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The magnetic hyperfine field and electric-field gradient at isolated lanthanide impurities in an Fe host lattice
are calculated from first principles, allowing a qualitative and quantitative understanding of an experimental
data set collected over the past 40 years. It is demonstrated that the common local density approximation leads
to quantitatively and qualitatively wrong results, while the LDA+U method performs much better. In order to
avoid pitfalls inherent to the LDA+U method, a combination of free ion calculations and “constrained density
matrix” calculations is proposed and tested. Quantitative results for the exchange field and crystal field param-
eters are obtained �Bexc= +420 T, B0

4=−1000 cm−1, B0
6=−800 cm−1�, showing in particular how crystal field

effects influence the hyperfine fields for the lightest and heaviest lanthanides. The hyperfine fields are shown to
be dominated by the 4f orbital contribution, with small corrections due to the spin dipolar and Fermi contact
fields. The latter is found to be constant for all lanthanides, a feature that is understood by a modified version
of the well-known core polarization mechanism for 3d hyperfine fields. Spin dipolar fields and electric-field
gradients have apart from a 4f contribution a surprisingly strong contribution due to the completely filled
lanthanide 5p orbitals—the mechanism behind this is explained. The lanthanide 4f spin moment is found to
couple antiparallel to the magnetization of the Fe lattice, in agreement with the model of Campbell and Brooks.
There is strong evidence for a delocalization-localization transition that is shifted from Ce to at least Pr and
maybe further up to Sm. This shift is interpreted in terms of the effective pressure felt by lanthanides in Fe.
Implications for resolving ambiguities in the determination of delocalization in pure lanthanide metals under
pressure are discussed. For the localized lanthanides, Yb is shown to be divalent in this host lattice, while all
others are trivalent �including Eu�. The temperature dependence of the hyperfine fields is discussed as well.
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I. INTRODUCTION

A prototype problem in the field of nuclear condensed
matter physics is to determine and understand the magnetic
hyperfine field �HFF� at any of the elements of the periodic
table, incorporated as a substitutional impurity in a simple
ferromagnetic host such as bcc Fe. Understanding hyperfine
fields forms a critical test for our understanding of condensed
matter. Moreover, they provide a convenient tool for nuclear
physicists to determine nuclear magnetic moments: two fea-
tures that explain the decades of experimental1 and
theoretical2,3 efforts that have been devoted to this problem.
Today, the hyperfine fields of all elements as substitutional
impurities in bcc Fe are well understood up to about
Z=55.4–8 For the heavier 5d impurities, sizable deviations
between theory and experiment remain.9 The hyperfine fields
of very light impurities at interstitial sites in Fe have been
calculated as well.10,11 Lanthanide impurities in Fe are much
less understood, both experimentally and theoretically. As far
as experiment is concerned, it is hard to obtain reliable val-
ues for the lanthanide hyperfine fields �and also for their
electric-field gradients; see below�. This problem is illus-
trated by the rather desperate conclusion of Niesen in a still
useful review12 back in 1976: “(¼) if we cannot perform
experiments that yield unambiguous results, we should better
do no experiments at all.” On the theoretical side, no ab
initio studies have been performed yet for lanthanide impu-
rities in Fe �an approach using a model Hamiltonian is de-
veloped in Ref. 13�. The reason for this lies in a known
failure of the widely used local density approximation
�LDA� within density functional theory �DFT�: the LDA is

not suitable to describe strong electron correlations.14–17 As a
result, the strongly correlated and mainly localized 4f states
in lanthanides are rendered itinerant by the LDA. It can
therefore be anticipated that for a lanthanide impurity in bcc
Fe, the LDA is incapable of describing correctly the interac-
tion between these localized and strongly correlated 4f elec-
trons and the itinerant 3d states of the host material. This
could be overcome by using the open-core formalism, an
approach that has been used in the past with some success
for lanthanides.14,15,17 Although this treatment allows varia-
tion of the radial part of the wave function, the f electrons
behave qualitatively as in free atoms, which is not entirely
correct. An efficient and popular way to improve on the LDA
failure without resorting to too atomiclike 4f behavior is to
use the LDA+U method.18–22 In LDA+U, the correlation
absent in the LDA is reintroduced by an on-site Coulomb
repulsion parameter U, to which an a priori value has to be
assigned. The LDA+U method has been used in the recent
past with considerable success �recent examples are Refs. 21
and 23–26 and many others�, but it is not yet clear where the
boundaries of its range of applicability are. In this work, we
will examine how well LDA+U performs on a delicate
quantity as the HFF.

An extra feature for lanthanide impurities in Fe that is
absent for lighter impurities is the presence of a large
electric-field gradient �EFG� at the lanthanide nucleus. At a
site with cubic point symmetry—such as a substitutional site
in bcc Fe—the EFG tensor must be necessarily zero. But the
strong spin-orbit coupling for these heavy atoms lowers the
symmetry to tetragonal, and as a result a large atomiclike
EFG develops. The same happens for 5d impurities in
Fe,27–29 but there the spin-orbit coupling is weaker and the
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EFG is two orders of magnitude smaller than the values
found in lanthanides. We have calculated and analyzed the
EFG for lanthanides in iron and compare it with the sparse
experimental data.

The goals of this work can be summarized as follows. On
the physical side, we want to obtain better quantitative and
qualitative insight into the magnetic hyperfine fields and
electric-field gradients of lanthanide impurities in Fe. This
should allow us to assess better the reliability of the existing
experiments and to derive the underlying physical mecha-
nism. On the technical side, we want to examine whether the
range of applicability of the LDA+U method can be ex-
tended to problems as delicate and sensitive as magnetic and
electric hyperfine interactions of heavy impurities in a tran-
sition metal host. It will be shown that in the course of this
analysis unexpected new results and questions show up, such
as the influence of the lanthanide 5p electrons �Secs. IV B
and V B�, the position of the delocalization-localization tran-
sition in this system �Secs. IV B and VI B�, and the role of
the crystal field �Secs. IV B 4 and V A�.

II. COMPUTATIONAL DETAILS

All our calculations were performed within density func-
tional theory,30–32 using the augmented plane waves+local
orbitals �APW+lo� method32–34 as implemented in the
WIEN2k package35 to solve the scalar-relativistic Kohn-Sham
equations. In the APW+lo method, the wave functions are
expanded in spherical harmonics inside nonoverlapping
atomic spheres of radius RMT and in plane waves in the re-
maining space of the unit cell �=the interstitial region�. For
the Fe atoms a RMT value of 2.20 a.u. was chosen, while for
the lanthanide impurity we used RMT=2.45 a.u. The maxi-
mum � for the expansion of the wave function in spherical
harmonics inside the spheres was taken to be �max=10. The
plane wave expansion of the wave function in the interstitial
region was made up to Kmax=7.5/RMT

min=3.41 a.u.−1, and the
charge density was Fourier expanded up to Gmax=16�Ry.

The lattice constant of Fe was fixed at the experimental
value of 2.87 Å. In order to reproduce the situation of an
isolated impurity in bulk Fe, we used the supercell approach
with a 2�2�2 supercell where one iron atom was replaced
by a lanthanide atom. The neighboring Fe atoms are dis-

placed by the presence of this impurity, as was documented
before for lighter impurities in Fe.3,7,8 We took this effect
into account in an average way by relaxing the nearest neigh-
bors for Eu as an impurity �which is in the middle of the
lanthanide series� and kept the same relaxation fixed for all
other lanthanides. The Eu-Fe distance was 2.60 Å which is
an increase of 0.11 Å with respect to the Fe-Fe distance and
which is almost identical to the distance between 5p impuri-
ties and their Fe neighbors.8 It was tested for another lan-
thanide �Er� that there was only a marginal difference of less
than 1 T between the HFF obtained with the Eu-Fe distance
and the correct Er-Fe distance �2.58 Å�. A test for an ex-
tended supercell of 32 atoms was also performed. We relaxed
the first four nearest neighbors. The Eu-Fe distance hardly
changed �2.63 Å� and the Fermi contribution to the hyperfine
field changed with 5 T. For the sampling of the Brillouin
zone �BZ� of the 2�2�2 supercell we took 75 special k
points in the irreducible part of the BZ, which corresponds to
a 10�10�10 mesh.

As exchange-correlation functional, the local density
approximation36 was used. For the LDA+U method, the
”around the mean field” �AMF� scheme of Czyżyk and
Sawatzky19 was used. A few cases were duplicated with the
fully localized limit20 �FLL� version of LDA+U and this
turned out not to change qualitatively the results �for in-
stance, the order of the five cases in Table I was the same�.
The choice of the U and J parameters is discussed in detail in
Sec. IV B. In the LDA+U method the total energy is a func-
tional not only of the density, but also of the density matri-
ces, defined as
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1

2
��ml,

1

2
���� �up-up� ,

���a†�ml�,−
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��ml,−

1
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for spin-up, spin-down, and up-down cross terms.
For some of our calculations the density matrices will be

constrained to an a priori value; in others they will freely

TABLE I. Diagonal elements of the 7�7 4f-up density matrix for Tm in Fe �ferrimagnetic case�, together with the orbital �4f�, dipolar
�4f +5p�, and Fermi contributions to the total HFF �tesla�. These diagonal elements give the occupation of each m orbital �between 0 and 1�.
The LDA result is compared with several LDA+U calculations, all with U=0.6 Ry. The LDA+U calculations differ only in the initial
distribution of the f electrons over the different orbitals. In the second column, the total energy �in mRy/atom� of the LDA+U calculations
is given, relative to case 2, which has the lowest energy �see text for discussion�.

�E m=−3 m=−2 m=−1 m=0 m=1 m=2 m=3 Borb Bdip BFermi Btot

LDA 0.98 0.95 0.96 0.71 0.86 0.52 0.54 −326 14 −41 −353

Case 1 1.7 1.00 0.99 0.99 0.99 0.99 0.01 0.01 −718 63 −41 −696

Case 2 0.0 0.99 0.99 0.99 0.99 0.01 0.99 0.01 −571 27 −41 −585

Case 3 1.6 0.99 0.99 0.99 0.02 0.99 0.99 0.01 −425 16 −42 −451

Case 4 3.2 0.99 0.99 0.02 0.99 0.99 0.99 0.01 −275 28 −42 −289

Case 5 8.9 1.00 0.04 0.99 0.99 0.99 0.99 0.01 −126 63 −42 −105
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evolve throughout the self consistent cycle. Sometimes the
effect of the cross term will be neglected. Details will be
given in the appropriate sections. The LDA+U calculations
were performed using the orbital package of WIEN2k. In this
implementation a few approximations are made. The first
assumption is that relativistic mass enhancement can be ne-
glected �for orbital properties only—in the regular self-
consistency cycle scalar-relativistic effects are included�.
This approximation is harmless for the 3d atoms, but it may
have an influence on lanthanides and actinides.37 Second, it
is assumed that the nuclear spin is parallel with the electron
spin and with the electron orbital moment. This might be
dangerous for atoms with large orbital moments �as some
lanthanides�, where the orbital moment could be strongly
pinned to a crystal direction. Another assumption is that con-
tributions from the interstitial region and contributions non-
diagonal in l can be neglected. Finally it is assumed that

	Ô�r�Ô�l�,s��
= 	Ô�r�
	Ô�l�,s��
 �where Ô�r , l�,s�� is either the
orbital moment, orbital HFF, or dipolar HFF operator�. Free
atoms were simulated by a supercell containing only one
lanthanide and vacuum otherwise, leading to a separation of
9.4 Å between two “neighboring” lanthanides. For free ion
calculations, this cell was charged. All the other parameters
were chosen exactly the same as in the calculations for lan-
thanides in Fe.

