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The quantum spin-1 /2 antiferromagnetic Heisenberg model on a two dimensional triangular lattice geometry
with spatial anisotropy is relevant to describe materials such as Cs2CuCl4 and organic compounds such as �
-�ET�2Cu2�CN�3. The strength of the spatial anisotropy can increase quantum fluctuations and can destabilize
the magnetically ordered state leading to nonconventional spin liquid phases. In order to understand these
intriguing phenomena, quantum Monte Carlo methods are used to study this model system as a function of the
anisotropic strength, represented by the ratio J� /J between the intrachain nearest neighbor coupling J and the
interchain one J�. We have found evidence of two spin liquid regions. The first one is stable for small values
of the coupling J� /J�0.65, and appears gapless and fractionalized, whereas the second one is a more con-
ventional spin liquid with a small spin gap and is energetically favored in the region 0.65�J� /J�0.8. We have
also shown that in both spin liquid phases there is no evidence of broken translation symmetry with dimer or
spin-Peirls order or any broken spatial reflection symmetry of the lattice. The various phases are in good
agreement with the experimental findings, thus supporting the existence of spin liquid phases in two dimen-
sional quantum spin-1 /2 systems.
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I. INTRODUCTION

Since the pioneering work by Anderson and Fazekas1 the
spin-1 /2 antiferromagnetic Heisenberg model on the triangu-
lar lattice has been considered one of the most promising
candidates for a spin liquid phase in a frustrated antiferro-
magnet. However, several numerical studies2–5 have all con-
sistently confirmed that in the isotropic triangular lattice the
classical magnetically ordered state appears stable. Neverthe-
less the ordered moment is found considerably smaller than
the classical value,4,5 suggesting that the model is very close
to a quantum critical point,6 namely, to a phase where the
long range antiferromagnetic order is completely destroyed.
This picture is supported by the recently established result
that in the quantum dimer model on the triangular lattice
geometry7 a spin liquid phase is stable, a result that is par-
ticularly important because for instance the same model on
the square lattice displays only non-spin-liquid phases with
broken translation symmetry.8–10

Recent experiments on two different materials11,12 have
renewed the interest in the spin-1 /2 antiferromagnetic
Heisenberg model on the triangular lattice described by the
following Hamiltonian:13

Ĥ = J�
�i,j�

S� i · S� j + J� �
��i,j��

S� i · S� j, �1�

where S� i is a spin 1/2 located at site i on the triangular
lattice, �i , j� ���i , j��� indicates nearest neighbor sites along
the chain �between different chains�, and the correspond-
ing antiferromagnetic couplings are denoted by J and J� �see
Fig. 1�.

Clearly the anisotropy increases the quantum fluctuations

in this model as for J�=0 the Hamiltonian Ĥ reduces to a
system of uncoupled one dimensional �1D� chains, implying
spin fractionalization and no antiferromagnetic order. In this
limit the spin one excitations should form a broad two-

spinon continuum of states as predicted theoretically,14 and
indeed several experiments by inelastic neutron scattering
have revealed this non-trivial-spin dynamics.15

In a series of experiments by Coldea et al.,11 the low
energy spin dynamics of Cs2CuCl4 have been studied sys-
tematically and found to be described essentially by the
model Hamiltonian �1� with anisotropic exchange interaction
J /J��3.0. In their experiments,11 there are two facts sup-
porting the existence of a two-dimensional �2D� spin liquid
phase in this system: �i� a spin spiral phase appears at tem-
peratures below TN�0.6 K, which is about the same order of
magnitude as the interplane coupling J� /J�0.045 in the
third spatial direction, and therefore sizably smaller than the
2D couplings J ��0.37 meV� and J�. In fact, true long range
order in 2D is possible only at zero temperature and a finite
TN is due to the inter plane coupling J� which allows one to
cutoff the logarithmically divergent quantum fluctuations in
2D. A finite TN is therefore expected to be of order
�J� / ln�J� /J��, which appears rather close to the observed
TN�0.6 K. �ii� At temperatures larger than TN �or by apply-
ing an external magnetic field�, the inelastic neutron scatter-
ing experiments11 found that the line shape of the spectrum
consists of a broad continuum, which is in contrast to the
expected behavior of a magnetically ordered state, but is in-
stead similar to the broad two-spinon continuum expected in
the 1D systems mentioned above. Therefore these experi-
ments suggest that spin fractionalization can be realized also
in this 2D system for temperatures higher than the corre-
sponding three-dimensional �3D� transition temperature TN.

Another spectacular experiments on spin-1 /2 quasi-2D
triangular systems have been recently reported by Shimizu
et al.12 Here two organic materials �-�ET�2Cu2�CN�3

and �-�ET�2Cu2�N�CN�2�Cl �where ET denotes
bis�ethylenedithio�-tetrathiafulvalence� are synthesized, cor-
responding essentially to two different values of J� /J
�0.8–0.9 and J� /J�1.8, respectively.12 While the latter
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material shows commensurate spin ordering at TN=27 K, for
the former material no magnetic order is observed even
down to the milli-Kelvin region �	32 mK� regardless the
fact that the estimated value of J is about 250 K. This obser-
vation strongly indicates possible realization of a spin liquid
state for �-�ET�2Cu2�CN�3.12

Motivated by these experiments, we shall consider here
the spin-1 /2 antiferromagnetic Heisenberg model on the tri-
angular lattice with spatial anisotropy described by Eq. �1�.
In particular, we report a detailed and systematic quantum
Monte Carlo �QMC� study of the ground state as well as the
low-lying excitations of this model system as a function of
J� /J. Using both quantum variational Monte Carlo �VMC�
method and Green function Monte Carlo method with an
improved extension of the fixed node approximation �named
effective Hamiltonian approach in this paper�, it is found that
there exist two spin liquid regions in the phase diagram of
this model by varying the ratio J� /J for J� /J�0.8. The first
one is stable for small values of the coupling J� /J�0.65,
and appears to show gapless, fractionalized fermionic exci-
tations. The second one is energetically favored in the region
0.65�J� /J�0.8, and is a more conventional spin liquid
with a small spin gap in the excitation spectrum, the same
type of spin liquid phase realized in the quantum dimer
model in the isotropic triangular geometry.7 It is argued that
the two experimental observations of spin-liquid-like behav-
iors for Cs2CuCl4 and �-�ET�2Cu2�CN�3 mentioned above
should correspond to these two different spin liquid phases
of the model, respectively.

