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A study of transverse tail-to-tail magnetic domain walls �DWs� in current perpendicular to the plane �CPP�
spin valves �SVs� of various dimensions is presented. For films with dimensions larger than the DW width, we
find that DW motion can give rise to a substantial low-frequency noise. For dimensions comparable to the DW
width, we show that the DW can be controlled by an external field or by a spin momentum torque as opposed
to the case of CPP-SV with uniform magnetization. It is shown that in a single domain biased CPP-SV, the spin
torque can give rise to 1/ f-type noise. The dipolar field, the spin torque, and the Oersted field are all accounted
for in this work. It is shown that the proposed SV requires low current densities to move DWs, a feature which
can be utilized for logical operation or magnetic field sensing without having to switch the net magnetization
of the thin film.
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I. INTRODUCTION

The study of domain walls’ �DWs� magnetic �static and
dynamic�1–4 and transport5–8 properties have attracted much
attention recently due to their relevance for magnetoelec-
tronic nanodevice applications. In the static case, McMichael
and Donahue have shown that in magnetic stripes head-to-
head DWs can be in vortex or transverse state.9 Klaui et al.
have observed these DW structures in magnetic thin films
and rings.10 In this work, we study the dynamics of DWs
with magnetization mostly restricted to the plane of a
nanometer-size thin film. DW motion can be a source of
low-frequency noise in magnetic systems and thus hinder
any potential applications. Their high-frequency behavior
can, however, be tuned by choosing suitable boundary con-
ditions or geometries. Constrained DW oscillations can be
high in frequency and hence there is a potential for their use
in nanoelectronics as resonators.8

At least two modes of oscillations have been studied in
the literature; a Doring-type oscillation and a Winter mode
oscillation.11–14 The Doring mode is associated with transla-
tions of the center of “mass” of the DWs in an infinite sys-
tem, while the Winter modes are nonzero energy modes that,
in addition to rigid translation, correspond to propagations
along the DWs. These modes are found by solving the time-
dependent Landau-Lifshitz �LL� equations.15,16

In the following, we focus only on dynamical properties
of transverse tail-to-tail DWs trapped in stripes with dimen-
sions comparable to their width. This case is proved to be the
most interesting due to the unusual magnetization dynamics
as opposed to the conventional case of DWs with widths
being much smaller than the film size. In particular, we find
that the low-frequency excitations can be reduced in com-
parison with the usual current perpendicular to plane �CPP�
configuration having a uniform magnetization. Such uniform
magnetization is susceptible to large fluctuations due to spin
momentum transfer and gives rise to appreciable 1 / f-like
noise.17 We investigate DWs formed by pinning the magne-
tization in the opposite directions at the edges along the easy
axis. We show that DW motion can be controlled by a cur-

rent perpendicular to the plane of the DW magnetization in
contrast with the currently actively studied case of DW mo-
tion in nanowires.4

The LL equation is the basis for the present study. Since
we are looking at thermal and current effects, a random field
and a spin torque term are also added to the LL equation.18–20

We show that in the spin-valve �SV� geometry suggested
here the spin torque can provide the force needed to move
the wall in a controlled fashion with about 100 times smaller
current values than those needed to switch the uniform mag-
netization in a CPP SV.

The paper is organized as follows. In Sec. II we describe
both the theoretical background and the computational model
needed for our study. In Sec. III, we discuss the DW struc-
ture and we also calculate the lowest eigenmodes of the DW
using a simple one-dimensional model and compare it to the
numerical solution. It is shown that if the center of the DW is
allowed to drift along the easy axis, the contribution to the
1/ f-type noise increases. In Sec. IV, we study the effect of an
external field and a CPP current on the SV with and without
DWs. We find that SV with a uniform magnetization can be
susceptible to unwanted behavior due the spin torque driven
instabilities that are absent in a SV with a constrained DW.
We consider a new CPP geometry with a constrained DW
between two fixed layers, one pinned along and the other
pinned perpendicular to the direction of the current flow. We
find that in this CPP structure the DW motion can be well
controlled with current densities which do not lead to the
magnetization instabilities. It is shown that accurate quanti-
fication of demagnetizing fields is not essential for a qualita-
tive understanding of the influence of the spin torque on the
DW. In Sec. V, we summarize our results.