Relativistic local orbitals �RLO’s� for the lanthanide 5p
states were added to the basis set, because it is known that
for actinides this allows one to reduce the basis set size
needed for the second variational step38 �=lower Ecut

SO�. Limi-
tations in the implementation prevent one from obtaining
correct EFG’s and dipolar HFF’s when RLO’s are used.
Therefore, whenever such information was needed, the cal-
culations were repeated without RLO’s. This never had a
large influence on the obtained values, however.

The interaction between a lanthanide ion and its solid-
state environment can be phe-nomenologically modelled by
the following single-ion Hamiltonian:14

Ĥ = �L̂ · Ŝ + 2�BB̂exc · Ŝ + 
k,q

Bq
kCq

k . �1�

The three interactions that contribute to the total energy of
such a system are the spin-orbit, exchange, and crystal field
interactions. In the above equation � is the spin-orbit con-
stant, Bexc is the exchange field that acts on the 4f spin
�Sec. IV B 1�, and the sum represents the crystal po-
tential �Sec. IV B 4�. Spin-orbit coupling is the dominant in-
teraction, while the crystal field interaction is the weakest14

�Eso�Eexc�Ecf�, except for the edges of the lanthanide se-
ries where the exchange and crystal field interactions have
the same order of magnitude. Spin-orbit �SO� coupling was
taken into account in all the calculations by a second-
variational-step scheme,39 using a cutoff energy Ecut

SO

=3.0 Ry. We will show below how we determined the values
of the exchange field �Sec. IV B 1� and the crystal field pa-
rameters �Sec. IV B 4�, such that all parameters in Eq. �1�
will be quantitatively known.

III. EXPERIMENTAL DATA SET

A. Magnetic hyperfine fields

Let us first have a look at the experimental data set for the
HFF �Fig. 1�a��. Only in four cases are the magnitude of the
HFF and its sign known with high reliability �the sign of the
HFF indicates whether the field is parallel ��� or antiparallel
��� with respect to the magnetization of the Fe host lattice�.
These cases are La �−47�1� T�,40 Ce �−41�2� T�,41 and Lu
�−73.12�36� T�,42 for which nuclear magnetic resonance
on oriented nuclei �NMR/ON� has been performed, and Yb
�−125�8� T�,43 on which time-dependent perturbed angular
correlation spectroscopy �TDPAC� has been applied. The lat-
ter technique has also been used for Gd,44 albeit on a recoil-
implanted sample which is not necessarily clean. The value
of −26�8� T obtained in this way agrees well with an in
principle reliable Mössbauer measurement of −37 T, which
is unfortunately not very well documented.45 Three time-
integrated perturbed angular correlation �IPAC� measure-
ments are available for Gd as well—IPAC is a method that is
rather unreliable and can merely be used to determine the
sign and an order of magnitude. They yield −20�5� T,46

−18�9� T,47 and −7 T.48 A HFF of −30�10� T can therefore
be assigned to Gd in Fe in a reliable way. In four other cases
the magnitude of the HFF but not its sign has been measured

FIG. 1. �Color online� Comparison between experiment and sev-
eral types of calculations for the magnetic hyperfine field of lan-
thanides in Fe. Diamonds: most probable experimental data points
�this is the solid line from �a��. Gray �green� dotted line: LDA
results for the ferrimagnetic orientation �Campbell-Brooks orienta-
tion� and for the ferromagnetic orientation when this one has the
lowest energy. Solid lines and dashed lines: LDA+U calculations
for trivalent and divalent lanthanides �see text�. Inset picture: ex-
perimental data set for the magnetic hyperfine fields of lanthanides
in Fe. If the sign of the HFF is not measured, the data point is
plotted at both positive and negative values. A distinction is made
�see text� between highly reliable data for which the sign is mea-
sured �diamond�, highly reliable data without sign measurement
�square�, less reliable data without sign �triangle�, and data that are
rather unreliable for the magnitude of the HFF but reliable for the
sign �circle�. For references and values, see text. The line connects
the most likely values for all lanthanides. If multiple measurements
with the same reliability were available, only one of them is given.
More data can be found in the compilation of Rao �Ref. 1�.
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with an accurate method as Mössbauer spectroscopy �MS�:
Eu �148.2�9� T�,49,50 Dy �610�7� T�,51 Er �768�13� T�,52 and
Tm �671 T�.12 For Pr53 and Tb,54 the magnitude but not the
sign has been measured with low-temperature nuclear orien-
tation �LTNO�. This nonresonant technique provides data
that are less accurate than the previous ones, although they
still are reasonably reliable. Finally, in the case of Ce,55

Nd,46 Sm,56 Eu,46 Gd,47 Dy,47 Er,46 and Tm57 IPAC experi-
ments have been reported, from which only the sign infor-
mation can be reasonably trusted �see, e.g., the agreement
with other experiments in Fig. 1�a� and Ref. 1�. Due to the
latter sign information, the HFF of the light lanthanides is
guessed to be positive, while for the heavy lanthanides it is
negative. The line in Fig. 1�a� summarizes the most likely
interpretation of this data set.

Figure 1�a� can be understood in terms of Hund’s rules
and the model of Campbell and Brooks. Based on heuristic
arguments �Ref. 58� and first-principles calculations �Ref.
59�, Campbell and Brooks showed that the interatomic ex-
change interaction between a transition metal 3d spin mo-
ment and a lanthanide 5d spin moment is ferrimagnetic �Fig.
2�. The lanthanide 4f moment is localized at the lanthanide
site and cannot directly interact with its transition metal
neighbors, but it has a ferromagnetic intra-atomic exchange
interaction with the lanthanide 5d moment. The result is a net
ferrimagnetic coupling between the lanthanide 4f moment
and the transition metal 3d moment—except for Lu and di-
valent Yb, where the 4f moment is zero �Fig. 2�. According
to Hund’s third rule, the lanthanide orbital moment is anti-
parallel to the lanthanide spin moment for the seven lightest
lanthanides and parallel to it for the seven heaviest lan-
thanides. The dominant contribution to the HFF is the orbital
HFF �see Sec. IV A and Fig. 3�, which is parallel to the
orbital moment. Therefore, one expects the total HFF to be
parallel to the Fe magnetization �and hence positive� for the
light lanthanides and antiparallel �negative� for the heavy
ones, as is seen indeed in Fig. 1�a�.

B. Electric field gradient

Only few experimental data on the main component Vzz of
the electric-field gradient tensor for lanthanides in Fe are
available �Fig. 4�. For Eu, Dy, Er, and Tm, Mössbauer
measurements12,50 were done. Some attention is needed for
Eu, which is reported to have Vzz=0 in Ref. 12, based on

151Eu Mössbauer spectroscopy from Ref. 49. Niesen and
Ofer, however, have later shown50 by 153Eu Mössbauer spec-
troscopy that Vzz=−11.11021 V/m2. For Ce in Fe the quad-
rupole coupling constant �which contains the product be-
tween Vzz and the quadrupole moment Q� has been
determined by 141Ce NMR �Ref. 60� to be almost zero. The
quadrupole moment for 141Ce is not known, but assuming a

FIG. 2. Schematic summary of the model of Campbell and
Brooks, illustrating the ferromagnetic intraatomic 4f-5d coupling
and the ferrimagnetic interatomic coupling between Fe 3d and Ln
5d moments �see text�.

FIG. 3. �Color online� Thin gray �green� line: the LDA ferro-
magnetic solution �FoM�. Thick gray �green� line: the LDA ferri-
magnetic solution �FiM�. Black �red� lines: the contributions to the
HFF obtained with the CDM method without considering the crys-
tal field interaction �dashed line� and with crystal field effects taken
into account �solid line�. Mind the scale, which is 10 times larger in
�a� compared to �b� and �c�. �a� Orbital contribution to the HFF at
the lanthanide site due to 4f electrons. �b� Dipolar contribution to
the HFF. �c� Fermi contribution. The CF has no effect on the Fermi
contribution; therefore, the two black �red� lines coincide. The dot-
ted line represents the Fermi HFF for the free lanthanide ions. The
Fermi HFF obtained with CDM is indistinguishable from the one
obtained with LDA. The total HFF is the sum of �a�, �b�, and �c�,
and is almost undistinguishable from �a�.
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typical value of 1 b leads to a Vzz that is practically zero
�gray symbol in Fig. 4�. The zero Vzz for Yb is not explicitly
mentioned in the literature, but can be inferred from Fig. 1 in
Ref. 43, which shows a purely magnetic interaction.

IV. CALCULATIONS

A. LDA calculations

As a first step, we calculate the magnetic HFF with the
common LDA. This will provide us with a data set to which
we can later compare the possible improvement by LDA
+U, and it allows us to introduce some peculiarities that will
play a role in all later calculations as well. As is usual with
this type of methods, our calculations involve an iterative
procedure �“self-consistent field” procedure� that yields in
the end a possible state of the calculated system, which is not
necessarily the desired ground state: in the space of possible
solutions, this self-consistent field procedure finds a local
minimum, but not necessarily the global minimum. The local
minimum that is obtained depends to some degree on the
starting configuration that was initially chosen. This behavior
is prominently present for lanthanides in Fe. If the spin mo-
ment of the lanthanide initially is put parallel to the Fe spin
moment, then this orientation is maintained throughout the
iterative procedure �except for La, Ce, and Pr, where the
moment always spontaneously turns to an antiparallel orien-
tation�. We call this from now on the ferromagnetic solution.
With an initially antiparallel configuration, an antiparallel �or
ferrimagnetic� solution is obtained. If the lanthanide was
given initially no spin moment, then a solution with a spin
moment that is much reduced compared to the two preceding
solutions was found. In order to decide which of those is the
ground state, one has to look at the total energy of each
solution. The total energy of the case with reduced moment
was much higher than the others, and we will not consider it
further. The energy differences between the other two solu-
tions are given in Fig. 5�a�. For all lanthanides up to Tb, the

ferrimagnetic solution has the lower energy. Starting with
Dy, the ferromagnetic solution becomes the ground state.