The paper is organized as follows. In Sec. II, we first
introduce the variational wave functions considered �Sec.
II A�, and describe our original optimization method to ob-
tain the minimum energy variational wave function contain-
ing a large number of variational parameters �Sec. II B�. In
order to systematically correct this variational ansatz, an ef-
fective Hamiltonian approach is introduced in Sec. II C
along the line of the well established diffusion Monte Carlo
technique,16 allowing, for continuous systems, to achieve the
best variational wave function with the same phases of the
chosen variational state. As explained in Sec. II D, within
this approach, it is also possible to calculate the low-lying
excitation spectrum, which can be compared directly with
dynamical experimental measurements. In Sec. III, all our
numerical results are reported for the spin-1 /2 antiferromag-
netic Heisenberg model on the triangular lattice as a function

of J� /J, including the decoupled chains case �J�=0�. Finally
our conclusions and remarks are presented in Sec. IV. The
paper is also supplemented by several important appendixes
for the detailed explanation of the methods and the wave
functions used, which should be very useful for reproducing
our results or extending our approach to other model sys-
tems. A part of this work have been reported briefly as a
short communication.17

II. NUMERICAL METHOD

A. Variational wave functions: Projected BCS states

The variational wave function considered in this study is
the so-called projected BCS state defined by


p-BCS� = PG exp��
i�j

f i,j�ci,↑
† cj,↓

† + cj,↑
† ci,↓

† ��
0� , �2�

where ci,�
† �ci,�� is an electron creation �annihilation� operator

at site i with spin ��=↑ , ↓ �, 
0� is the vacuum state with no
electrons, the function f i,j is the so-called pairing function
that contains all variational freedom of the 
p-BCS�, and is
determined by the minimum energy condition, whereas PG is
the usual Gutzwiller projection operator onto the subspace of
singly occupied sites, implying that the total number of elec-
trons N is equal to the number of sites L. The pairing func-
tion f i,j of this projected BCS state can be parametrized using
a BCS Hamiltonian

ĤBCS = �
i,j
�ti,j
�

�

ci,�
† cj,�� + ��i,jci,↑

† cj,↓
† + H.c.�� . �3�

Here ti,j and �i,j as well as the chemical potential ti,i=−�
�assumed uniform� can be considered variational para-
meters, which implicitly determine the pairing function

f i,j corresponding to the ground state �GS� of ĤBCS. Here i , j
�=1,2 , . . . ,L� label the sites of the lattice �see Fig. 1�, i.e.,
r�i= i1��1+ i2��2, in the lexicographic order, so that the condition
i� j in Eq. �2� is meaningful in any spatial dimension.

When ti,j and �i,j depend only on l�=r�i−r� j, i.e., ti,j = tl� and

�i,j =�l�, respectively, ĤBCS can be described more compactly
by

ĤBCS = �
k,�

�	k − ��ck,�
† ck,� + �

k
��kck,↑

† c−k,↓
† + H.c� . �4�

Here

ck,�
† =

1
�L

�
j

e−ik�·r�jcj,�
† , �5�

	k = �
l�

e−ik�·l�tl�, �6�

and

�k = �
l�

e−ik�·l��l�. �7�

For a singlet pairing, �i,j =� j,i, and thus �k=�−k. In this case
the projected BCS wave function defined by Eq. �2� reads

FIG. 1. �Color online� Antiferromagnetic Heisenberg models on
the triangular lattice studied. A spin-1 /2 is located at each dot. ��1

= �1,0� and ��2= � 1
2 ,

�3
2

� denote the primitive translational vectors. A
lattice constant is set to be 1.
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p-BCS� = PG
BCS� , �8�

with 
BCS� being the ground state of ĤBCS given by Eq. �4�:


BCS� = exp��
k

fkck,↑
† ck,↓

† �
0� , �9�

where fk=vk /uk=�k / �
k+Ek�, uk=�1
2
�1+


k

Ek
�, and

Ek = �
k
2 + �k

2 �10�

with 
k=	k−�.
At the variational level, both 
k and �k have to be param-

etrized in order to minimize the variational energy of the 
p
-BCS� wave function. The most relevant parameters for low-
ering the energy are the short range terms, and we have
chosen to expand 	k� =��=1

3 2t���
cos�k� ·����, where t���

are varia-
tional parameters and ��� are the nearest neighbor vectors
���3=��2−��1�. Analogously, the gap function �l� is truncated up
to the third nearest distance along the chain ���1� direction.
This is also because, as will be discussed in Sec. III B, for

the 1D spin-1 /2 antiferromagnetic Heisenberg model Ĥ1D,
inclusion of the parameter �3��1

is known to be crucial for this
type of projected BCS states to represent almost exactly the

ground state of Ĥ1D.18 For the present 2D system described
by Eq. �1�, which preserve C2v symmetry for J��J, the pro-
jected BCS state 
p-BCS� thus contains ten independent
variational parameters in �k �see, e.g., Table I� and the
chemical potential � which, as opposed to the 1D case, may
differ from zero in the triangular lattice case. As will be

discussed in Sec. III C, we found that the variational param-
eters t��2

and t��3
are irrelevant and the energetically favorable

symmetry of �k is A1.17

As shown in Sec. III, the projected BCS state described
above is a very good variational state for J� /J�0.65–0.7.
However, close to the isotropic limit J� /J�1.0, the transla-
tion invariant ansatz state, also previously attempted in the
presence of hole doping,19,20 is not very accurate when com-
pared with the exact diagonalization results possible on the
6�6 cluster.21 In this region of J� /J, as shown in Sec. III D,
we have found that it is more convenient to consider a BCS
Hamiltonian defined on a �2�1� unit cell �see Eq. �55�� for
a much better variational wave function. As shown in Appen-
dix C, by using the projected BCS state thereby constructed,
it is then possible to represent the well known short range
resonant valence bond �RVB� wave function, with a particu-
lar choice of the variational parameters. The RVB state is a
good variational ansatz for the isotropic triangular lattice3

and represents a very convenient initial guess for defining,
within the present 
p-BCS� framework, an accurate varia-
tional state in the nearly isotropic triangular lattice.

