the unbinding of the weak singlet may be
spatially localized because of the dressing by the surround-
ing sea of singlets.

In classical frustrated systems, the spin glass can be sta-
bilized by an infinitesimally small quenched randomness—
for example, in the Ising model on a triangular lattice,35

where macroscopic degeneracy remains in the regular sys-
tem. In the present case, it may also be true that tiny ran-
domness may further stabilize the freezing of the localization
of spins and lead to the spin glass.

The nature of the gapless and dispersionless excitations is
not completely clarified for the moment. Although the coher-
ence of the spin excitations must be more carefully exam-
ined, the present result supports that an unbound spin triplet
does not propagate coherently due to strong scattering by
other weakly bound RVB singlets. This result also means
that the quantum melting of AF order occurs through the
divergence of the magnon �or Goldstone mode� mass.

This NMI phase appears to be stabilized by the umklapp
scattering,36 where the Mott gap is generated without any
symmetry breaking such as antiferromagnetic order. The de-
generate excitations within the singlet, which are similar to
the present results, but with a spin gap were proposed in the
kagomé and pyrochlore lattices based on small-cluster
studies.37 The possible symmetry breaking from degenerate
singlets was also examined on the pyrochlore lattice,38,39

while the spins were again argued to be gapful in contrast to
the present results. In our results, the gapless spin excitations
become clear only at larger system sizes than the tractable
sizes of the diagonalization studies.

We briefly discuss the experimental implications of the
present new quantum phase. Recent results by Shimizu et
al.10 on �-�ET�2Cu2�CN�3 appear to show an experimental
realization of the quantum phase we have discussed in the
present work. In fact this compound can be modeled by a
single-band Hubbard model on a nearly right triangular lat-
tice near the Mott transition. The NMR relaxation rate shows
the nonmagnetic and gapless nature retained even at low
temperatures ��0.2 K� and suggests the present quantum
phase category. Another organic compound also shows a
similar behavior.11

Systems with kagomé- �or triangular-�like structures, 3He
on graphite15 and volborthite Cu3V2O7�OH�2 ·2H2O �Ref.
12� show nonmagnetic and gapless behaviors. On the other
hand, glasslike transitions are seen in 3D systems, typically
in pyrochlore compounds as R2Mo2O7 with R=Er, Ho, Y,
Dy, and Tb,13 and in fcc structure, Sr2CaReO6.14 It is remark-
able that the glass behavior appears to occur even when ran-
domness appears to be nominally absent in good-quality

FIG. 12. �Color online� Size dependence of spin renormalization
factor and S�q� at the peak value are shown for AFI, new
AFI�AFI2�, stripe, and NMI phases.
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single crystals of stoichiometric compounds. Although the
lattice structure, dimensionality, and local moments have a
diversity, many frustrated magnets show gapless and inco-
herent �glassy� behavior. The present result on gapless and
degenerate structure emerging without quenched randomness
offers a consistent concept with this universal trends. It
would be an interesting open issue whether the present sys-
tem leads to such a glass phase at T=0 in 2D by introducing
randomness.

In summary, we have studied the 2D Hubbard model on
two types of square lattices with geometrical frustration ef-
fects arising from the next-nearest-neighbor transfer t�. In the
parameter space of the interaction U and t�, paramagnetic
metal, two antiferromagnetic insulator phases, a stripe-
ordered insulator phase, and a new degenerate quantum spin-
liquid phase are found. The quantum spin liquid �in other
words, nonmagnetic insulator� phase has gapless spin exci-
tations from the degenerate ground states, and furthermore
the dispersionless modes are found in all the spin sectors.
The calculated spin renormalization factor suggests that the
gapless spin excitation is spatially localized and does not
propagate coherently in the thermodynamic limit. Recent ex-
perimental findings, including quantum spin liquids in 2D
and spin glasses in 3D, suggest a relevance of this phase in
disorder-free and frustrated systems.
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APPENDIX

In this Appendix, we discuss how to evaluate the matrix
elements between different spin states. We consider the state
with definite spin S and its z component, which is given from
the general Slater determinant 	�� by spin projection PS,M.
The detailed form of PS,M is given by �KgKLM,K

S in Refs. 19
and 40 where gK’s are parameters. We denote such a spin-
projected wave function as 	�S,M�� PS,M	��. Now we con-
sider an operator O�

� which changes spin quantum number by

� and its z components by �. Its expectation value is evalu-
ated by the Wigner-Eckart theorem. Therefore we introduce
the reduced matrix element �
 ,S�O��
� ,S�� generally de-
fined by

�
,S,M	O�
� 	
�,S�,M�� = �− �S−M� S � S�

− M � M�
�

��
,S�O��
�,S�� , �A1�

where 
 and 
� are additional quantum numbers. By consid-
ering the commutation relation between the spin projector
and the operator O�

� , a formula can be derived40 as

��S1
�O���S0

� =
�2S1 + 1��2S0 + 1�

8�2

� �
K0K1K̄1�

gK0

* gK1
�− �S0−K0� S0 � S1

− K0 � K̄1
�

�� d�D
K̄1K1

S1 ��	O�
�R���	�� , �A2�

where, in reduced matrix elements, the z component is sup-
pressed, DM,K

S is Wigner’s D function, and R��� is a rotation
operator in spin space.40

Now we consider the spin renormalization factor. Its op-
erator O�

1 is defined by

O�
1 = � � 1

2 ,�, 1
2 ,��	1,��c�

† c̃��, �A3�

where c̃j,�= �−�1/2−�cj,−�. Its three components are O0
1= 1

�2
�

−c↑
†c↑+c↓

†c↓�, O1
1=c↑

†c↓, and O−1
1 =−c↓

†c↑. As the wave func-
tion is determined in the half-filled space, the z the compo-
nent of spin is zero, which means gK=�K,0. Moreover, we set
S0=0 and S1=1 and the normalization factor of the projected

wave functions like ��2S0+1�
2

��2S1+1�
2 =

�3
2 is also taken into

account. Therefore we can obtain a formula as

��1,0	O0
1	�0,0� = �

�=0,±1
� sin �d�d�0

1 �����	O�
1 ei�Sy	�� .

�A4�

In nuclear structure physics, the formula, Eq. �A2� is often
used.
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