In Fig. 3, the different contributions to the magnetic HFF
are given for both types of solutions. A HFF is a magnetic
field at the position of the nucleus, and it is built mainly from
three contributions: the spin dipolar field, the Fermi contact
field, and the orbital field. The spin dipolar field is generated
by the spin moments of the electrons surrounding the
nucleus. For cubic point symmetry, this contribution van-
ishes. The Fermi contact field61 is of dipolar nature as well,
but is due to the penetration of s electrons into the nucleus. It
does not vanish for cubic symmetry, and it is the dominant
�and almost only� contribution for impurities up to Z=55 in
Fe. The orbital field stems from the electric charge of the
electron that orbits the nucleus, and it vanishes for cubic
symmetry. As Fig. 3 shows, the dipolar field does not exceed
a few tesla, while the Fermi contact field lies between −20 T
and −40 T �WIEN2k versions prior to January 2006 yield the
wrong sign for the dipolar HFF�. The orbital field is the
dominant contribution and can reach almost ±600 T. At first
sight, one would expect a zero orbital and dipolar field for a
substitutional impurity in Fe, as the point symmetry is cubic.
The reason why this is not the case for lanthanides is the
same one that allows the presence of a large EFG �Sec. I�.
The oscillatory behavior of the orbital moment reflects

FIG. 4. �Color online� Vzz for lanthanides in Fe. Symbols: ex-
perimental data �Refs. 12, 43, 50, and 60� �see text�. The gray
symbol for Ce indicates that this value is a—rather safe—guess �see
text�. Dotted line: LDA results. Solid and dashed lines: LDA+U
values for trivalent and divalent lanthanides �see text�.

FIG. 5. �a� Energy difference between the situations with the
lanthanide 4f spin moment ferromagnetically aligned with the Fe
3d moment and with the 4f moment ferrimagnetically aligned
�EFoM−EFiM�. If this energy difference is positive, the ferrimagnetic
situation has the lowest energy. Energy differences for LDA are
compared with energy differences for LDA+U with progressively
larger U. The LDA result is equivalent to U=0.0 Ry. �b� Exchange
field obtained from the energy differences from �a� as a function of
U �Bexc= �EFoM−EFiM� / ���4f

FoM�+ ��4f
FiM���.
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Hund’s third rule: the orbital moment is antiparallel �parallel�
to the spin moment in the first �second� half of the lanthanide
series. Because the orbital field is parallel to the orbital mo-
ment, it will for the ferrimagnetic solution be positive in the
first half of the series and negative in the second half �and
vice versa for the ferromagnetic solution�.

According to the LDA total energies, we have to accept
the ferrimagnetic solution as the ground state up to Tb and
the ferromagnetic solution starting from Dy. This leads to
positive HFF’s for almost all lanthanides �Fig. 1�b��, which is
in contradiction with the current interpretation of the experi-
mental data set and with the model of Campbell and Brooks.
We will demonstrate in Sec. IV B that this is a new, clear
example of a failure of the LDA. Even if we would select the
ferrimagnetic solution throughout �as the Campbell-Brooks
model suggests�, then still the quantitative agreement with
the experimental HFF’s is rather poor �Fig. 1�b��.

B. LDA+U calculations

1. Exchange field

Using and interpreting LDA+U calculations brings some
complications that are absent for LDA. First, LDA+U
schemes are not fully ab initio: they involve an on-site Cou-
lomb repulsion parameter U and an on-site exchange inter-
action constant J that have to be chosen a priori for every
orbital with strong correlations. In our case we have to
choose one U and one J for the f states of the lanthanide
impurity. In line with the strategy adopted for the relaxation
�Sec. II�, we strive for reasonable overall agreement and do
not focus on agreement for individual cases too much. There-
fore we take the same U and J for all lanthanides.

How do we choose their values? In order to answer this
question we examine the energy difference between the fer-
romagnetic and the ferrimagnetic case for qualitatively the
same type of solution �as we will show soon, there will be
many different types of solution for LDA+U—the criterion
to decide whether there is a qualitative difference between
two solutions or not is provided by the 4f density matrix: in
qualitatively similar cases, the occupation of the 14 m orbit-
als �=the diagonal elements of the two spin-polarized 7�7
density matrices� should be more or less identical�. The re-
sult is shown in Fig. 5, for four different values of U: 0.2,
0.4, 0.6, and 0.7 Ry. The alignment of the Ln 4f moment
with respect to the Fe 3d moment �mediated by the Ln 5d
moment; see Fig. 2� results in an energy which is represented
by the second term of the Hamiltonian from Eq. �1�:

Eexc = 2�BB� exc · S�4f , �2�

where Bexc is the exchange field. Therefore, the energy dif-
ference between the ferromagnetic and ferrimagnetic solu-
tions will be proportional to the 4f spin moment:

�Eexc = 4�BBexcS
4f . �3�

The magnitude of the 4f spin moment increases linearly
from zero �in the case of La� to 7�B for Gd, then decreases to
zero again for Lu. As can be observed in Fig. 5�a�, this pro-
portionality with the 4f spin magnetic moment is obtained

for a value of U=0.7 Ry. We also expect a constant ex-
change field for all lanthanides. This method of determining
the exchange field from the total energy difference between
the ground state and a state with reversed 4f spin moment
was introduced by Liebs et al.62 �for more examples see Ref.
14 and references therein�. In Fig. 5�b� we observe that we
obtain indeed a constant field of 420 T for all the lanthanides
for U=0.7 Ry. Therefore, this is the U we have to use in our
calculations. Looking at other calculations18,63 and
experiments,64,65 U=0.7 Ry is indeed a reasonable choice.
The value of J is usually an order of magnitude smaller, and
it does not affect the results as much as U does. Therefore we
take J as 10% of U. Moreover, if we look at the sign of the
energy difference between the ferromagnetic and the ferri-
magnetic case �Fig. 5�a��, we observe that the use of a U
�0.2 Ry makes the ferrimagnetic case more stable, for all
lanthanides. This brings the sign of the HFF in agreement
with experiment and with the model of Campbell and
Brooks. We conclude that LDA+U describes the effective
d-f exchange interaction much better than the LDA does and
that the LDA is qualitatively wrong in this respect.

Another—second—complication with LDA+U is the fact
that there are now much more local minima in the space of
solutions than for the LDA �see beginning of Sec. IV A� and
a calculation gets easily trapped in one of them. This prob-
lem is illustrated in Table I, where the diagonal elements of
the 4f-up density matrix are given for various ferrimagnetic
solutions for Tm in Fe. The five electrons can be distributed
in different ways over the seven orbitals, and always a con-
verged solution can be obtained �it is the absence of this
orbital freedom in the LDA that avoids many of those local
minima there�. The HFF field can be very different for all
cases. In the second column, the total energy of these five
solutions is given, relative to the case with the lowest energy
�‘‘case 2’’�. The same total energy criterium we used before
for the LDA �Sec. IV A� now should lead to the conclusion
that “case 2” is the ground state for Tm in Fe �LDA+U at
fixed U is a variational method,66,67 such that the ground
state corresponds to the lowest LDA+U total energy�. How-
ever, one would expect a Hund’s rule state �“case 1”� as
ground state for the localized 4f electrons �we will see later
that indeed this is the case�, such that it is a bit cumbersome
that “case 2” has the lowest energy. Two possible explana-
tions for this observation are the following: �1� Different spin
states may have different values of U and a particular value
of U is suitable for one spin state, but not for the others.
Perhaps all five cases in Table I need their own U, such that
total energy comparisons become invalid anyway. �2� Per-
haps the incompletely compensated self-interaction in the en-
ergy functional for the highly correlated f states spoils the
accuracy of the total energy,68 such that unphysical conclu-
sions might indeed show up. This point is not completely
understood.

Having determined the value of the exchange field in Eq.
�1�, we now address the problem of multiple solutions. This
will result in a first set of predictions for the ground-state
values of the HFF’s in the ferrimagnetic case.

2. First method: Constrained density matrix calculations

Our first approach of finding the true ground state amid
the multitude of different solutions is based on the fact that
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the f electrons of the lanthanides are only weakly influenced
by the surrounding Fe environment—the ground state should
therefore not deviate too much from a free lanthanide ion.
Therefore, we calculate the spin density matrices correspond-
ing to the exchange-split ground-state multiplet of the free
lanthanide ion, and using these density matrices we perform
LDA+U calculations for the case of lanthanides in Fe. In a
first step we will neglect the crystal field interaction, which
will have an influence only at the edges of the lanthanide
series �we come back to that point in Sec. IV B 4�. Calculat-
ing the spin density matrices corresponding to the ground
state of the lanthanides ions was done by the LANTHANIDE

code, developed by Edvardsson and Åberg.69 This atomic
program provides the energy levels of equivalent f electrons
and the corresponding spin density matrices for the ground-
state multiplet under the influence of an external �not ex-
change� field for lanthanide or actinide trivalent ions. Many-
body interactions are included by configuration interaction.
Applying an external field instead of an exchange field gives
the same ground state when S and J are parallel �the ex-
change field acts on the 4f spin moment while the external
magnetic field couples to the total magnetic moment�. In the
first half of the series �from Ce to Sm� we therefore have to
switch the sign of the external field in order to act as an
exchange field �because S and J are antiparallel�. In order to
get the same size of splitting by the external field as would
have been caused by an exchange field, the magnitude of the
external field has to be adjusted ��Eext�gJ while �Eexc
��1−gJ��. The correct exchange-split ground-state multiplet
for the trivalent lanthanide ions was calculated both

analytically70 and by using the MCPHASE program71 �see Fig.
6�. Using the LANTHANIDE program with an external field
acting as an exchange field and ignoring, for the moment, the
crystal field interaction, we have calculated the spin-up, spin-
down, and cross-term density matrices of the f electrons. The
parameters needed for density matrix calculations were taken
from Ref. 72. For all the lanthanides the spin-up and -down
matrices are diagonal. Analyzing these matrices �Table II�,
one can observe that we have fractional occupation of the m
orbitals in the first half of the lanthanide series, while for
heavier lanthanides the occupation is integer or almost inte-
ger. The cross-term matrix has nonzero elements only above
the diagonal and only if the occupation of the corresponding
m orbitals is noninteger �Table III�. Subsequently we per-
formed LDA+U calculations for every lanthanide in Fe,
keeping the previously obtained density matrices fixed. Or, in
other words, a self-consistent solution was obtained under
the constraint that the density matrices should have their
exchange-split free ion values. The fixed density matrices
serve as a tool to introduce many-body effects from the free
ion calculation into the mean-field LDA+U calculation. The
results obtained using this approach are plotted in Fig. 1
�black �red� dashed line� and will be discussed in Sec. V A.