B. Minimization method

In order to evaluate the optimal variational parameters
that minimize the energy expectation value

E�
� =
�

H

�
�


�

, �11�

we follow the method, recently introduced for calculations of
electronic structure,22 which will be described in some detail

TABLE I. Optimized variational parameters of the wave function 
p-BCS� for the spin-1 /2 antiferromagnetic Heisenberg model on the
anisotropic triangular lattice �Eq. �1�� with various J� /J and L=18�18. ��n,m� is the gap function �r� for r�=n��1+m��2. All other variational
parameters are zero except for the chemical potential � and the nearest neighbor hopping in the ��1 direction, which is chosen to be 1. The
value of K, variational energy EVMC=E�p-BCS�, FN �FNE� ground state energy EFN=E0

FN �EFNE=E0
eff� with 
�G�= 
p-BCS� are also

presented. The number in parentheses is the statistical error bar of the quantity corresponding to the last digit of the figure.

J� /J 0.1 0.2 0.33 0.4 0.5 0.6 0.7

� −0.066�4� −0.085�5� −0.109�4� −0.147�4� −0.200�4� −0.232�4� −0.253�3�

��1,0� 2.28�2� 2.02�2� 1.74�2� 1.61�3� 1.48�3� 1.36�2� 1.24�3�
��0,1� 0.545�7� 0.617�6� 0.627�6� 0.644�8� 0.689�8� 0.739�7� 0.787�7�
��1,1� 0.155�4� 0.179�3� 0.192�3� 0.214�4� 0.256�4� 0.293�3� 0.329�4�
��−1,2� 0.007�5� 0.099�6� 0.147�6� 0.160�6� 0.162�8� 0.153�4� 0.143�6�
��2,0� −0.010�1� −0.006�2� −0.0012�8� 0.002�2� 0.013�1� 0.025�2� 0.037�2�
��0,2� 0.195�3� 0.159�5� 0.070�3� 0.058�4� 0.062�4� 0.068�5� 0.066�4�
��2,1� 0.346�4� 0.381�4� 0.370�4� 0.363�5� 0.360�5� 0.361�6� 0.356�6�
��1,2� 0.041�2� 0.085�3� 0.098�3� 0.102�4� 0.102�5� 0.097�6� 0.095�4�
��−2,3� 0.052�1� 0.040�1� 0.006�2� 0.006�2� 0.010�2� 0.013�2� 0.015�1�
��3,0� 0.491�5� 0.434�4� 0.383�4� 0.363�5� 0.345�5� 0.327�6� 0.304�6�

K−1 1.00243�3� 1.01014�7� 1.0286�2� 1.0434�2� 1.0700�3� 1.1030�3� 1.1425�3�

EVMC/JL −0.44590�1� −0.44687�1� −0.44929�2� −0.45118�2� −0.45474�2� −0.45932�2� −0.46514�2�

EFN/JL −0.446074�1� −0.44723�1� −0.45005�1� −0.45223�1� −0.45628�1� −0.46156�1� −0.46823�1�

EFNE/JL −0.446075�1� −0.447233�2� −0.45007�1� −0.45229�1� −0.45642�1� −0.46183�1� −0.46875�1�
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in the following. According to this method, in order to reach
the minimum energy E�
� in a stable and efficient way, the
logarithmic derivative Ok�x� of the wave function 
��k��x�
= �x 

��k�� with respect to each variational parameter �k

= ti,j and/or �i,j �k=1,2 , . . . , p� has to be evaluated on a
given N-electron configuration x= �r1 , . . . ,rN� , namely,

Ok�x� =
�

��k
ln 
��k��x� . �12�

In fact, for infinitesimal changes of these variational param-
eters, �k→�k�=�k+��k, the corresponding change of the
wave function reads


��k���x� = 
��k��x��1 + �
k=1

p

Ok�x� · ��k + O���k
2�� .

�13�

In order to simplify the notations, here we introduce the op-

erator Ôk corresponding to Ok�x� which is defined by

�x
Ôk
x�� = Ok�x� · �xx�. �14�

Using this operator form, the above equation is more com-
pactly written as



��k��� = �1 + �
k=1

p

��kÔk�

��k�� �15�

valid up to O���k
2�.

For the minimization method described below, it is impor-
tant to evaluate numerically the value Ok�x� corresponding to
a given real space configuration of electrons x satisfying the
constraint of no doubly occupied sites. To this purpose, we
have to recall that the variational parameters �i,j and ti,j are

explicitly defined in ĤBCS �Eq. �3��, but only implicitly in the
wave function itself, defined as the ground state of this un-
projected BCS Hamiltonian 
BCS� �Eq. �2��. Thus, in order
to evaluate the logarithmic derivatives of the wave function


��k�� with respect to a variational parameter �k, we apply

simple perturbation theory to ĤBCS and calculate the per-
turbed state 

��k+��k��, within linear order in ��k. It is then
possible to compute �x 

��k+��k�� using simple algebra and

within the same accuracy O���k
2�. After recasting the calcu-

lation by using appropriate matrix-matrix operations, the
evaluation of Ok�x� is possible in an efficient way, using only
��2L�2 operations for each variational parameter �k. More
details of the method are found in Appendix A.