II. THEORETICAL BACKGROUND AND
COMPUTATIONAL MODEL

For a magnetization M with magnitude Ms, the LL equa-
tion for m=M /Ms with a damping in the Gilbert form and
time normalized by �Ms, where � is the gyromagnetic ratio,
is given by16
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dm

dt
= − m � �heff + hr�t� − �

dm

dt
� , �1�

where the effective field heff includes the exchange interac-
tion, the anisotropy field along the x axis, the demagnetiza-
tion field, the Oersted field, and the spin torque

heff =
2A

Ms
2�2m −

2K

Ms
2x�m · x� + hd + pIm � mp. �2�

The damping term is taken to be �=0.02 in the absence of
currents and is increased to �=0.08 in the presence of spin
torques to account for spin accumulation at the normal-
ferromagnetic interface. The exchange constant A=1.6
�10−6 erg/cm in this study. The random field hr�t� is taken
to be uniform and Gaussian white at temperature T,
�hr,i�t�hr,j�t���=2�kT / ��Ms

3V��ij��t− t��.18 In the presence of
spin torques, the white-noise assumption21 is strictly valid
only for frequencies around the resonant frequency as shown
in Ref. 20. Since we are only interested in currents below the
critical current, the white-noise assumption will not alter the
qualitative conclusions of this work. The size of the dis-
cretized cell is taken 2�2 nm2 in the plane of the film. The
inclusion of the demagnetizing field is important in DW mo-
tion studies and hence a numerical treatment is often needed
to get a quantitative understanding of the dynamics of a
DW.22–24 The last term in Eq. �2� is the contribution of a spin
torque from the pinned layer �PL� mB. The prefactor p is
dependent of geometrical parameters and I is the current
flowing perpendicular to the magnetic multilayers. The p
prefactor is dependent on the thickness d, the cross section A
of the layer and the polarization of the current. Assuming
perfect polarization of the conduction electrons, with charge
e, by the reference layer and neglecting the angular depen-
dence, the spin torque coefficient is given by

p =
1

�e�dAMs
2 . �3�

In the following simulations, the anisotropy field is taken
Hk=200 Oe and the saturated magnetization is Ms
=800.0 emu/cc.

III. EXCITATION MODES IN CPP NANOSTRUCTURES
WITH DOMAIN WALLS

In this section, we introduce the geometry of the DW and
study its excitation modes compared to those generated in
the uniform case. We show that the in-plane components of
the magnetizations have distinctly different lowest mode fre-
quencies that are directly related to the inhomogeneities of
the magnetization due to the DW. We also discuss the mag-
netization evolution if we remove the pinning boundary con-
ditions and allow DWs to relax to the uniform magnetization
state. In addition to the zero-temperature dynamics, we in-
vestigate the effect of thermal fluctuations on the motion of
transverse DWs.

A. Modes in the case of constrained DWs

Figure 1 shows the geometry of the systems we have stud-
ied. As can be seen from the schematic illustration in Fig. 1

in contrast with the traditional CPP-SV, we investigate the
free layer �FL� with inhomogeneous magnetization due to
DWs in the FL coupled to the PL with uniform magnetiza-
tion. We will add later in Sec. III a third magnetic layer when
we discuss the effect of spin torques on the DW. The film has
an in-plane easy x axis along the direction of the magnetiza-
tion of the bottom pinned layer. The magnetization of the PL
is taken homogeneous. Figure 2 shows the magnetization
profile for the case of a small current density with DW
formed in the plane of the FL due to the uniform pinning at
the x= ±L /2 boundaries, where L is the length of the side
along the easy axis.

Figure 3 shows the power spectral density �PSD� �Mi����2
of the FL magnetization which has a peak at around

FIG. 1. The CPP-SV magnetic nanostructures consisting of a
pinned layer �PL� with fixed magnetization Mp and free layer �FL�
magnetization Mf shown for cases of �a� uniform magnetization and
�b� FL with tail-to tail DW. In both cases, the magnetization in the
middle of the free layer is perpendicular to the magnetization in the
pinned layer.
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9.0 GHz. Before calculating the PSD, we first average
M�x ,y� over space. The size of the FL film is taken to be
100�20�2 nm3 while that of the FL is 100�20�9 nm3.
For the unpinned boundary case, the average magnetization
points along the easy x axis and the transverse components
are oscillating with a frequency approximately twice the fer-
romagnetic resonance �FMR� frequency of an infinite thin
film given by the Kittel formula, �=��Hk�Hk+4�Ms�	1/2,
i.e., around 4.1 GHz. Figure 3 shows that a film size of
1000�1000�3 nm2 has practically the same FMR peak as
that of an infinite thin plate. Thus the presence of boundaries
is an important factor which will be discussed throughout the
rest of the paper.

First we start discussing the DW relaxation as we remove
boundary pinning. This relaxation process reflects intrinsic
DW modes. Figure 4 shows the relaxation of the DW when
the pinning at the edges is removed at t=0 ns. The average x
and z components stay zero for more than 0.1 ns after turn-
ing off the pinning. Afterward, the x component converges to
Ms and the z component begins oscillating around zero. The
y component starts oscillating immediately around a nonzero
average after the removal of the pinning at the edges and
after 0.1 ns starts oscillating instead around zero. The initial
phase of this decay of the DW to the uniform state shows
interesting features. The x component shows a compression-
decompression mode which represents oscillations of the
DW around the center and along the easy x axis �see Figs.
4�b� and 4�c�	. Simultaneously, the y component shows a
behavior similar to a breathing mode. Finally the last plot
shows how a uniform magnetization which is initially along
the hard axis relaxes to the state along the easy axis. Figure
5 shows that large damping makes the DW more stable to
external perturbations.