For obvious reasons, we will further refer to this approach
as constrained density matrix �CDM� calculations. Because
the density matrices are fixed, all freedom for obtaining mul-
tiple solutions with LDA+U has been removed. By construc-
tion, the single solution that is found is close to the free ion
ground state �properly taking into account the magnetic in-
fluence of the environment� and is therefore believed to be a
good approximation of the ground state in the solid as well.

FIG. 6. The exchange-field-split ground-state multiplets of Ce3+ and Yb3+ ions and the influence of the crystal field on the energy levels
�B0

6=0�. The sizes of the various energy splittings are also indicated �in kelvin�.

TABLE II. Spin-up, spin-down, and cross-term density matrices for Pr3+ and Dy3+ ions, obtained by the
LANTHANIDE program for Bexc=420 T.

Spin up Spin down

m=−3 m=−2 m=−1 m=0 m=1 m=2 m=3 m=−3 m=−2 m=−1 m=0 m=1 m=2 m=3

Pr3+ 0.00 0.00 0.00 0.01 0.16 0.02 0.05 0.00 0.00 0.00 0.00 0.04 0.79 0.92

Dy3+ 1.00 1.00 0.02 0.02 0.02 0.01 0.00 1.00 1.00 1.00 0.98 0.98 0.98 0.99
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In Sec. IV B 4 we will go one step further and introduce
crystal field effects. That will require a lot of LDA+U cal-
culations, more than is feasible with such a rather time-
consuming ab initio method �typically one day per calcula-
tion�. Therefore we will in the next section first develop an
approximate but very fast method that will allow us to obtain
HFF and EFG for any given density matrix within seconds.

3. Second method: Hyperfine fields by orbital occupation

We can turn the annoying freedom of having several ways
to occupy the m orbitals into an advantage by determining
the individual contribution of each m orbital to, e.g., the
orbital field �this method will not be exact for all lanthanides;
see later�. This can be done by first calculating the orbital
HFF for several different ferrimagnetic solutions, as is given
as an example for Tm in Table I �without constraining the
density matrices, in contrast to the CDM method�. Then a
system of linear equations is set up, with as seven variables
xm the orbital HFF of each of the seven m orbitals. The
occupations of each of these orbitals �or the diagonal ele-
ments of the density matrix from Table I� are the coefficients.
The occupation found in the calculation should give the cal-
culated orbital field, as is illustrated here for “case 1” in
Table I:

1.00x−3 + 0.99x−2 + 0.99x−1 + 0.99x0 + 0.99x1 + 0.01x2

+ 0.01x3 = − 718.

This system of equations can be supplemented by other
equations expressing some general truths �the orbital field
with all seven m orbitals filled is zero; the contribution by
+m is opposite to the one by −m�, such that the system be-
comes overdetermined. Each subset of seven independent
equations should give the same xm, which indeed they do.
Because this method will be used only for integer occupation
�see Sec. V�, in these calculations we ignore the cross terms
�for integer occupation the cross terms are zero�. Having
found the xm for a particular lanthanide, we can now imme-
diately get the orbital hyperfine field of that lanthanide for a
given occupation of the m orbitals �=for a given diagonal of
the density matrix� by summing the products of xm and the
occupation number. We call this method hyperfine fields by
occupation of orbitals �HOO�. It requires a limited number
of calibrating LDA+U calculations, but once the xm are
found the hyperfine field for any occupation of the orbitals
can be immediately obtained. As a way to check the reliabil-
ity of the HOO method, a detailed analysis is given in Table
IV for the Tm with its m= +3 and m= +2 orbitals unoccu-
pied. This is the same configuration as “case 1” in Table I,
and a very similar HFF is found indeed. The CDM method
for the Tm ground state leads to Borb=−748 T and Bdip

=55 T, again very similar numbers. The HOO method is
especially accurate for the second half of the lanthanide se-
ries, where the density matrix elements are close to being
integers �0 or 1� and up-down cross-term matrix elements are
consequently almost zero �cross-term contributions to the
HFF are absent in HOO�. In that sense, HOO can be under-
stood as the limit of integer occupation of the m orbitals.

This HOO approach was used for ten elements from the
lanthanides series �Ce, Nd, Pm, Sm, Tb, Dy, Ho, Er, Tm, and
Yb�, not only for the orbital HFF but also for the dipolar
HFF �Figs. 7 and 8�. A general analysis of the properties of
orbital and dipolar HFF for lanthanides will be given now,
based on Figs. 7 and 8. The total HFF and EFG for lan-
thanides in Fe will be discussed in Secs. V A and V B. The
dominant contribution to the orbital HFF is due to the 4f
electrons, as one could expect �Figs. 7�a� and 7�b��. Orbitals
with opposite m quantum number yield opposite orbital hy-
perfine fields. The latter can be understood as follows �see
also Table V�: in orbitals with opposite m, the electrons
move in opposite directions, because opposite m �z compo-
nent of the orbital angular momentum� mean that the angular
momenta of those orbitals have different orientations. Hence,
the orbital fields will be opposite as well. As a function of Z,
the contribution due to each m orbital increases. A linear fit is
possible �solid line�. In order to verify whether this is acci-
dental or not, we did the same calculations for free lan-
thanide atoms and free lanthanide 3+ ions. For the free ions,
almost the same perfect linear correlation was found as for
the solid �dotted lines in Fig. 7�. For free neutral atoms, the
fields were slightly larger �at most 10% for the orbital field
and 5% for the dipolar field�. Additional to this large 4f
contribution, there is also a 5p contribution to the orbital
HFF �Figs. 7�c�–7�e��. The up and down contributions are
quite large �40–90 T�, but they cancel each other, yielding a
negligible �	3 T� total contribution for the 5p-orbital HFF.
This 5p contribution to the orbital HFF does not depend on
the f configuration. Taking Dy as an example—two electrons
in the unfilled spin channel—the total 5p orbital field will be
−2 T �72 T for 5p-up, −74 T for 5p-down�, irrespective
whether these two electrons are, e.g., in the m= +3 and m
= +2 or in the m=−1 and m=0 orbitals. This will be different
for dipolar hyperfine fields and for the electric-field gradient.
Looking separately to the 5p-up and -down contributions,
one can see that they do not vanish for La �4f empty� and Lu
�4f full� and that they increase with Z. Moreover, we ob-

TABLE IV. Contributions to Borb, Bdip, and Vzz for Tm in Fe in
the Hund’s rules ground state, using the information from Figs. 7–9.

Tm Borb �T� Bdip �T� Vzz �1021 V/m2�

4f-up −745 49 −76.2

4f-down −1 1 0.9

5p-up −84 −10 16.1

5p-down 83 13 21.2

6p-up 10 0 −0.7

6p-down −8 0 0.1

Sum −745 53 −38.6

TABLE III. Cross-term density matrix for Pr3+ and Dy3+ ions,
obtained by the LANTHANIDE program for Bexc=420 T.

�m ,m�� �−3,−2� �−2,−1� �−1,0� �0,1� �1,2� �2,3�

Pr3+ 0.00 0.00 0.00 −0.02 −0.35 −0.14

Dy3+ 0.00 0.00 −0.14 −0.13 −0.13 −0.10
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FIG. 7. �Color online� Contribution of each m orbital to the �a�
4f-up, �b� 4f-down orbital HFF and the contribution of the �c�
5p-up, �d� 5p-down, �e� 5p up+down electrons to the orbital HFF
of a lanthanide in Fe. Data points: results from calculations for
lanthanides in Fe. Solid lines: linear fit through these data points.
Dotted lines: linear fit through a complete set of calculations for
free lanthanide ions.

FIG. 8. �Color online� Contribution of each m orbital to the �a�
4f-up, �b� 4f-down dipolar HFF and the induced �c� 5p-up, �d�
5p-down, �e� 5p up+down contributions to the dipolar HFF of a
lanthanide in Fe �the 5p-up and 5p-dn contributions correspond to
the FiM solutions; for the FoM orientation the pictures for 5p up
and down have to be interchanged�. Data points: results from cal-
culations for lanthanides in Fe. Solid lines: linear fit through these
data points. Dotted lines: linear fit through a complete set of calcu-
lations for free lanthanide ions.
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served that this contribution disappears if the SO coupling is
switched off. Therefore we can conclude that these 5p con-
tributions are due to an intrinsic p effect, induced by the SO
coupling on the p electrons which breaks the cubic symme-
try. Finally there is also a contribution from the valence 6p
electrons, also induced by the SO coupling, but this contri-
bution is really small and can be neglected.

For the dipolar HFF as well, the 4f contribution remains
the dominant one �Figs. 8�a� and 8�b��, but it is one order of
magnitude smaller than the orbital HFF. The systematics are
different from the orbital moment and orbital HFF as well
�Figs. 8�a� and 8�b� and Table V�. First of all, the dipolar
HFF does not depend on the direction of motion of an elec-
tron, such that ±m orbitals yield the same dipolar HFF. Sec-
ond, Bdip depends explicitly on the electron spin, such that an
electron with opposite spin in the same m orbital yields an
oppositie field. Furthermore, we can observe from Figs.
8�c�–8�e� that the 5p contributions to Bdip depend on the 4f
occupation. If we take again Dy as an example and put the
two electrons in the +3 and +2 orbitals �spin up�, we get an
induced 5p contribution of 4 T �−8 T for 5p-up and 12 T for
5p-down�, while this is −3 T �4 T for 5p-up and −7 T for
5p-down� if the two electrons are in the +1 and −2 orbitals
�spin up�. Such a 4f dependence was not present for Borb
�and also not for the orbital moment�. In Sec. V B we will
see that also for the EFG there is such an explicit 4f depen-
dence, and we will be able to explain this by the radial de-
pendences, which are 1/r for �orb and Borb and 1/r3 for Bdip
and Vzz. Another observation from Fig. 8 is that the induced
5p contributions behave differently in the first and second
halves of the lanthanide series. This suggests a spin-
dependent interaction. In the first half of the series the un-
filled f band is the down band �Figs. 7–9 are made in the
assumption that first spin down is filled, then spin up—if not,
then the pictures for 5p-up and -down have to be inter-
changed�. The 5p-up contribution is large; the 5p-down is
smaller. In the second half the unfilled f band is the up band.
Now the 5p-up contribution is small and 5p-down larger. We
will show later �Sec. V B� that 4f and 5p electrons try to
avoid each other, and as Figs. 8 and 9 show this avoidance is
different for identical or different spins: we see here a mani-
festation of the Pauli principle. The 6p contribution remains
negligible also for the dipolar HFF.