The minimization method used here is similar to the stan-
dard and well known steepest descent method, where the
expectation value of the energy E�
��k�� is optimized by it-
eratively changing the parameters �k �k=1, . . . , p� according
to the corresponding derivatives of the energy �generalized
forces�:

fk = −
�E�
��k��

��k
= −

�
��k�
�ÔkĤ + ĤÔk�

��k��

�
��k�

��k��

+ 2E�
��k��
�
��k�
Ôk

��k��

�
��k�

��k��
, �16�

namely,

�k → �k� = �k + fk · �t , �17�

where �t in the standard steepest descent method is deter-
mined at each iteration by minimizing the energy expectation
value.23 The above expressions for the forces fk can be com-
puted statistically by appropriately averaging the local en-
ergy

eL�x� =
�
��k�
Ĥ
x�

�
��k�
x�

and Ok�x� over a set of configurations �xl�, l=1,2 , . . . ,M
distributed according to the square of the wave function

�x 

��k��
2, generated with a standard variational Monte
Carlo �VMC� scheme, namely,

fk = −
2

M
�
l=1

M

Ok�xl�eL�xl� + 2ŌkēL, �18�

Ōk =
1

M
�
l=1

M

Ok�xl� , �19�

ēL =
1

M
�
l=1

M

eL�xl� �20�

and thus fk can be computed efficiently once Ok�x� and eL�x�
are evaluated for any sampled configuration. Here we as-
sumed that all quantities are real. However an extension to
the complex case is straightforward.

Now, for simplicity, we assume that �t is positive and
small enough. Indeed the variation of the total energy

�E = E�
��k��� − E�
��k�� = − �
k=1

p

fk · ��k + O���k
2�

�21�

at each step is easily shown to be negative for small enough
�t because in this limit

�E = − �t�
k=1

p

fk
2 + O��t2� . �22�

Thus the steepest descent method certainly converges to the
minimum of the energy when all the forces vanish.

Let us now generalize the steepest descent method by
slightly modifying the basic iteration �17� with a suitably
chosen positive definite matrix s̄:
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�k → �k� = �k + �t�
l=1

p

sk,l
−1f l. �23�

Again, using the analogy with the steepest descent method,
convergence to the energy minimum is reached when the
value of �t is sufficiently small and is kept positive constant
for each iteration. In fact, similarly to the steepest descent
method, the energy variation corresponding to a small
change of the parameters is

�E = − �t�
k=1

p

�
l=1

p

sk,l
−1fkf l + O��t2� �24�

and is always negative for small enough �t, unless the mini-
mum condition of fk=0 is reached and the variational param-
eters no longer change because ��k=0. It should be noted
here that the steepest descent method is a special case with
the matrix s=1 �unit matrix�.

A more convenient choice for the matrix sj,k is given by22

sj,k =
�
��k�
ÔjÔk

��k��

�
��k�

��k��
−

�
��k�
Ôj

��k��

�
��k�

��k��

�
��k�
Ôk

��k��

�
��k�

��k��
.

�25�

This matrix can be efficiently evaluated statistically, and
similarly to the forces fk, can be obtained within a VMC
scheme once Ok�x� are computed for a set of configurations
�xl�, l=1,2 , . . . ,M distributed according to the wave function
squared 
�x 

��k��
2, namely,

sj,k =
1

M
�
l=1

M

�Oj�xl� − Ōj��Ok�xl� − Ōk� , �26�

where Ōk and Ōj are defined in Eq. �19�. For whatsoever
choice of the M configurations �xl�, this matrix remains posi-
tive definite regardless of the statistical noise �at most it has
vanishing eigenvalues�, because it is explicitly written in Eq.
�26� as an overlap matrix in RM between the p vectors

Ok�xl�− Ōk �k=1, . . . , p�. In this paper, this generalized
method defined by Eq. �23� with the matrix s̄ given by Eq.
�25� will be called the stochastic reconfiguration �SR� opti-
mization method. It should be noted here that other conve-
nient types of positive definite matrix have been recently
proposed.24,25 However for the present purpose the improve-
ment does not appear important.

Let us next discuss why the choice Eq. �25� for the matrix
s̄ in the SR scheme �Eq. �23�� is particularly simple and
convenient compared to the simplest steepest descent
method. For a stable iterative method for the energy optimi-
zation, such as the SR method and the steepest descent one,
a basic ingredient is that at each iteration the new set of
parameters ��k�� are determined close enough to the previous
set ��k� in terms of a prescribed distance. The fundamental
difference between the SR minimization and the standard
steepest descent method is simply related to the definition of
this distance ��.

Within the SR scheme, �� is chosen to be the square
distance between the two normalized wave functions corre-

sponding to the two different sets of variational parameters
��k�� and ��k�, i.e.,

��
�SR� = 2 − 2

�
��k�

��k���

��
��k�

��k���
��k��

��k���
. �27�

The reason to normalize the two wave functions before com-
puting their distance is obvious because, within a VMC
scheme, the normalization of the wave function is irrelevant
for quantum mechanical averages. The basic advantage of
the SR method is the possibility to work directly with the
wave function distance ��

�SR�. In fact, this quantity can be
explicitly written in terms of the matrix s̄ �Eq. �25�� by sub-
stituting Eq. �15� in its definition Eq. �27�, yielding

��
�SR� = �

k=1

p

�
l=1

p

sk,l��k� − �k���l� − �l� + O�
�k − �k�

3� .

�28�

Therefore the most convenient change of the variational pa-
rameters is to minimize the functional

F���k� − �k�� = �E + �̄��
�SR�.

Here �E is the linear change in the energy �E=−�kfk��k�
−�k�, and for ��

�SR� the leading term of the expansion in

small �k�−�k given in Eq. �28� can be used. �̄ is a Lagrange
multiplier that allows for a stable minimization with small
change ��

�SR� of the wave function 

��k��. Then the station-
ary condition �F���k�−�k�� /���k�−�k�=0 naturally leads to
the SR iteration scheme described by Eq. �23� with �t

=1/ �2�̄�.
In a similar manner, it is also possible to obtain the stan-

dard steepest descent method. In this case the Cartesian met-
ric defined in the p-dimensional space of the variational pa-
rameters is implicitly assumed to distinguish the two sets of
variational parameters, i.e., the distance here is defined to be

��
�SD� = �

k=1

p

��k� − �k�2.