Magnetization dynamics of the DW can be characterized
in terms of its normal modes. In Fig. 6 we show the spectral
densities of the different components of the magnetization

found in the DW configuration. In this case, the x component
has a peak at lower frequency than the y component. This
higher frequency is directly due to the boundary conditions
on the magnetization. The dependency of the magnetization
on the y coordinate appears to be very weak. As a function of
the position x, the x and z components have a configuration
which is odd under reflection with respect to the center,
while the y component configuration is even.

These different excitations of the DW can be qualitatively
understood in a one-dimensional �1D� calculation with a
simple approximation for the demagnetization field that of an
infinite thin film. If we take m= �sin � cos 	 , sin � sin 	 ,
cos ��, then the equations of motion for the angular variables
are given by

FIG. 2. The magnetization distribution for the three components
of M in the DW �100�20 nm2� as a function of coordinate x along
the easy x axis.

FIG. 3. Spectral densities of the uniform magnetization �arbi-
trary units� in �a� 100�20 nm2 and �b� 1000�100 nm2 thin films
as a function of the frequency �no DW�. The magnetization is Ms

=800 emu/cc and the anisotropy is HK=200 Oe along the easy x
axis. The fluctuations of the Mx component are small and do not
show up on the scale adopted here.
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d�

dt
= hy

eff cos 	 − hx
eff sin 	 − � sin �

d	

dt
, �4�

sin �
d	

dt
= hz

eff sin � − cos ��hx
eff cos 	 + hy

eff sin 	� + �
d�

dt
.

�5�

We are looking for excitations around the ground state. If we
take the magnetization to be in-plane, i.e., �0=� /2, and it
depends only on the x coordinate, we find that the static
solution should satisfy the Sine-Gordon equation

d2	0�x�
dx2 +

1


2 sin�2	0�x�	 = 0, �6�

with the boundary condition 	0�−L /2�=� at the left edge
and 	0�L /2�=0 at the right edge. 
=
2A /K is the width of

the DW. It should be noted here that the same condition arise
for DWs in infinite films and the only difference is in the
boundary conditions. An analytical solution for this equation
does not appear to be possible but it can be found numer-
ically.25 After linearization, �→�0+�, 	→	0+	, the equa-
tions of motion, Eqs. �4� and �5�, become

d�

dt
=

2A

Ms
2

d2	�x�
dx2 +

2K

Ms
2	 cos 2	0 − �

d	

dt
, �7�

d	

dt
= −

2A

Ms
2

d2��x�
dx2 + G�x�� − �

d�

dt
, �8�

where the function G is

FIG. 4. Transient dynamics from the DW state to the uniform magnetization state with thermal fluctuations included: �a� magnetization
components as a function of time when pinning has been turned off at t=0 ns. �b� shows the profile of the Mx component at different time
steps 1, 16, 33, 50, and 60 in units of �t=0.05 ns. �c� same as in �b� but for the My component. �d� Relaxation of the uniform magnetization
from the hard axis position to the easy axis position compared to that of the case of the DW. The damping constant is �=0.02. The width
of the curves in �b� and �c� represent variations in the y direction at a given point along the x axis.
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G�x� = −
2A

Ms
2��

L
�2

+ 4� −
2K

Ms
2 cos2��x

L
� . �9�

To obtain the function G, we have Fourier transformed 	0�x�
and kept only the first term. This is sufficient to understand
qualitatively the main results of the simulation.

The time-dependent variables � and 	 satisfy homoge-
neous boundary conditions and represent fluctuations around
the equilibrium solution. If 	�x , t�=	�x�exp�i�t�, then 	�x�
can be written in the following form to satisfy the boundary
conditions:

	�x� = �
n=1,3,5,. . .

an cos�n�x

L
� + �

m=2,4,6,. . .
bm sin�m�x

L
� ,

�10�

where x varies in the range −L /2�x�L /2. The equations of
motion then become algebraic equations in an and bn. Then
within a linear approximation, the magnetization components
are given by

mx = cos 	0�x� − 	�x�sin 	0�x� , �11�

my = sin 	0�x� + 	 cos 	0�x� . �12�

Since the normal frequencies of the system depend on the
wave number n� /L, we see that because of the parity of the
ground state �mx

0=cos 	0 ,my
0=sin 	0�, the lowest wave num-

ber that appears in the y component is larger �m=2� than that
of the x component �n=1�. This is the reason why the breath-
ing mode has a higher frequency than the spring �or Doring-
like mode� mode, Figs. 6 and 7. In an infinite plane, the
spring mode becomes the Doring mode in our case. The
Doring mode is associated with translation of the DW, i.e.,
with a zero-frequency mode. In a constrained DW, the
pinned edges provide a restoring force and hence the center
of the DW will oscillate instead of translating.