4. Crystal field

In this section we will discuss the last term of the model
Hamiltonian �Eq. �1��, the crystal field term. The crystal field

�CF� Hamiltonian describes the interaction of the crystal po-
tential with the 4f electrons. Following Wybourne’s
formalism,73 the crystal field Hamiltonian can be written as

HCF = 
k,q

Bq
kCq

k , �4�

where Cq
k are the components of a spherical tensor of rank k

and Bq
k are the so-called crystal field parameters. The sum-

mation involves all the f electrons of the ion of interest. The
first term in the expansion �k=q=0� is spherically symmetric
and can be ignored as far as the crystal field splittings of the
levels are concerned. On the other hand, if the f electrons are
involved, the only nonzero terms in the expansion are those
with k
6. Furthermore, all terms with odd k vanish for con-
figurations containing equivalent electrons. The remaining
crystal field parameters can be zero or not depending on the
site symmetry. Considering all these things together with the
fact that the lanthanides in Fe are situated on a site with
cubic symmetry the CF Hamiltonian in our case can be writ-
ten as

HCF = B0
4C0

4 + B4
4�C−4

4 + C4
4� + B0

6C0
6 + B4

6�C−4
6 + C4

6� . �5�

Because the crystal potential has to be invariant under the
twofold rotation axis of a cube, the parameters can be related
in the following way:

B4
4 =� 5

14
B0

4, �6�

B4
6 = −�7

2
B0

6. �7�

Finally, the CF Hamiltonian for our problem is

HCF = B0
4�C0

4 +� 5

14
�C−4

4 + C4
4��

+ B0
6�C0

6 −�7

2
�C−4

6 + C4
6�� . �8�

The problem one has to solve now is to find the remaining
two CF parameters B0

4 and B0
6 for the lanthanide in Fe situa-

tion. In order to find these parameters we have used the
LANTHANIDE program to obtain the spin density matrices for
different B0

4 and B0
6 �keeping the exchange field to fixed to

the previously found value�. The B0
4 was varied between

−2000 cm−1 and +1000 cm−1 while B0
6 covers the interval

from −1000 cm−1 to +1000 cm−1. Both CF parameters were
varied in steps of 100 units, leading to 651 different sets of
crystal field parameters for every lanthanide. For each den-
sity matrix obtained, the total magnetic hyperfine field was
determined using the fast HOO method described in Sec.
IV B 3 �the large number of cases to be examined is the
reason why it was necessary to have something as this fast
HOO method�. We have applied this algorithm for the four
lanthanides from the second half for which we have reliable
experimental hyperfine fields: Tb, Dy, Er, and Tm �Fig. 10�.
Only the lanthanides from the second half were chosen be-
cause we noticed already that the HOO method is valid only
for integer occupation, which is the case in the second half of

TABLE V. Overview whether �orb, Borb, Bdip, and Vzz depend on
the shape of the 4f orbital �given by the absolute value of m�, the
direction of motion of the electron in that orbital �given by the sign
of m�, and whether they depend on the charge or on the spin of the
4f electron in a given m orbital.

�orb Borb Bdip Vzz

Shape of orbital Yes Yes Yes Yes

Direction of motion Yes Yes No No

Charge or spin Charge Charge Spin Charge
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the lanthanides series �see also Sec. V�. Yb was not included
because it occurs often in divalent configuration and its va-
lency is something we want to determine �see also Sec. V�.
Figure 10 shows the deviation between the HOO-HFF and
the experimental HFF for Dy and Er, as a function of CF
parameters. There is one case �for B0

4=−1000 cm−1 and B0
6

=−800 cm−1� where this deviation is small for both elements.
Similar plots for Tb and Tm �not shown� have a minimum at
exactly the same point, such that we conclude that these
particular values of B0

4 and B0
6 indeed represent the crystal

field that is felt by all lanthanides in Fe. Now we generate the
spin density matrices �up, down, and cross term� for all lan-
thanides using Bexc=420 T, B0

4=−1000 cm−1, and B0
6=

−800 cm−1 and apply the CDM method �Sec. IV B 2� to get
the hyperfine field and the electric-field gradient. The results
are given in Figs. 1 and 4, and the contributions to the hy-
perfine field are plotted in Fig. 3 �“CDM+CF”�. A discussion
will be given in Secs. IV A and V B. In Table VI we can see
the density matrices obtained including the CF parameters
for two ions: Pr3+ and Dy3+. If we compare these spin density
matrices with the ones obtained without considering CF ef-
fects �Tables II and III�, we notice that although some addi-
tional off-diagonal terms appear, the f-electron occupation
does not change qualitatively, which implies that CF interac-
tion plays only a secondary role.

V. DISCUSSION

A. Magnetic hyperfine field

In Fig. 3 we can see the three contributions to the hyper-
fine field calculated using the methods described above. The
dominant contribution is the orbital one, which stems from
the 4f electrons of the lanthanides. There is also a small 5p
contribution, which can be neglected. The dipolar hyperfine
field is 10 times smaller than the orbital HFF and again it
comes mainly from the f electrons. While these two contri-
butions are different for each lanthanide and are much in-
creased in the LDA+U calculations, the Fermi field is con-
stant through the series and is unaffected by LDA+U �the
crystal field, however, has some effect for Sm and to a lesser
extent for Eu�. The Fermi contribution is the sum of a core
contribution �1s–4s electrons� and a valence contribution �5s
and 6s�. For magnetic impurities, the phenomenon of ex-
change polarization is largely responsible for determining
the value of the Fermi field.37 Exchange polarization is the
name for a polarizing effect on the s electrons due to their
exchange interaction with a polarized �=moment-carrying� d
or f shell.74 This interaction is schematically depicted in Fig.
11, for the case of free ions. In the case of 3d elements the 1s
and 2s electrons lie spatially inside the 3d electrons, while
the 4s electrons are outside the 3d shell. Therefore, the up-
down polarization for 1s and 2s will be opposite to the po-
larization for 4s, leading to a Fermi HFF opposite to the 3d
moment for 1s and 2s electrons and a 4s contribution that
tends to cancel 1s and 2s.74,75 The 2s and 4s contributions
are larger than the 1s contribution, because these orbitals are
spatially closest to the 3d and therefore have a stronger ex-
change interaction. The 3s contribution will be smaller and
can be neglected in a qualitative discussion, due to overlap of

FIG. 9. �Color online� Contribution of each m orbital to the �a�
4f-up, �b� 4f-down to the total Vzz and the induced �c� 5p-up, �d�
5p-down, �e� 5p up+down to the total Vzz of a lanthanide in Fe �the
5p-up and 5p-dn contributions correspond to the FiM solutions; for
the FoM orientation the pictures for 5p up and down have to be
interchanged�. Data points: results from calculations for lanthanides
in Fe. Solid lines: linear fit through these data points. Dotted lines:
linear fit through a complete set of calculations for free lanthanide
ions.
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the 3s and 3d shells which leads to competing and mutually
canceling tendencies. The mechanism as just described does
not work in the case of 4d ions, because the radial distribu-
tion function of 4d electrons has one radial node that sepa-
rates the largest outer component from the inner component.
As a result the 4d shell will overlap with most of the s shells
that are responsible for the contact HFF, leading to an unde-
cided situation as for the 3d and 3s. On the other hand, in the
case of 4f ions we have a similar situation as for 3d ions:
there are no nodes in the 4f radial distribution function, and
therefore the same exchange polarization mechanism is

valid. Assuming a positive 4f moment, this will induce a
negative Fermi HFF for the 1s, 2s, and 3s electrons and a
positive HFF for the 5s and 6s electrons �see Table VII for an
illustration, which is, however, for a negative moment and
not for free ions�. The overlap between 4f and 4s shell is
similar with the 3d-3s and reduces the 4s contribution to a
small value with either sign. The main contributions to the
Fermi HFF will be 3s and 5s. By making the sum of all these
individual contributions we get a total Fermi HFF propor-
tional with the 4f moment �dotted line in Fig. 3�c��. The
difference between a free lanthanide ion and the case of lan-

FIG. 10. �Color online� The deviation of the total HFF from experiment �in tesla� as a function of the CF parameters for Dy �left� and
Er �right�. The grey �red� circles indicate the values we have chosen for the CF parameters.

TABLE VI. Spin-up, spin-down, and cross-term density matrices for Pr3+ and Dy3+ ions, obtained by the LANTHANIDE program for
Bexc=420 T and the crystal field parameters B0

4=−1000 cm−1 and B0
6=−800 cm−1.

Spin m

Pr3+ Dy3+

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

Up −3 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.15 0.00 0.00

−2 0.00 0.04 0.00 0.00 0.00 0.02 0.00 0.00 0.97 0.00 0.00 0.00 −0.08 0.00

−1 0.00 0.00 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.06 0.00 0.00 0.00 0.00

0 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.15 0.00 0.00 0.00 0.07 0.00 0.00

2 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.00 −0.08 0.00 0.00 0.00 0.03 0.00

3 0.00 0.00 0.04 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Down −3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 −0.01 0.00 0.00

−2 0.00 0.02 0.00 0.00 0.00 −0.09 0.00 0.00 0.98 0.00 0.00 0.00 0.01 0.00

−1 0.00 0.00 0.07 0.00 0.00 0.00 0.22 0.00 0.00 0.98 0.00 0.00 0.00 0.00

0 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.08 0.00 0.00 −0.01 0.00 0.00 0.00 0.96 0.00 0.00

2 0.00 −0.09 0.00 0.00 0.00 0.70 0.00 0.00 0.01 0.00 0.00 0.00 0.97 0.00

3 0.00 0.00 0.22 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.98

Updn −3 0.00 −0.01 0.00 0.00 0.00 0.01 0.00 0.00 −0.03 0.00 0.00 0.00 0.02 0.00

−2 0.00 0.00 −0.05 0.00 0.00 0.00 −0.15 0.00 0.00 −0.01 0.00 0.00 0.00 −0.01

−1 0.00 0.00 0.00 −0.02 0.00 0.00 0.00 0.00 0.00 0.00 −0.15 0.00 0.00 0.00

0 0.00 0.00 0.00 0.00 −0.04 0.00 0.00 −0.08 0.00 0.00 0.00 −0.14 0.00 0.00

1 0.00 0.04 0.00 0.00 0.00 −0.34 0.00 0.00 0.08 0.00 0.00 0.00 −0.12 0.00

2 0.00 0.00 −0.03 0.00 0.00 0.00 −0.12 0.00 0.00 −0.01 0.00 0.00 0.00 −0.10

3 0.00 0.00 0.00 −0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TORUMBA et al. PHYSICAL REVIEW B 74, 014409 �2006�

014409-12



thanides in Fe comes from the fact that in the latter situation
the 6s electrons will participate in bonding, being insensitive
to the 4f moment �even for a zero 4f moment we have a
nonzero 6s contribution�. As a result the 6s contribution to
the Fermi HFF is constant through the lanthanide series
�Table VII�. Moreover, the 5s contribution �almost� cancels
the 3s contribution and what we get as the total Fermi is
therefore mainly due to the constant �valence� 6s contribu-
tion. There is also a p1/2 contribution to the Fermi HFF �be-
cause in a relativistic treatment the p1/2 electrons have also a
nonzero probability to be found at the position of the
nucleus� mainly coming from the 3p1/2 electrons, but this
contribution is rather small. There is no compelling reason
for this observed 3s-5s cancellation; it is merely a numerical
coincidence. But once this coincidence is realized for one
lanthanide, it must be there for all of them—which leads to
the Fermi field in Fig. 3�c� that is almost independent of the
individual lanthanide, a behavior that is strikingly different
from the free ion case. The valence, core, and total Fermi
fields for lanthanides in Fe are plotted in Fig. 12. It should be
noted here that the core part from this calculated Fermi field
most likely suffers from the typical “LDA core error,” for
which recently a promising cure has been proposed.76 The
sum of these three contributions �orbital, dipolar, and Fermi�
finally represents the total hyperfine field of trivalent lan-
thanides in Fe �Fig. 1�.