The same argument used above to minimize �E+ �̄��
�SD�

with respect to the variational parameter change �k−�k� will
then lead to the standard steepest descent algorithm de-
scribed by Eq. �17�.

The advantage of the SR method compared with the
steepest descent one is now transparent. Sometimes a small
change of the variational parameters corresponds to a large
change of the wave function, and conversely a large change
of the variational parameters can imply only a small change
of the wave function. The SR method takes into account this
effect through a better definition of the distance ��

�SR� �Eq.
�27��.

Here a single SR iteration of the SR minimization scheme
is summarized as follows: �i� a set of variational parameters
��k�= ��k

�i�� is given after the ith iteration, �ii� the generalized
force fk �Eqs. �16� and �18�� and the matrix s̄ �Eqs. �25� and
�26�� are calculated statistically using a small variational
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Monte Carlo simulation �bin� containing typically a few
thousand samples �M =1000–10 000� distributed according
to the wave function squared 

��k��x�
2, and �iii� a new set

of the variational parameters ��k
�i+1�� is determined from Eq.

�23� with a suitable choice of �t. After a few hundred �or
sometimes thousand� SR iterations needed for equilibration,
the iteration described above is further repeated to statisti-
cally average the optimized variational parameters until the
desired statistical accuracy is reached. This method allows
for a very accurate determination of the optimized varia-
tional parameters with very small statistical uncertainty. In
the present study, all the variational parameters are optimized
using this SR minimization method.

A sample case study for the SR minimization scheme is
presented in Fig. 2 for the 1D antiferromagnetic Heisenberg
model on a L=22 ring. As seen in Fig. 2, after the first few
hundred SR iterations needed for equilibration, the varia-
tional parameters fluctuate around the stable mean values. It
is interesting to notice in Fig. 2 that the variational param-
eters may continue to change substantially, even after the
energy appears to reach its equilibrium value only after the
first �50 SR iterations. The reason is that a very tiny energy
gain, not visible in this plot, is implicitly reached at equilib-
rium, by satisfying very accurately the Euler condition of
minimum energy, i.e., fk=0 for k=1,2 , . . . , p. A stochastic
minimization method such as the steepest descent method or
the SR one, which is based not only on the energy but also
on its derivatives �fk�, is therefore much more efficient, es-
pecially for statistical methods where energy differences for
slight changes of the variational parameters are often very
noisy.

Having determined the optimized variational parameters
��k

*� as described above, a single standard VMC simulation

is performed to calculate various physical quantities for


��k

*�� using a bin length much larger than the one used in
the SR minimization procedure. Nevertheless, the mentioned
Euler conditions �fk=0 for all k� are usually satisfied within a
few standard deviations simply because the statistically av-
eraged variational parameters are much more accurate than
the ones obtained at the final SR iteration.26

C. Effective Hamiltonian approach

As is well known, within the variational approach, it is
sometimes very difficult to describe long range properties
accurately. This is simply because these long range proper-
ties are rather insensitive to the energy, which is instead de-
termined mainly by short range correlation functions. A clear
example of this limitation is found when this method is ap-
plied, for instance, to study the long range antiferromagnetic
order for the spin-1 /2 antiferromagnetic Heisenberg model
on the square lattice. The long range antiferromagnetic order
is now considered a well accepted and established property
of this model.27–29 Nevertheless it has been shown in Ref. 30
that two wave functions with completely different long-
distance properties, with or without antiferromagnetic long
range order, provide similar and very accurate �within 0.1%
accuracy� energy per site in the thermodynamic limit.

Here we shall consider a possible way to overcome this
limitation of the variational method by introducing what will
be named the “effective Hamiltonian approach” in the fol-
lowing. The main idea of this method is to approximate, as

accurately as possible, the exact Hamiltonian Ĥ by an effec-

tive Hamiltonian Ĥeff, for which the exact ground state can
be numerically sampled by Green function quantum Monte
Carlo schemes. The important point is that, within this con-
struction, some of the important short range properties of the

Hamiltonian Ĥ are preserved, and therefore a much better
control of correlation functions is achieved compared to a
mere variational approach.

The short range properties of the Hamiltonian Ĥ can be
conveniently defined in the configuration basis �x�. Each el-
ement of this basis is defined by the positions and spins of
the N electrons. In this basis the matrix elements of the

Hamiltonian Ĥ are then indicated by �x
Ĥ
x��=Hx,x�. In this
paper, we define a short range Hamiltonian as a Hamiltonian

Ĥ for which the off-diagonal matrix elements Hx,x� are non-
zero only for configurations x and x� connected one to the
other by local short-range “moves” of electrons �e.g., hop-
pings or spin-flips�. More precisely,

�Hx�,x � 0 for 
x − x�
 � R,

Hx�,x = 0 otherwise,
� �29�

where R determines the range of the off-diagonal matrix el-
ements. In this definition, not only conventional Hubbard,
Heisenberg, and t−J models can be thought of short range
Hamiltonians �with R=1�, but also models with any interac-

tion V̂ which is diagonal in the configuration basis �x�
�Vx,x��Vx�x,x��, e.g., the long range Coulomb interactions,
can be considered short range Hamiltonians. Therefore,

FIG. 2. �Color online� Monte Carlo evolution of �a� variational
parameters ��1 and �3� and �b� energy as a function of stochastic
reconfiguration �SR� iterations for the 1D spin-1 /2 antiferromag-

netic Heisenberg model Ĥ1D on a L=22 ring. Here the SR method
with �t=0.2/J �Eq. �23�� is used. In �a�, �1 and �3 are the two
variational parameters of the wave function �for details, see Sec.
III B�, which are both initialized to the value �1=�3=1. In �b�, at
each iteration, the energy is computed by a small VMC simulation
for the wave function with the fixed variational parameters given at
the corresponding iteration in �a�.
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within this definition, most of the physically relevant Hamil-
tonians are short range, essentially because quantum fluctua-
tions are important only through the short range off-diagonal
matrix elements, in the absence of which the Hamiltonian is
simply classical.