The breathing mode is different from both the Doring and
Winter modes. The Winter modes exist only in infinite DWs
as opposed to the constrained DW treated here. As it can be
seen from Figs. 4�c� and 7�b�, the breathing mode is the
mode that is mostly excited when the pinned boundary con-
ditions are turned off.

B. Low-frequency noise due to a drifting domain wall

Finally in this section, we discuss the advantages behind
constraining the DW to regions comparable in size to the
DW width. We show that DW motion in large films can be
the origin of 1 / f-type noise. This noise has already been
suggested from the measurements in Refs. 26 and 27 and is
detrimental to any sensing device.

Indeed we find that 1 / f-type noise increases if we in-
crease the size of the thin film so it is much larger than the
wall width 
. Hence in this case, the center of the DW is
allowed to drift away from the middle of the film in either
direction along the easy axis due to thermal fluctuations and
the demagnetization field. It has been suggested in many
experiments that DW motion can give rise to 1/ f-type
noise.28 Low-frequency noise usually makes structures with
nonuniform magnetization undesirable for use in magnetic
sensors. However, the magnetization dynamics pattern
changes dramatically if we constrain the DW. In the follow-
ing, we first show that making the DW unconstrained does
indeed lead to the 1/ f-type noise in general agreement with
experimental results.26,27

To observe low-frequency behavior in this system we
need to reduce the effect of the restoring force on the DW.
This amounts to enlarging the length of the sides along the
easy axis of the film to be much larger than the width of the
DW. This way the whole DW can move from the left to the

FIG. 5. Relaxation of the DW to the uniform state as a function
of damping for �=0.02 and �=0.2.

FIG. 6. Spectral densities of the magnetization in the con-
strained DW �arbitrary units�. The x component has a peak around
f =1.0 GHz. This frequency is that of the Doring-like mode in a
finite geometry. The peak of the y component is at f =14 GHz
which corresponds to the breathing mode. Both amplitudes for y
and z have been multiplied by 100 for better visualization.
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right and back because of thermal fluctuations �Fig. 8�. Such
behavior has been observed in many experiments.27,28 Figure
8 shows the PSDs associated with the different components
of the magnetization. The x component shows the 1/ f-type
behavior as expected. Figure 8 shows a real-time trace for
the average components of the magnetization. The x compo-
nent shows “switching”-type behavior between two states, a
signature of telegraph noise. The remaining two components
are very stable and have much higher frequencies. The Mx�t�
behavior of the magnetization resembles the evolution of a
two-state system �telegraph noise�. It is clear from Fig. 8 that
this telegraph noise originates from the DW motion in a shal-
low double well potential. Finally, it is apparent from Fig. 8
that DW magnetization appears to spend more time closer to
the boundary than in the center. This behavior coupled with
the telegraphlike noise are indicative of the double well po-

tential for motion in the case of the “unconstrained” DW. In
the case of the constricted DW, we do not find this double
well potential; instead the potential has a single minimum
and this is the reason behind the different noise features ob-
served in both cases. However, it is not obvious what is the
origin of such a double well potential and why it disappears
in the case of a constricted DW.

In the following we offer a simple explanation for such a
behavior.29 This difference between unconstrained and con-
strained DWs can be understood using the notion of charged
DW introduced by Néel.30 The DW in elongated nanoele-
ments belongs to this category and is characterized by mag-
netic charges distributed in the vicinity of the DW center as
schematically shown in Fig. 9�a�. Moreover, because of the
finite size of the plate, there are significant boundary charges
at either end of the opposite sign to that in the DW. Thus
magnetostatic interaction associated with these charges leads
to a potential as a function of DW position as shown in Fig.
9�b�. The exchange interaction contribution shown in Fig.
9�c� has very strong size dependence due to large exchange
energy increase as the DW approaches pinned boundaries.
Thus it becomes clear that the total potential the DW motion
for the unconstrained DW has a double well feature which
disappears as the DW gets constrained as shown in Fig. 9�d�.
In our case the height of the barrier between the two wells is
less than kT.

IV. EFFECT OF SPIN TORQUES AND ZEEMAN
TERMS ON THE DW

In this section we investigate the effect of spin currents
and external fields on the magnetization in SVs.

First we study a uniformly magnetized SV and calculate
the spectral density of the x component of the magnetization.
We show that the spin torque can be a source of instabilities
in this case. However, in the DW case, we show that the
effect of the spin torque can be used instead to control its
motion. The CPP structure where this is possible is different
than previously proposed structures. We instead add another
magnetic layer to polarize the current in the direction per-
pendicular to the plane of the SV.

A. Noise in a CPP spin valve with uniformly magnetized
layers

Our discussion here will be closely related to the experi-
mental findings in Ref. 17 where it was shown that spin
transfer in a CPP device can give rise to 1/ f-type noise. The
noise range can be in the GHz regime and in effect makes the
use of a CPP device as a GMR sensor unattractive.