Let us now analyze the evolution of the hyperfine fields
obtained with the CDM method, without the crystal field
interaction yet. The agreement between the calculated and
experimental HFF’s is good, especially in the middle of the
lanthanides series �Fig. 1, “CDM”�. However, there are de-

viations at the edges. The differences for Er and Tm will be
shown later to be due to crystal field effects. For Ce and Pr,
we will suggest the delocalization of the 4f electrons to play
an important role. Only for Yb is there a large deviation
between an accurate and reliable experimental value of
−125 T �TDPAC� and a calculated value for the 3+ ion of
−467 T. Comparing the experimental results for Yb and Lu,
one can see that the HFF’s are almost equal. This points to
the fact that Yb has the same electronic configuration as Lu,
which means that Yb is divalent. It is known that Yb often
appears in a divalent configuration, where the 4f shell is
completely filled. We can calculate such a divalent configu-
ration by using the HOO method and filling the orbitals in a
Hund-like way but with one electron more than in the triva-
lent situation �dashed gray �blue� line in Fig. 1�b��. This re-
sults in the −39 T of the Fermi contact field only, which is in
much better agreement with experiment. Nevertheless, a
trivalent configuration was suggested before,43 from the fol-
lowing experimental considerations: the −125 T for Yb in Fe
was considered to be “large,” much larger than the �−�61 T
for the divalent Lu in Fe. This additional −64 T was taken as
stemming from an orbital contribution, which must lead to
the conclusion that the Yb is trivalent. From Fig. 1�b�, how-
ever, we see that such a difference of 64 T is almost negli-
gible and that the expected orbital contribution for a trivalent
state would be 10 times larger. Another lanthanide that is
often divalent is Eu. The bare experimental data in Fig. 1�b�
show that there is a sizable difference between the HFF for
Eu and for Gd: they must have different electronic configu-

FIG. 11. The core polarization mechanism for 3d and 4f free
ions.

TABLE VII. Individual contributions to the Fermi HFF �in tesla�. The p1/2 contribution stems mainly from the 3p1/2 electrons
�90%–95%�.

1s 2s 3s 4s 5s 6s p1/2 Total

Tb 0 20 207 −33 −191 −56 14 −39

Er 0 14 129 −30 −106 −57 9 −41

Lu 0 0 −2 0 10 −53 0 −45

FIG. 12. �Color online� Fermi contact contribution to the HFF as
a function of 4f spin moment for a large set of different solutions
for different lanthanides in Fe. White circles: core contribution
�1s-4s�. Black circles: valence contribution �5s-6s�. Gray circles:
total Fermi contact contribution. The lines through the core and
valence contributions are linear fits; the line through the total Fermi
field is the sum of those two fits.
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rations, and Eu cannot be divalent. This is confirmed by our
calculated CDM value for the HFF of Eu3+, which agrees
much better than the HOO value for Eu2+. Moreover, Möss-
bauer isomer shift data49,50 convincingly point to trivalency
for Eu in Fe. We conclude that all lanthanides in Fe are
trivalent, except for the divalent Yb. It is somewhat surpris-
ing that the valency of Eu and Yb is different.

Finally, we have to discuss the influence of the crystal
field. If we compare the HFF’s with and without CF effects
included �Fig. 3�, we notice a few differences. The orbital
contribution decreases in the second half when including the
CF. On the one hand, this is due to the fact that the CF tends
to make the electron distribution over the m orbitals more
isotropic �=a larger deviation from integer values in the den-
sity matrices�. In the first half of the series, the density ma-
trix elements were far from being integer even before includ-
ing the CF, and therefore the influence of the CF in the first
half is much less outspoken. On the other hand, by adding
the CF the ground state may change �see Fig. 6 for Yb�, a
fact which is reflected in the m-orbital occupation. For in-
stance, in the case of Yb the m= +3 orbital, which is unoc-
cupied in the absence of the CF, is filled when CF effects are
taken into account while the occupation of the m= +2 orbital
decreases. For Sm the situation is slightly different. While
for the other lanthanides the exchange splitting is signifi-
cantly smaller than the spin-orbit splitting �see Fig. 6 for Ce
and Yb�, in the case of Sm the exchange and spin-orbit split-
tings are comparable ��Eexc=403 K, �ESO=1184 K�, which
causes a mixing of the sublevels with different J. This fact
leads to dipolar and Fermi contributions for Sm that are very
different from the ones of the neighbors. But again, similar to
the case of the other lanthanides, the CF alters the spin den-
sity matrices which leads to a different dipolar contribution.

The sum of the three contributions with crystal field in-
cluded �black �red� solid lines in Fig. 3� gives the total value
of the HFF, which is given by the solid black �red� line in
Fig. 1�b�. The inclusion of CF effects clearly results in a
better agreement with experiment, especially for the heavier
rare earths. For the lighter rare earths, however, a moderate
deviation from experiment remains �Ce to Sm�. For Nd and
Sm, this is not very significant as the experimental values are
not too meaningful �see Sec. III A�. But for Pr and especially
for Ce �the latter having been measured with the very reliable
NMR/ON method�, the deviation is undeniable. Can this be
explained? Figure 1�b� shows as well that for Ce and Pr the
LDA results are much closer to experiment. As was men-
tioned in Sec. I, LDA calculations for lanthanides represent
an itinerant �also called delocalized� 4f configuration, which
is mostly not what is found in nature: the radius of the 4f
orbitals is not very large, overlap with the orbitals of neigh-
boring atoms is negligible, and as a result the 4f orbitals are
localized. The only exception is Ce. As the 4f radius gets
smaller for increasing atomic number Z, the 4f orbitals of Ce
reach most outwards. Their radius is large enough to allow
overlap and hence delocalization in materials where the
nearest-neighbor distance is not too large. Therefore, Ce can
be either trivalent or itinerant, depending on the material.65,77

One can say that in the lanthanide series there is a
delocalization-localization transition, which happens already
at the very first element Ce. The good agreement between

experiments and the LDA results up to Pr in Fig. 1�b� sug-
gests that for lanthanides in Fe not only Ce but also Pr has
delocalized 4f electrons: a “postponed” delocalization-
localization transition. Two additional arguments support this
hypothesis. First, the lanthanide-Fe distance is 2.60 Å, which
is considerably smaller than a typical lanthanide-lanthanide
distance in pure lanthanide metals �4.08 Å�. One can expect
from this a large overlap between the 4f orbitals and the Fe
3d, and hence a stronger tendency to delocalization. This
argument will be further quantified in terms of pressure in
Sec. VI B. We conclude that there are several strong indica-
tions that the delocalization-localization transition for lan-
thanides in Fe is somewhat postponed, at least up to Pr and
perhaps further until at most Sm �Eu is certainly localized�.
We will come back to this in Sec. VI B.

Analyzing the whole set of calculations and experiments
for the HFF �Fig. 1�, we conclude that the magnitudes of the
HFF’s with LDA+U are much closer to experiment than
with the LDA, certainly for the heavier lanthanides. Together
with the ferrimagnetic coupling which is reproduced by
LDA+U but not everywhere by the LDA �Fig. 5�, this is
strong evidence for the fact that LDA+U performs consid-
erably better than the LDA also in these systems.

B. Electric-field gradients

As in an LDA calculation all f orbitals are roughly
equally populated, there is almost no spatial anisotropy and
Vzz will be close to zero �dotted line in Fig. 4�. We therefore
turn immediately to LDA+U calculations. We are confronted
with the same problems as described in Sec. IV B 1. Follow-
ing the same procedure as for the calculation of the HFF, we
use the spin density matrices �spin up, spin down, and cross
term� obtained from LANTHANIDE and we calculate Vzz for
trivalent lanthanides in Fe. Using the procedure leading to
the HOO method we determine again the individual contri-
bution to Vzz of every 4f m orbital and the induced 5p con-
tributions to Vzz �Fig. 9 and Table V� without considering the
cross terms. As in the case of the hyperfine field, these results
will be more valid for the heaviest lanthanides. Finally, we
include the CF interaction and perform the corresponding
constrained density matrix calculations, as was done for the
HFF.

Just as for the dipolar HFF, the Vzz due to the 4f orbitals
themselves does not depend on the direction of motion of the
electron, and ±m orbitals yield the same Vzz. On the other
hand, the Vzz depends on the charge and not on the spin, such
that also up and down 4f electrons yield the same Vzz. The
5p contribution depends on the 4f occupation, just as for the
dipolar HFF.

Using the CDM method with crystal field, we obtain rea-
sonable agreement with experiment �Fig. 4, solid black �red�
line�. Although there are quite large deviations, the trend of
the EFG’s is clearly reproduced. In our calculations the
EFG’s appear to be systematically underestimated. We sug-
gest the following scenario to explain this behavior. It is
known that in LDA�+U� the radial part of the 4f wave func-
tion is too diffuse.78,79 More specifically, 	r−3
 agrees well
with experiment, but 	r−4
 and 	r−6
 are too small. Based on
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these facts, one could conclude that �4f contributions to the�
EFG’s for lanthanides should be well reproduced �Vzz de-
pends on 	r−3
�. We have shown �Fig. 9�, however, that there
is a substantial 5p contribution to Vzz as well, and we will in
the coming paragraphs elaborate on this point �see also Table
VIII�. We therefore suggest that the 4f contribution to Vzz is
indeed correct �due to the good 	r−3
�, but that the deviations
in the 4f wave functions as signaled by 	r−4
 and 	r−6

slightly disturb the deformation of the 5p orbitals near the
nucleus, resulting in an incorrect 5p contribution. As we will
see soon, even tiny changes in the 5p orbitals will generate
sizable contributions to the EFG. The underestimation of the
EFG’s in Fig. 4 can therefore be understood as an indirect
manifestation of the too diffuse LDA�+U� 4f wave func-
tions.