At present, short-range spin Hamiltonians which can be
solved numerically by quantum Monte Carlo methods are the
ones for which the quantity

sx�,x = �G�x��Hx�,x�G�x� � 0 �30�

is strictly negative for all nonzero matrix elements
Hx�,x. Whenever a wave function �G�x� satisfying this
condition exists, a unitary transformation Hx,x�
→sgn��G�x��sgn��G�x���Hx,x� transforms the Hamiltonian to
a standard bosonic one �namely, with all nonpositive off-
diagonal matrix elements� that can be solved numerically
with quantum Monte Carlo techniques, without facing the
so-called “sign problem.”31 For instance, for the antiferro-
magnetic Heisenberg model in any bipartite lattice, a particu-
larly simple variational wave function �x 
�G�=�G�x� satisfy-
ing the Marshall sign rule �G�x�� �−1�NA, allows one to
satisfy the condition sx,x��0, where NA is the number of
electrons with down spin on one of the sublattices for the
given configuration �x� �see Appendix B�. With this wave
function �G�x�, it is therefore possible to solve numerically
the spin-1 /2 antiferromagnetic Heisenberg model in 1D, on a
two-leg ladder, and on the 2D square lattice. In these cases, it
is also clear that with the same Marshall sign of the wave
function �G�x�, different low energy properties can be ob-
tained, i.e., a gapless spin liquid ground state for the single
chain, a gapped spin liquid for the two-leg ladder, and a
quantum antiferromagnet for the 2D limit.

However, as is well known, only for very particular mod-
els the Marshall sign rule and Eq. �30� are satisfied,28,29,32

and in general Eq. �30� is violated regardless of the wave
function 
�G� used. Even when a wave function 
�G� with the
optimal signs, i.e., the exact GS signs, is used for generic
frustrated Hamiltonians, there still exist off-diagonal matrix
elements with sx,x��0 �notorious sign problem�. Namely,
due to frustration, they do not decrease the energy expecta-
tion value.

In order to overcome this difficulty and treat more generic

models, we will define below an effective Hamiltonian Ĥeff,

which is closely related to Ĥ, by using an optimal wave
function �G�x�, which is named in the following the “guiding
function.” This guiding wave function is required to be non-
zero for all configurations �x�. Even if this requirement is not
satisfied, all the forthcoming analysis remains valid in the
subspace of configurations �x� for which �G�x��0. Once the

guiding wave function is provided and thus Ĥeff is defined,

the effective model system Ĥeff is solved exactly using the
standard Green function quantum Monte Carlo method.33 As

will be shown later, the low energy properties of Ĥeff are
weakly dependent on the low energy properties, i.e., long
range behavior, of �G�x�.

The GS wave function of Ĥ is approximated by the GS of

an effective Hamiltonian Ĥeff. This approximate variational
state is very good in energy because most of the matrix ele-

ments of Ĥ are treated exactly in Ĥeff, whereas the remaining

ones are removed and traced to the diagonal terms of Ĥeff. As
it will be shown later on, this enforces the constraint that the

GS of Ĥeff has the same non trivial signs of �G�x�. Therefore,
if �G�x� is chosen to have the same signs of the exact ground

state of Ĥ for most configurations, this approach becomes
essentially exact.34

Within the effective Hamiltonian approach, the problem
to construct an accurate approximate wave function for the

GS of Ĥ is therefore related to how to know phases of the
GS. This, we believe, is a much simpler task, because a good
variational wave function of a short range Hamiltonian
should provide also good phases. In fact, the variational en-
ergy of the guiding function 
�G�

E��G� =

�
x,x�

sgn�sx,x��
�G�x��G�x��Hx,x�


�
x


�G�x�
2
,

depends strongly on the signs of �G�x� via the short range
terms appearing in sx,x�. This assumption that a variational
wave function with accurate energy should have very good
signs can be checked directly on small size clusters. More-
over, for the nearest neighbor antiferromagnetic Heisenberg
model on the square lattice, it is known that all good varia-
tional wave functions satisfy the Marshall sign rule, although
they may display different large distance behaviors.30 This
fact clearly confirms this assumption because all these wave
functions differ only in their amplitudes but not in their
phases.

From these considerations, in this paper, we will choose
as a guiding function the projected BCS wave function

p-BCS� described in the previous subsection with the varia-
tional parameters optimized for each J� /J by a careful en-
ergy minimization using the SR scheme �Sec. II B�. In most
cases, due to the quality of the guiding function used, no
relevant corrections are found in the various large distance
correlations calculated for 
p-BCS� when these are compared

with the ground state correlations of Ĥeff. In some special
cases, the use of the effective Hamiltonian approach is in-
stead of crucial importance.

1. Definition of the effective Hamiltonian

As mentioned previously, the effective Hamiltonian Ĥeff is

defined in terms of the matrix elements of Ĥ, which are
chosen to generate a dynamic as close as possible to the
exact one. An obvious condition to require is that if 
�G� is

exact, then the ground state of Ĥeff and its eigenvalue have to

coincide with the ones of Ĥ. In order to fulfill this condition,
the so-called lattice fixed node �FN� was proposed.35 In the
standard lattice fixed node approach, all the matrix elements
which satisfy Eq. �30� are unchanged, whereas the remaining
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off-diagonal matrix elements are dealt semiclassically and
traced to the diagonal term, defining the standard FN Hamil-

tonian Ĥeff= ĤFN. The FN Hamiltonian ĤFN is obtained by
modifying its diagonal elements in a way that the local en-

ergies corresponding to the FN Hamiltonian ĤFN and the

exact one Ĥ coincide for all configuration x, namely,

��G
Ĥ
x�
��G
x�

=
��G
ĤFN
x�

��G
x�
, �31�

and therefore the FN Hamiltonian is defined by

Hx�,x
FN = �Hx�,x if x� � x and sx�,x � 0,

0 if x� � x and sx�,x � 0,

Hx,x + Vsf�x� if x� = x ,
� �32�

where

Vsf�x� = �
�x���x�,sx�,x�0�

�G�x��Hx�,x/�G�x� .