In the following we discuss a SV similar to the one treated
in Ref. 17 where the magnetization of the free layer is per-
pendicular to the pinned magnetization. We use a single spin
picture to discuss the noise in this system. We show that this
model can reproduce to a great extent the trend in the noise
spectrum observed in the experiment in Ref. 17. Adopting a
single-particle picture could be a rather crude approximation
in this case,20,31 but it is sufficient for our purpose to dem-
onstrate the contribution of the spin torque to the noise of a

FIG. 7. Lowest modes of the DW: The “spring” mode �a� and
the “breathing” mode �b� of the DW. The dashed line is the equi-
librium solution. The solid curves represent the amplitudes of the
modes around the equilibrium state. Both x and Mx,y have been
normalized.
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CPP device observed in Ref. 17. Moreover, the single do-
main picture discussed here will help us in the interpretation
of the numerical results of the more involved case of a DW.

The CPP-SV with uniform magnetization is shown in Fig.
1�a�. We take the effective field to be equal to Heff= �Hb

−Hc ,1500,−4�Mz� Oe where the x component is much
smaller than the y component. Therefore in this case the
magnetization is expected to be almost perpendicular to the
one of the pinned layer. The saturated magnetization is equal
to 1500 emu/cc. The antiferromagnetic �AFM� field from the
pinned layer is assumed small Hc=20 Oe and the constant
=1 if the pinned magnetization is along +x and =−1 if the
pinned magnetization is pointed in the −x direction. The spin
torque term will be represented by an “effective” field term
p=1000 Oe which is equivalent to having a 10-mA fully

polarized current flowing into the free layer. These param-
eters are chosen to be close to those used in the experiment
of Ref. 17. Using similar parameters, Fig. 10 shows the PSD
for the magnetization in a 200�100�3-nm3 thin film. This
micromagnetic calculation clearly shows that magnetization
is almost uniform and is closely aligned with the 1500-Oe
field along the y axis. Hence we can use a macrospin picture
to calculate the noise spectra in this system.

First, we need to determine the equilibrium position in the
presence of the spin torque which is not always possible. The
spin torque here is comparable to the precession torque from
the effective field. The equilibrium state is found by solving
the simultaneous equations

Mx = r�He − Hc� , �13�

FIG. 8. Magnetization dynamics in the 320�20 nm2 elongated CPP valve in the case of L=320 nm�
; 
 is the DW width: �a� The
average x component of the magnetization shows dynamics that gives rise to telegraph noise. The DW moves in a thin long strip due to
random thermal excitations. �b� Spectral densities in the x, y and z components of the magnetization in the elongated strip �arbitrary units�.
Substantial low-frequency telegraph-type noise is apparent in the x component. The amplitudes of the y and z peaks have been magnified 100
times. �c�, �d� Magnetization distribution in the xy plane at two different times �c� and �d� that correspond to states with positive and negative
average Mx, respectively.
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My = r�Hy − 
p

M
Mz� , �14�

Mz = r�− 4�Mz + 
p

M
My� �15�

with the constraint Mx
2+My

2+Mz
2=Ms

2 and r is a real number
to be determined. These algebraic equations usually have up
to four solutions and hence a stability analysis is needed to
determine the stable solutions. This will be part of the PSD
calculation of the x component of the magnetization. Once,
we have found the static solution�s� M0, we make a linear
expansion around it, M=M0+m�t�, where the perturbation is
assumed to have the form m�t�=m exp�−i�t�. The noise is
calculated by calculating the susceptibility or the linear re-
sponse of the magnetization due to an external small ac field

h�t�. This argument neglects the fact that establishing a cur-
rent across the layers is a nonequilibrium process and that a
fluctuation-dissipation argument such as the one used below
is not valid in general. However, we have shown in Ref. 20
that for a system in quasiequilibrium, deviations from the
equilibrium fluctuation dissipation relation are significant
only for frequencies far from the FMR frequency of the sys-
tem. We assume in the following that the noise in our model
depends only on the equilibrium state of the magnetization
and hence only the noise around the FMR peak is well de-
scribed by the method adopted here.

To solve for the small perturbations from equilibrium, we
need to solve the following system of equations:

�i�I + A� · m = d , �16�

where the coefficients of the matrix A are determined from
the equations of motion for the magnetization,

FIG. 9. Schematic illustration of �a� magnetic charge distribution and contributions to DW potential due to �b� corresponding magneto-
static energy �c� exchange energy and �d� total potential for DW motion along the easy axis. The DW, with width 
w, is shown to acquire
negative charges due to � ·M distributed around DW center and positive charges at the edges. The dashed line is used for the case of
constrained DW �
w�L� and contrasted with the case of unconstrained DW �solid lines� with 
w�L.
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A11 =
��

Ms
�− HyM0,y + 4�M0,z

2 � ,

A12 =
��

Ms
�2HeM0,y − HyM0,x� +

�

Ms
�− 2pM0,y + 4�MsM0,z� ,

A13 =
2��

Ms
�HeM0,z + 4�M0,xM0,z�

+
�

Ms
�− 2pM0,z + 4�MsM0,y + HyMs� ,

d1 = −
��

Ms
�M0,y

2 + M0,z
2 � . �17�

The remaining coefficients can be determined in a similar
way.