Figure 4 provides further evidence for the fact that Yb in
Fe really is divalent: trivalent Yb has a very large Vzz, while
the experimental value is zero, in agreement with the diva-
lent prediction obtained from the HOO method �which can
be trusted, because Yb is a heavy lanthanide�.

Now we can analyze which are the main electrons that
provide the anisotropy that leads to the EFG. It has been
shown before80 in a rigorous way that for metals with s, p,
and d electrons the total Vzz can be obtained as a sum of a
quantity Vzz

p-p and Vzz
d-d �neglecting small contributions from

the interstitial region of the crystal�. They measure the non-
spherical p and d charge densities �20

p-p�r� and �20
d-d�r�, respec-

tively, weighted by an integral over 1 /r3:

Vzz
p-p � �

0

R �20
p-p

r3 dr , �9�

Vzz
d-d � �

0

R �20
d-d

r3 dr . �10�

R is the radius of the muffin tin sphere of the considered
atom. The factor 1 /r3 strongly emphasizes the contribution
from the region close to the nucleus, with small r. s electrons
do not contribute as they have spherical symmetry, and so-
called “mixed” s-d or s-p contributions are negligible and

therefore omitted. This can be extended to materials with f
electrons, such that Vzz for lanthanides can be written as

Vzz � Vzz
p-p + Vzz

d-d + Vzz
f-f . �11�

We now apply this analysis to Tb in Fe, which is a particu-
larly clear example because all 4f-down orbitals are fully
occupied and there is only a single 4f-up electron. Table VIII
shows the different contributions to Vzz when this single elec-
tron is put in the m=−1 �up� orbital �this is not the ground
state, but this is just an example, anyway�. Table VIII shows
that the main contribution to the total Vzz=−10.6
�1021 V/m2 is due to the single 4f-up electron: Vzz

4f

=−29.0. There is a large contribution of 5.6+9.6=15.2 with
the opposite sign due to p electrons. What is surprising is
that this p contribution does not stem from the valence 6p
electrons, but from the entirely filled and strongly bound 5p
shell, which lies more than 20 eV below the Fermi energy.
Intuitively, one would have assumed such a filled and well-
bound shell to be entirely spherically symmetric, which
would mean Vzz

5p=0. And indeed, the 5p anisotropy �p
= 1

2 �npx
+npy

�−npz
is very small: 0.0030 �up� and 0.0040

�down� �it is shown in Ref. 80 that �p is proportional to Vzz
5p;

npi
is the number of electrons in the pi orbital, and �p mea-

sures the unequal occupation of the three p orbitals�. How-
ever, a considerable part of this anisotropy stems from a
region very close to the nucleus and hence gets amplified by
the 1/r3 factor. This is demonstrated in Fig. 13, where for the
same Tb-configuration the bare anisotropic p-p charge den-
sity �20

p-p�r� is shown, before �Fig. 13�a�� and after �Fig.
13�b�� weighing with a 1/r factor and also after integration
�Fig. 13�b�, right axis�. Figures 13�c� and 13�d� repeat this
for the f-f contribution. The final integrals are clearly deter-
mined exclusively by anisotropies in a region closer than
0.05 Å to the nucleus. In the expression for a spin dipolar
field, the same factor 1 /r3 is present, explaining why a simi-
lar dependence of the 5p dipolar field on the 4f occupation
was observed there �Figs. 8�c�–8�e��. The orbital hyperfine
field depends on 1/r, such that contributions from the region
where r�0 are much less enhanced—such an effect is in-
deed absent in Fig. 7.

A generalization of this analysis for Tb is given in Fig. 9,
which shows the same individual 4f m orbital contributions
to Vzz for lanthanides split into 4f and 5p �i.e., when a given
4f m orbital is occupied, Figs. 9�a� and 9�b� show the direct
contribution from this orbital, while Fig. 9�e� shows the cor-
responding induced contribution of the 5p shell �up and
down summed��. This shows that the existence of opposite
signs for 5p and 4f as seen in the example of Tb is a general
effect: occupying the 4f m=0 orbital gives a negative direct
4f contribution but induces a positive 5p contribution, etc.
This can be understood as follows. A negative Vzz corre-
sponds to charge accumulation along the z axis, a positive
Vzz to charge accumulation in the xy plane. The shape of the
4f orbitals is such that m=0 has its charge mainly along the
z axis �reflected in a negative Vzz

4f�, while the xy plane is more
and more occupied for larger �m�. Apparently the 4f electrons
dispel the 5p electrons: if m=0 is occupied, then the 5p
electrons are forced away from the z axis into the xy plane,

TABLE VIII. Contributions to Vzz for Tb in Fe, with the down
channel for Tb 4f completely filled and with for the 4f-up channel
one electron in the m=−1 orbital. The first column gives the rigor-
ous notation of each contribution �see Ref. 80�. In the second col-
umn an interpretative notation is defined, which is used in the text
and in Fig. 9. The third column gives the energy region in the
density of states �DOS� near to which these states are found �EF

means “near the Fermi energy,” and negative values are below the
Fermi energy�. Units: 1021 V/m2.

In DOS �eV� Up Down

Vzz
d-d �5d� Vzz

5d EF 0.1 0.4

Vzz
p-p �5p� Vzz

5p −23 5.6 9.6

Vzz
p-p �6p� Vzz

6p EF −0.2 0.4

Vzz
f-f �4f� Vzz

4f −5 −29.0 2.5

Vzz −23.5 12.9 sum=−10.6
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resulting in a positive Vzz
5p and �p. As Table VIII shows, a

4f-up electron distorts the 5p orbitals with either spin: this
part of the effect is an interaction between the electron
charges, not between the spins. But also the spin matters,
given the jump at Gd in Fig. 9. This is the effect of the Pauli
principle, as mentioned already in Sec. IV B 3: for the light
lanthanides, the spin-down channel is being filled �antiparal-
lel alignment with Fe�, and these down-electrons repel the 5p

down in a different way than they do for the 5p up.
A similar large 5p contribution has been seen for the

Gd-EFG in in Gd borocarbide15 and in GdCo5.81 However, in
those cases the half-filled 4f shell is necessarily spherically
symmetric and does not contribute to the EFG. Gd is at a
noncubic site in those compounds, which results in a strong
6p EFG. Such a 6p contributions is derived from tails of the
wave functions of neighboring atoms. It is therefore the
environment that induces the 5p EFG �interatomic effect�. In
our case, the lanthanides are at a cubic site �indeed, the 6p
contribution to the EFG is almost zero� and the 5p contribu-
tion is induced by the 4f electrons of the same atom �intra-
atomic effect�.

Recently, the EFG of the actinide U has been analyzed in
UO2 by Laskowski et al. �Ref. 82�, using the same APW
+lo method as used in this work. These authors show in their
Fig. 2 the contributions of Vzz

p-p, Vzz
d-d, and Vzz

f-f as a function of
the deformation of the oxygen cage that surrounds the U
atom. They do not further divide the p-p contribution in 6p
and 7p �for actinides it is the 6p shell that is entirely filled
and well bound�. Without deformation of the oxygen cage,
the crystallographic surrounding is cubic and the slightly
nonzero Vzz�−2�1021 V/m2 is due to spin-orbit coupling
only, as is the case for lanthanides in Fe �compare with Nd
in Fig. 4�. This small Vzz is a sum of a f-f contribution of
+20 and a p-p contribution of −21 �the d-d contribution is
small: −1�. This can be compared to Fig. 9 for Nd with the
m= �−3,−2,−1� orbitals filled, which leads to a 4f contribu-
tion +14 and a 5p contribution of −12, quite similar values.
Because of this analogy, we suggest that also for U in UO2
the p-p contribution for an undistorted oxygen cage is due to
the completely filled 6p shell. This interpretation would, fur-
thermore, imply that as a function of oxygen cage deforma-
tion, the 6p contribution in Fig. 2 of Ref. 82 would remain
almost constant �just as the 5f contribution does� and that the
strong decrease of the total p-p contribution is due to 7p
only. This makes sense, as this decrease is attributed82 to the
tails of the O 2p wave functions and hence should appear
near the Fermi energy �=the region of the 7p�.

VI. ELABORATIONS

A. Temperature dependence

For the effective Hamiltonian �1� as implemented in the
LANTHANIDE program, the effect of temperature can be in-
cluded by occupying the energy levels according to a Boltz-
mann distribution. In this way we could easily obtain the
spin density matrices for a given temperature, and using
these matrices for a CDM or HOO calculation, we could find
predictions for the HFF and EFG of all lanthanides in the
range 0–400 K. The results are not unambiguous, however.
The density matrix elements are significantly influenced, by
increasing the temperature. The general tendency is that ma-
trix elements that were integer �0 or 1� at 0 K become frac-
tional at elevated temperature. This makes it unlikely that the
HOO method produces reliable results, as this method is ex-
act only in the limit of purely integer matrix elements. These
unreliable temperature-dependent HFF’s found by HOO
changed by up to 300 T over the studied temperature range.

FIG. 13. �a� The anisotropic p density �20
p-p�r� for Tb in Fe �sum

of up and down electrons, arbitrary units for y scale�. �b� Left axis
�arbitrary units�: �20

p-p�r� /r3 for Tb in Fe. Right axis �arbitrary units�:
integral of �20

p-p�r� /r3, which is called Vzz
p-p �apart from a constant

factor with negative sign�. �c� and �d� The same, but for the f-f
contribution.
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We expected a qualitatively similar behavior when using the
more reliable CDM, but remarkably enough the HFF’s �and
also the EFG’s� with CDM where almost identical for all
temperatures �Fig. 14�. It seems that the effect of the differ-
ent occupation of the m orbitals �diagonal elements of the
density matrix, and the only elements HOO is sensitive to� is
almost exactly canceled by the appearence of off-diagonal
terms and cross-term contributions at higher temperature.
The cancellation seems to be too perfect to be accidental, and
we conjecture that this effect has a mathematical origin.