The FN approach was inspired from the similar fixed node
method on continuous systems,16 and indeed is a well estab-
lished approach35 which provides also variational upper
bounds of the exact ground state energy E0, i.e., E0�E0

FN

�E��G� where E0
FN is the ground state energy of ĤFN.

As we will show below, for lattice systems there is a
better way to choose this effective Hamiltonian,36 which not
only provides better variational energies, but also allows for
a better accuracy of the low energy long distance properties
of the ground state. For this end, it is important to notice the
following key difference between a lattice system and a con-
tinuous one: in the lattice system the configurations �x�
which do not satisfy the condition �30� may be a relevant
fraction of the total number of configurations, whereas in the
continuous case such configurations represent just an irrel-
evant “nodal surface” of the phase space. Therefore dropping
all the off-diagonal matrix elements with sx,x��0 as in the
standard FN method seems to be a too drastic approximation
for the lattice case. This approximation can be indeed im-
proved for lattice systems because, contrary to the continu-
ous case, the FN Hamiltonian does not provide the best
variational state with the same signs of the chosen guiding
function �G�x�.

The main consequence of neglecting all the off-diagonal
matrix elements with sx,x��0 is a bias of the dynamic, as
electrons cannot move freely in some of the configurations.
In order to compensate this bias in the diffusion of the elec-
trons, we introduce a renormalization constant K�1, which
reduces the off-diagonal “hopping” in the allowed configu-
rations with sx,x��0:

Hx�,x
eff = �KHx�,x if x� � x and sx�,x � 0,

0 if x� � x and sx�,x � 0,

Hx,x + Vsf�x� if x� = x ,
� �33�

whereas in order to satisfy the condition �31� Vsf is modified
as follows:

Vsf�x� = �1 − K� �
�x���x�,sx�,x�0�

�G�x��Hx�,x/�G�x�

+ �
�x���x�,sx�,x�0�

�G�x��Hx�,x/�G�x� .

2. Optimal choice for the constant K

Whenever there is no sign problem and sx,x��0, K=1 is

obviously the best choice for which Ĥ= Ĥeff. Also this choice
K=1 coincides with the standard lattice FN approach �Eq.
�32�� �which will be denoted by the acronymous FN�. Con-

versely, when the sign of the off-diagonal term in Ĥ are
frustrated �sx,x��0�, a better choice of the constant K can be
obtained by using a relation which has been well known for
continuous systems, and used to correct efficiently the error
due to the finite time slice discretization in the diffusion
Monte Carlo �DMC� calculations.37

Let us first discuss this relation used in DMC before con-
sidering the lattice case. In the DMC, the small imagi-
nary time ���� evolution of the electron configurations
is governed by the exact Hamiltonian propagation 
��
→exp�−Ĥ���
��, with a diffusion coefficient D determined

only by the free kinetic operator in Ĥ. It is then possible to
correct the approximate finite �� dynamic corresponding to
the fixed node Hamiltonian, by requiring that it satisfies ex-
actly the short time diffusion condition. This condition can
be simply written as

�x�,�Ĥ,x��� = D , �34�

where D=3�2 /m is the diffusion coefficient in three dimen-
sions, and x� is the electron position operator.

For lattice systems with periodic boundary conditions
�PBC�, the position operator x� is not well defined, as it can-
not be matched with the boundary conditions. This limitation
can be easily solved by using periodic spin position operators
defined in the exponential form by

X̂� = exp�i�
R�

�h�� · R� �Ŝ
R�
z � , �35�

where Ŝ
R�
z

is the z component of the spin operator at site R� ,

and � labels the spatial coordinates, e.g., h�x= �2� / l ,0� and

h�y = �0,2� / l� for a L= l� l square lattice. These operators are

diagonal in the basis of configurations �x�, �x
X̂�
x��
=X��x��x,x�, as is the analogous position operator x� in the

continuous case. Remarkably X̂� is exactly equivalent to the
well known Lieb-Schultz-Mattis operator, used to show a
well known property on the low energy spectrum of spin-1 /2
Heisenberg Hamiltonians.38 After simple inspection, a rela-
tion similar to Eq. �34� can be found also for the periodic

spin position operators X̂�, by simply imposing the following
equation:
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��G
�X̂�
†,�Ĥ,X̂���
�G� = ��G
�X̂�

†,�Ĥeff,X̂���
�G� . �36�

For the lattice case, both the left hand side and the right hand
side of this relation have non trivial expectation values. Both
of them can be simply calculated by a standard VMC method
without particular difficulty, after recasting them in a more
conventional form for VMC calculations

��G
�X̂�
†,�Ĥ,X̂���
�G�

= − �
x

�
x�

�G�x��G�x��Hx,x�
X��x� − X��x��
2

= − �
x


�G�x�
2��
x�

�G�x��Hx,x�
X��x� − X��x��
2/�G�x�� ,

�37�

a relation that is obviously valid both for H= Ĥ and for

H= Ĥeff. Here we assumed Hx,x�=Hx�,x. Therefore, similarly
to the continuous scheme,37 the value of the constant K can
be determined from Eq. �36� with high statistical accuracy.
Note that if there is no sign problem, i.e., sx,x��0 for all
configurations �x�, the constant K turns out to be exactly one

with vanishing statistical error, yielding again Ĥeff= Ĥ.
After determining the constant K, the effective Hamil-

tonian Ĥeff �Eq. �33�� is defined, and the ground state 
�0
eff�

with its eigenvalue E0
eff and the corresponding low energy

excitations of Ĥeff can be computed using the standard Green
function quantum Monte Carlo method33 without sign prob-
lem.