The coefficients in front of the x component of the ac field
h�t� are grouped in the vector d. The stable solutions will be
those for which the imaginary part of � is negative or zero,
det�i�+A�=0. In the absence of the spin torque, the frequen-
cies are real in a stable system. The imaginary frequencies
that appear are a signature that the spin torque can act as a
�damping� force. The noise spectrum is found by solving for
m in Eq. �16�. In the experiment only the noise in x compo-
nent, Cxx���=dt�Mx�t�Mx�0��ei�t, along the pinned magne-
tization is of interest. It is found from the fluctuation-
dissipation relation at inverse temperature �

Cxx��� =
1

�
Coth���

2
�Im

det�d1 A12 A13

d2 i� + A22 A23

d3 A32 i� + A33
�

det�i� + A�
.

�18�

These steps are carried out for all the static solutions that are
found for each bias field He in the presence of the spin
torque.

The magnetization of the pinned layer is taken in the −x
direction �as in the experiment� and the current is positive
when it flows from the pinned to the free layer. In this case
we expect to see more noise for negative easy axis fields and
less noise for positive easy axis fields. The 1/ f -type noise is
observed when the field along the easy axis is small and
negative. Since this equilibrium analysis cannot show actual
switching between two states as in the simulations31 and the
experiment, we may be able to deduce the switching indi-
rectly since depending on the value of the He field, we may
end up with more than one possible solution to the static
equations. For large negative easy axis fields �Fig. 11�, we
see the usual shape of FMR curves. The PSD curves in this
section only are normalized differently from those in other
sections of the paper. The damping parameter in this calcu-
lation is taken �=0.005, which is appropriate for a permalloy
even though we expect a higher value due to spin accumu-
lation at the interfaces between a normal conductor and a
ferromagnet.20

In Fig. 12, we plot the noise for He=100 Oe and He
=−100 Oe. Clearly for the case with the positive field, the
noise is completely suppressed compared to the case with
negative easy axis biasing. This is consistent with the experi-
ment. Therefore the state with positive biasing is equivalent
to a state with large effective damping. This large damping is
coming from the spin momentum transfer. If we turn off the
current, we get back the usual FMR �bright� spectrum �see
Fig. 13� in this case too. This asymmetry between positive
and negative biasing fields close to the perpendicular direc-
tion of the free layer will be important later when we have a
DW in the presence of spin torques.

FIG. 10. Spectral densities �arbitrary units� of the magnetization
in the free layer in the absence of current.

FIG. 11. The FMR curve for the free layer with uniform mag-
netization and for negative bias fields �arbitrary units�.
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Therefore the single spin model captures the “bright” and
“dark” regions of the spectral density for frequencies around
the FMR frequency �see Fig. 2 in Ref. 17�. Figure 14�a�
shows the strength of the power as a function of the negative
bias field. Clearly for large biasing we have less noise as
expected. Now, if we plot the same curve for positive fields,
Fig. 14�b�, we find a very interesting result. For large posi-
tive fields, we have the usual dark regions that reflect high
damping states. As we lower the field, we find that the sys-
tem now can sustain two states, one bright and one dark. The
dark state is actually less stable than the bright one in this
case. The x component of the magnetization in the dark state

is negative, i.e., opposite to the direction of the easy axis
field, while the bright one is along the field He. This is most
probably the origin of the 1/ f-type noise in the system. The
1/ f region in the experiment appears on the negative side of
the easy axis field. Here it appears on the positive side.17 The
reason is that the zero point of the axis is not well known in
the experiment. The experiment estimates that the magneti-
zation is perpendicular to the pinned layer at He=34 Oe
which should correspond to −20 Oe in our case. Therefore
there is a shift of about 50 Oe in the reference point which is
approximately the field when two states become possible as a
solution to our equations. The important point we need to
remember that the spin system behaves differently for posi-
tive and negative bias when there is a spin torque. This is
mainly due to the fact that in one case the spin torque is

FIG. 12. Comparison of the PSD �arbitrary units� for positive
and negative biasing fields He. For He=100 Oe the peak �which is
multiplied by 500� has been completely suppressed and there is a
shift to the left, a signature of an overdamped state.

FIG. 13. Effect of the spin torque on the PSD �arbitrary units�
curve for He=100 Oe. The spin torque is clearly acting as a damp-
ing force for positive current. For I=0, the PSD curve has the
familiar FMR shape.

FIG. 14. PSD �arbitrary units� for both negative and positive
biasing: �a� PSD �FMR� for negative easy axis biasing fields. �b�
PSD curves for positive bias fields. For fields approximately be-
tween 50 and 20 Oe, there are two possible states for the system;
one is overdamped �dark� and the other is regular �light�. Outside
this range of fields, only dark or light states exist.
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acting as a regular field, while in the other, it is acting as an
extra source of damping.