B. Pressure

It is well known experimentally83 that the pure lan-
thanides exhibit a large variety of structural phase transitions
as a function of external pressure. At certain pressures, vol-
ume collapses are sometimes observed and attributed to the
delocalization of the f electrons. These delocalization pres-
sures have been determined for six elements of the lan-
thanide series: Ce,84,85 Pr,86–89 Nd,90–92 Sm,90,93,94 Gd83 and
Dy95 �Fig. 15�. For Ce the delocalization of the f electrons
occurs around the pressure of 1 GPa and is accompanied by
a volume collapse of 16% at the isostructural transition to
another fcc phase �-Ce�. Pr transforms to a -U structure at
20 GPa with a volume collapse of 9%–12%. In Gd 4f delo-

calization occurs at 59 GPa when the structure changes to
body-centered monoclinic �bcm� with a volume collapse of
10.6% and in Dy this happens at 73 GPa with a volume
collapse of 6%. For Nd and Sm no volume collapse has been
observed. In these two cases the delocalization of the 4f
electrons was associated with the appearance of low-
symmetry structures �similar with those that appear in Pr,
Gd, and Dy cases with volume collapse�. This is a somewhat
ambiguous procedure. For Nd two transition pressures have
been proposed: 40 GPa �corresponding to the transition to an
hP3 structure90,91� and 113 GPa �corresponding to the transi-
tion to the -U phase92�. For Sm the delocalization pressure
is proposed to be 37 GPa, when the Sm structure changes to
hP3. For Pm we have only a lower limit for the transition
pressure, 60 GPa �until this pressure no low-symmetry struc-
ture has been observed96�. In our calculations for lanthanide
impurities we replace an Fe atom from an iron lattice by a
lanthanide atom. Obviously the lanthanide atom �which has a
much larger volume� will feel a “chemical” or “effective”
pressure. How large will this effective pressure be? We con-
cluded in Sec. V A that at least Ce and Pr are delocalized.
Hence, the effective pressure—which we assume to be inde-
pendent of the lanthanide in a first approximation—should
be at least 20 GPa �Fig. 15�. The hyperfine fields for Nd and
Sm are only very approximately measured �Fig. 1�a��, such
that one cannot conclude whether they are localized or not.
Based on the isomer shift and EFG �Fig. 4�, Eu is definitely
localized, as are all heavier lanthanides. Therefore, two
qualitatively different proposals for the effective pressure are
possible: about 25 GPa �everything starting with Nd is local-
ized� or about 40 GPa �everything below Eu is delocalized,
except for Pm and maybe Nd�. Assuming an effective pres-
sure that is not constant �motivated by the decreasing volume
of heavier lanthanides� does not change this picture �dotted
lines in Fig. 15—these lines qualitatively take the lanthanide
contraction into account�. A more accurate experimental de-
termination of HFF and EFG for Nd, Pm, and Sm in Fe
would allow us to distinguish between both scenarios and
would allow us to determine the real position of the
delocalization-localization transition in this system. Experi-
mental data for Nd in Fe are also for another reason interest-
ing: if Nd in Fe would be found to be localized �itinerant�
and the effective pressure of 40 GPa would known to be
correct �from a Sm measurement, for instance�, then the de-
localization pressure of 113 GPa �35 GPa� for bulk Nd is
probably correct. If the effective pressure of 25 GPa would
be correct, no such conclusion can be made.

In conclusion for this section, accurate measurement of
HFF and EFG for Nd, Pm, or Sm in Fe would offer a lot of
information.

C. Free lanthanide ions

LDA+U calculations for free lanthanide 3+ ions were al-
ready mentioned in Figs. 7–9. A quite complete experimental
data set exists for this situation as well, both for the HFF
�Fig. 16�a�� and the EFG �Fig. 16�b�� �data are copied from
Ref. 97; the original data are in Ref. 98�. In the experiments,
the ions were not really free but were incorporated in a para-

FIG. 14. Total hyperfine field �in tesla� as a function of
temperature.

FIG. 15. The experimental transition pressure from localized 4f
to delocalized 4f electrons for pure lanthanides �squares� and two
possible choices for the effective pressure felt by lanthanides in Fe
�solid and dotted lines� �for details see text�.
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magnetic salt, and the effect of crystal fields was removed
later in order to find the free ion values. By the orbitals
according to Hund’s rules and using the information from
Figs. 7–9 we obtained predictions for the HFF and Vzz for
divalent and trivalent lanthanide ions, which are given by
dashed and solid lines in Fig. 16, respectively. For lan-
thanides in Fe, the positive z direction was naturally defined
by the moments of the ferromagnetic Fe host atoms. For free
lanthanides, the total �=spin+orbital� angular momentum J
determines the positive z direction. Due to this different
choice of axes, there is an apparent sign change for the
heavy lanthanides between Fig. 1 �in Fe� and Fig. 16�a�
�free�. The agreement with experiment is again quite nice. Eu
is divalent �it was trivalent in Fe�, while Yb is trivalent �it
was divalent in Fe�. For Sm there is a large deviation, for
both the HFF and Vzz. But this is no surprise: it is well
known �see also Sec. V A� that there are low-lying excited
states in Sm which will mix with the ground state, such that
our procedure which is based on Hund’s rules ground states
is expected to fail.

D. Noncollinear magnetism

The possibility to consider noncollinear magnetism at ev-
ery infinitesimal region of space has recently been
implemented82 in the WIEN2k code. In principal this can be

an important feature even for collinear antiferromagnets as
we are dealing with here: it allows the spin moment to turn
gradually from the Fe orientation to the opposite lanthanide
orientation, and this is a better replication of what happens
also in nature. We did not attempt a full study, but calculated
the HFF and EFG for Tm in Fe only. All technical param-
eters were chosen exactly the same as in the collinear calcu-
lations. For Tm in Fe as a test example, the total HFF
changes from −822 T in the collinear LDA+U calculation to
−838 T in a noncollinear one, while the EFG remains exactly
the same: −38.1�1021 V/m2. Such a change of 16 T is not
small in absolute value, but is negligible compared to the
large values of the HFF’s in this problem. Therefore we con-
clude that noncollinear magnetism does not play an impor-
tant role for lanthanides in Fe.

VII. CONCLUSIONS AND OUTLOOK

We have demonstrated that with the LDA+U method a
qualitative and quantitative agreement with experiment is ob-
tained for HFF’s of lanthanides in Fe. With the LDA the
deviation with experiment is much worse and for several
cases an incorrect sign of the HFF is predicted. The trend of
the EFG’s is also well reproduced by LDA+U, the devia-
tions from experiment probably being caused by the 4f wave
functions that are rendered too diffuse by LDA-based meth-
ods. These results show that the semi ab initio LDA+U
method is a useful tool, even for such sensitive quantities as
the hyperfine parameters of strongly correlated impurities in
an itinerant magnetic host. We could come to these conclu-
sions only after applying a careful strategy in order to cope
with the lack of a good criterion to determine the true ground
state if LDA+U is used: the density matrices for the 4f or-
bitals were obtained first using a free atom code—specifying
the appropriate exchange field and crystal field parameters—
and were subsequently kept fixed in the LDA+U calculation
�CDM method�. We were able to assign quantitative values
to the unknown parameters in the single-ion Hamiltonian for
lanthanides �Eq. �1��: the exchange field �420 T� could be
determined by requiring a proportionality between the
parallel-antiparallel energy difference and the lanthanide spin
moment, while the crystal field parameters were found by
comparing a large set of HFF’s calculated for different crys-
tal field parameters with experiments. As expected, CF ef-
fects are important especially at the edges of the lanthanide
series. For all lanthanides the 4f spin moment couples ferri-
magnetically to the Fe 3d moment, in agreement with the
model of Campbell and Brooks. The orbital HFF is by far the
dominant contribution to the total HFF �Figs. 1 and 3�. We
discovered a strong contribution of the completely filled 5p
shell to the dipolar HFF and to the EFG, which can be ex-
plained by their common 1/r3 dependence: small deforma-
tions of the 5p shell in a region close to the nucleus are
strongly emphasized. A reinterpretation of recent EFG
calculations82 for uranium in UO2 suggests that the same is
true for the 6p shell in actinides. Furthermore, we conclude
that Yb is divalent in an Fe host, while all other lanthanides
are trivalent �including Eu�. The lightest lanthanides �at least
up to Pr� show delocalized 4f behavior, and we conclude that

FIG. 16. �a� Experimental value for the HFF in free lanthanide
ions, compared with LDA+U predictions based on Figs. 7, 8, and
12 both for divalent and trivalent lanthanides. �b� Experimental
value for Vzz in free lanthanide ions, compared with LDA+U pre-
dictions based on Fig. 9, for both divalent and trivalent lanthanides.
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the delocalization-localization transition that typically hap-
pens already at Ce is postponed for lanthanides in Fe: it falls
at least after Pr and current experiments do not exclude that
it could go up to Sm �although Pm is certainly localized�.
This can be explained by the large effective pressure that is
felt by these lanthanide impurities �either 25 or 40 GPa, Fig.
15�, leading to a larger overlap between the 4f wave func-
tions and the neighboring Fe 3d. The question of a postponed
localization transition has never been touched on before in
the 40 years of experiments on this system. This illustrates
what can be the added value of ab initio calculations for
hyperfine interaction studies. Also in the case of free lan-
thanide ions, HFF and EFG can be quantitatively repro-
duced. Remarkably, Eu is divalent in this case and Yb is
trivalent—just the opposite as for lanthanides in Fe. The ef-
fect of fully noncollinear magnetism on this problem was
tested to be negligible.

With the current methods, there are only limited possibili-
ties to improve the accuracy of the calculations. The super-
cell can be extended to, e.g., 32 atoms and relaxation of the
Fe neighbors can be calculated for every individual element
�this requires the calculation of forces including spin-orbit
coupling and LDA+U, which is time consuming and not yet
fully implemented in WIEN2k�. But as inevitably a rather
arbitrary choice remains to be made for the value of U, it is
not clear whether these sophistications will really improve
the agreement with experiment. And most likely they will
not add anything new to the physical insight. In our opinion,
new progress in this topic will have to come from experi-
ments. Many of the experimentally determined HFF’s and
EFG’s carry still large error bars. Accurate measurements—
for instance, with the NMR/ON method—are desirable �note
that NMR/ON has not yet been applied for any of the lan-
thanides with a large EFG and/or HFF: such large hyperfine
interactions put severe requirements on the equipment�. The
predicted HFF’s and EFG’s from this work should allow one
to reduce considerably the frequency domain that has to be
scanned in an NMR/ON experiment and warrants a more

physical and reliable interpretation of the observed reso-
nances. As with most worthwhile experiments, we suggest a
more accurate determination of HFF and EFG for Pr to Sm:
this would allow one to examine experimentally the position
of the delocalization-localization transition. Another interest-
ing case is Ho, for which we predict that its HFF is almost a
linear interpolation between the values for Dy and Er—about
150 T smaller than what would be expected from a smooth
interpolation of the experimental dataset.

Once finally an experimental data set with improved ac-
curacy becomes available, it can serve in its turn as a testing
ground for future generations of ab initio many-body meth-
ods. This work is illustrative for a paradigm shift that is
going on in hyperfine interactions studies �and in many other
subfields of condensed matter physics�: physical insight and
hints for what is interesting to measure experimentally are
both obtained in the first place by ab initio calculations.
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