B. Trilayer CPP structure with a trapped DW

Next, we turn to the study of the DW case. First, we show
how a DW in CPP-SV can be manipulated by low currents
through the spin torque. The interaction of the DW with an
external field will be also shown.

1. Effect of spin polarized current

First, we consider an alternative CPP structure. As will be
shown below this modification of the traditional CPP struc-
ture can be done for at least three reasons. One reason is to
create structures where the DW can be manipulated with spin
momentum in a most efficient way. Second, we would like to
be able to detect domain-wall motion with GMR effect. We
also find that the suggested CPP structure modifications may
have some advantages in terms of reducing effects of mag-
netization instabilities due to the spin momentum transfer. As
has been shown, for example in Ref. 31, even in CPP devices
with nominally uniform magnetization, the spin torque can
give rise to magnetization instabilities. Thus the latter reason
should be kept in mind as an important one.

In the following we consider a CPP structure which has
three magnetic layers �Fig. 15� where the DW layer is sand-
wiched between two pinned magnetic layers with one of
them polarized along the direction of the current and the
other polarized along the easy axis of the middle DW layer.
In the following simulations, the bottom layer is taken to be
100�20�9 nm3, the middle layer is 100�20�2 nm3, and
the reference layer has the dimensions 100�20�3 nm3. In
this geometry, the two outer magnetic layers lead to a two
different spin torques, �=�B+�T, acting on the middle mag-
netic layer,

� = − pI�m � �m � mB� − m � �m � mT�	 , �19�

where mB �mT� is the magnetization direction of the bottom
�top� layer. The damping parameter in this section has been
increased to �=0.08 to better account for spin accumula-
tion.20

First, we investigate if the DW can be moved along the
easy x axis with moderate currents. This will enable a spin
torque �B=−m�hsp

B with an effective field along the x axis
and proportional to the y component of the magnetization in
the DW layer that is largest at the center, hsp

B = pI�my ,
−mx ,0�. Since My �Ms around x=0, this gives us the opti-
mal field needed to push the DW off the center and this
appears to be a primary reason why only very low currents
are needed to have an appreciable motion of the DW in con-
sidered CPP geometry. Figure 16 shows the effect of the spin
torque on the DW in the three-layer geometry as a function
of the current. We find that the spin torque from the top layer
has a relatively small effect on the dynamics of the DW since
its effective field is hsp

T = pI�0,−mz ,my�. Given that the z
component of the magnetization is practically zero for the
currents in the case shown in Fig. 16, the effect of hsp

T on the
magnetization is negligible. We find that indeed in this ge-
ometry, the spin torque can be used to control the motion of
the DW with very small current densities. This is primarily
due to the fact that the constrained DW has a nonzero y
component of magnetization in the DW region.

The displacement of the DW by the spin torque �we make
sure that the Oersted field is not the origin of this motion� is
easily understood from the equation of motion without the
demagnetization field. Taking account of only the spin
torque, the exchange, and the anisotropy, the static equations
for the magnetization are

2A

Ms
2

d2mx

dx2 −
2K

Ms
2mx + pImy = cmx, �20�

2A

Ms
2

d2my

dx2 − pI�mx − mz� = cmy , �21�

2A

Ms
2

d2mz

dx2 + pImy = cmz, �22�

where c�x� is a real function and m2=1. Clearly, in this case
the x component is coupled to the y component which acts as
a source term for the x component. Neglecting anisotropy
and integrating the equation for the mx component around
zero, we find that the difference in the slope of mx�x� for x
=0 and small x=� is given by

�dmx

dx
�

x=0
− �dmx

dx
�

x=�

= pI�my . �23�

For positive �, i.e., a shift to the right, the slope at x=0 is
smaller than that at x=� which is approximately equal to that
at x=0 in the absence of current. Therefore I should be nega-
tive for positive my which is approximately equal to the one
around x=0. This is confirmed by the numerical integration
of the LL equation in Fig. 16. The spin torque can therefore

FIG. 15. �Color online� Schematic geometry layout for the three
magnetic layers CPP structure. The first layer is now polarized
along the current direction. The middle has the DW. The third layer
has been introduced to enable the GMR sensing of the DW motion.
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be used to move the DW in a controlled fashion with low
currents. In addition we find that a three-layer structure may
actually have lower frequency noise in the presence of spin
torque than the structure investigated in Ref. 31. This poten-
tial advantage of our proposed structure is, however, realized
only if the middle layer geometrical dimensions are compa-
rable with the DW width, Fig. 17. In this case the PSD in the
x component does not show any substantial low-frequency
noise. For the parameters used here, we find that the DW
width is approximately 40 nm. The dimension of the film is
100 nm. Therefore the DW is barely constrained and hence
the reason behind the sensitivity of the DW to external forces
due to fields or currents.

At higher currents, we are no longer in a linear regime.
The numerical integration of the LLG equation shows that
the z component of magnetization becomes more significant

as we increase the current and this contributes to the twist of
the DW and no stationary solutions are possible in this case.
Figure 18 shows the time evolution of the magnetization for
current densities of the order of 1.0�107 A/cm2.

The magnetization dynamics is a regular periodic rotation.
In this case the spin torque can be used to selectively excite
higher modes of the magnetization as compared to those
studied in Sec. II.

2. Effect of external magnetic field on a DW

Finally in this section, we investigate the effect of an ex-
ternal magnetic field. We add a Zeeman term to the total
energy and study the displacement of the DW due to an
external field along the easy axis.

The external field along the easy axis is applied to the
middle layer in the presence of a small current to measure
resistance changes across the CPP structure and so that no
spin torque effects are appreciable on the DW. Interestingly
the three-layer structure with DW does not require biasing
which is needed for standard CPP structures to achieve linear
dependence of resistance on the external field. The calculated
transfer curve of resistance R versus field H is shown in Fig.
19. As can be seen, this dependence is centered around zero,
has a large slope dR /dH, and shows small hysteresis. More-
over, the system appears to be more stable to perturbations
by the spin torque and no 1/ f-type behavior is observed in
this case. Our device is therefore well suited to function as a
magnetic sensor. However, the proposed structure lacks an
important property which is needed in memory applications
and that is nonvolatility. As we remove the voltage across the
CPP-SV, the DW relaxes back to its equilibrium position and
hence any state stored in the DW position is lost. Neverthe-
less, our proposed CPP-SV structure can be incorporated as
part of a logic device. Recently, properly redesigned CPP
structures have been proposed for reprogammable logic

FIG. 16. Magnetization profiles of the in-plane components as a
function of the sign of the current in the CPP device, in �a�, depend-
ing on the sign of the current the curve shifts to the left or to the
right. �b� The shape of the x and y components of the magnetization
in the DW is a slight distortion from that without currents.

FIG. 17. PSD �arbitrary units� of the different components of the
magnetization in the presence of current I=0.001 mA for a con-
strained DW.
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elements.32,33 This latter application does not require non-
volatility and hence our device can be utilized in a similar
way as in Refs. 32 and 33. Our device has an advantage
compared to that proposed in Ref. 32 and that is only much
smaller currents are needed in our case.

V. SUMMARY AND DISCUSSION

In summary, we have presented a study of magnetization
dynamics for CPP geometry which includes a constrained
DW layer. We have identified a Doring-type mode and a
different breathing mode. It is shown that the lowest fre-
quency modes of the DW dynamics can be understood in
terms of the parity of the inhomogeneous magnetization dis-
tribution due to DW state. We have investigated in detail
how the constrained DW dynamics is affected by the spin
polarized current and thermal fluctuations and compared it
with the traditional single domain free layer structures. In
particular, we found that the currents needed to measure any

appreciable motion of the DW are at least two orders of
magnitude less than usual values of currents needed to
switch the single domain magnetization. This difference is
attributed to the appearance of a significant magnetization
component of the constrained DW that is perpendicular to
the pinned layer magnetization.

We also find that thermally activated motion of the con-
stricted DW has lower weight in the lower frequency region
than that of the unconstrained DW. The latter shows well-
known telegraph-type noise characteristics. This difference
can be understood using the notion of the charged DW intro-
duced by Néel30 and competition of the magnetostatic and
size dependent exchange interaction contributions to the DW
potential for motion along the easy axis �see Fig. 9�. The
three-magnetic-layer CPP structure was introduced so that
the spin torque effect on the DW layer is maximized. This
CPP geometry has been investigated and found to have a
number of interesting properties such as �i� DWs can be eas-
ily controlled by an external field or a polarized current with

FIG. 18. The time evolution of the different components of the average magnetization of the DW for I=0.1 mA �a�, �c� and I=−0.1
mA �b�, �d�. No stationary solutions exist at high currents.
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relatively small current densities; �ii� linear dependence of
resistance on the external field and current; �iii� improved
magnetization stability characteristics. Experimental realiza-
tion of the device proposed here requires finding ways to
constrain the DW within the middle “free” layer. The pinning
at the edges can be realized by creating permanent magnets
with different coercivity and/or with antiferromagnetic
�AFM� coupling. The AFM coupling at the edges needs an-
tiferromagnets with different Néel temperatures34 so that a
properly designed field-cooling procedure could lead to the
pinning in opposite directions at the edges of the magnetic

stripe. Other alternatives such as special shaping and padding
also have been discussed in the literature in the context of
stability of the DW in magnetic nanoelements.35
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FIG. 19. �a� Resistance versus external field applied along the easy x axis for the 100�20 nm2 film. The reference layer is pinned in the
+x direction. The resistance is normalized in such a way that for R=1 the two layers are parallel and for R=1.1 they are antiparallel. �b�–�d�
Profiles of the magnetization in the xy plane for zero �b� and positive fields �c�, �d� respectively. The scale for the x and y axis are different.
For a given x, five points are plotted along the y axis. The DW is fairly uniform along the y axis.
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