To compute the expectation value of the energy

E��0
eff� =

��0
eff
Ĥ
�0

eff�
��0

eff
�0
eff�

�38�

using 
�0
eff� as an approximate ground state for Ĥ, the method

described in Ref. 39 can be applied, which very often im-
proves sizably the upper bound estimate of the energy, i.e.,
E0�E��0

eff��E0
eff�E��G�, even in the standard FN case

with K=1.37 As also remarked in Ref. 39, contrary to the
continuous case, for lattice Hamiltonians the lowest varia-
tional energy E��0

eff� does not correspond to K=1 in general.
In the following, we will indicate by FNE the improved FN
effective Hamiltonian method �Eq. �33�� with the constant
K�1 determined by the condition �36�, using for 
�G� the
lowest energy variational wave function of the form de-
scribed in Sec. II A.

D. Calculation of dynamical correlation functions

The spin-one excitation spectrum of the effective Hamil-

tonian Ĥeff can be calculated by applying the forward walk-
ing technique33 used to evaluate the imaginary time evolu-
tion of the following quantity:

S�k,�� =
��G
Ŝk

z e−�Ĥeff
Ŝ−k

z 
�0
eff�

��G
e−�Ĥeff

�0

eff�
, �39�

where Ŝk
z = 1

�L
�re

ik·rŜr
z and 
�0

eff� is the ground state of Ĥeff.
Note that the imaginary time propagation in Eq. �39� can be
evaluated without discretization errors in time �, as is com-
mon to many other Quantum Monte Carlo techniques,40 and
also pointed out in Ref. 41 for the present Monte Carlo
scheme. By simple inspection, the spin one excitation energy

Ek
S=1 of Ĥeff for momentum k can be calculated by fitting the

large imaginary time behavior of S�k ,���exp�−E�k���. Here

E�k�=Ek
S=1−E0

eff and E0
eff is the ground state energy of Ĥeff.

Thus we fit ln S�k ,�� with

ln S�k,�� = − �E�k� + A + B ln��� �40�

for ���c, where A, B, and E�k� are fitting parameters, and �c

is a suitable cutoff time, large enough so that the fitting form
�40� can be used with good accuracy. In fact, the present fit is
very stable in �, and a satisfactory convergence of E�k� is
obtained even for relatively small �c�2/J.

As a typical example, Fig. 3�a� shows a semilog plot of
S�k ,�� at k=� for the 1D spin-1 /2 antiferromagnetic Heisen-

berg model Ĥ1D. It is clearly seen that for a wide region of
��2/J, ln S�k ,�� is linear so that we can safely estimate the
excitation energy E�k� with Eq. �40�. The error bars for E�k�
can be efficiently evaluated by using the “bootstrap
technique,”42 because the numerator and the denominator of
Eq. �39� are highly correlated. To demonstrate the accuracy

and reliability of the method, the calculated E�k� for Ĥ1D is
shown in Fig. 3�b�. As seen in the figure, the agreement
between our results and the exact values is excellent.

It is worthwhile to emphasize that, within this method, a
single Monte Carlo simulation allows one to calculate all the
lowest spin one excitation energies for various momenta with
no extra effort. Moreover, the method is not restricted to the

FIG. 3. �Color online� �a� Imaginary time � evolution of S�k ,��
at k=� for the 1D spin-1 /2 antiferromagnetic Heisenberg model

Ĥ1D on a L=22 ring. �b� Excitation energy E�k�=Ek
S=1−E0

eff ex-
tracted from S�k ,�� with large � shown in �a� �squares�. The error
bars are smaller than the size of the symbols. For comparison, the
exact values are also presented by solid circles.
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computation of the spin triplet spectrum alone, but can be

easily generalized to arbitrary operators Ô as long as they are
diagonal in terms of the chosen basis �x�. Although the high
energy excitations are more difficult to calculate because the
signal decays much faster in time, the most important low
energy spectrum can be accurately determined.

III. NUMERICAL RESULTS

A. Projected BCS wave functions and particle-hole symmetry

Before presenting our numerical results, here we will
show an important relation between the projected BCS wave
function 
p-BCS� and the particle-hole symmetry,43 which
turns out to be crucial to differentiate spin systems defined
on the conventional nonfrustrated square lattice and the ones
defined on the triangular lattice geometry. In both cases each
site of the lattice is represented by a vector r=r1��1+r2��2 with
r1 and r2 being integer �see, e.g., Fig. 1�. Then a particle-hole
transformation is defined with

cr,�
† → �− 1�r1+r2cr,�, �41�

or in the reciprocal lattice space with the reciprocal lattice
vectors g�1 and g�2, this transformation is equivalently defined
with

ck,�
† → c−k+Q,�, �42�

where Q= �g�1+g�2� /2. As shown in Appendix B, whenever

the BCS Hamiltonian ĤBCS is invariant under the particle-
hole transformation and �k is real, i.e.,

�k = − �−k+Q,

�k = − �−k+Q,

� = 0, �43�

the corresponding projected BCS wave function 
p-BCS�
�Eq. �8�� satisfies the so-called Marshall sign rule.44 The
Marshall sign rule is an exact property for the ground state of
the spin-1 /2 antifferomagnetic Heisenberg model on non-
frustrated lattices such as the square lattice, and indeed for
these models the minimum variational energy is achieved
when this rule is satisfied by the projected BCS wave func-
tion 
p-BCS�.

B. One dimensional limit and spin fractionalization

We shall first show the results for the uncoupled chain
limit, i.e., for the 1D spin-1 /2 antiferromagentic Heisenberg
model with nearest neighbor coupling:

Ĥ1D = J�
�i,j�

S� i · S� j . �44�

Several previous studies18,45 have found that the ground state

of Ĥ1D can be described very accurately by the projected
BCS wave function 
p-BCS� �Eq. �8�� with only the nearest
neighbor hopping ti,j =�i,j±1 and the first three neighbors for
the gap function �i,j =�l�i,j±l�l=1,2 ,3�. Here the site-i is

represented by the vector r�i= i��1. Notice that the ground state

of Ĥ1D satisfies the Marshall sign rule, and therefore from
Eq. �43� with Q=�, � and �l with l even have to be identi-
cally zero. It was also pointed out18 that the inclusion of the
third neighbor gap function �3 is crucial to improve the ac-
curacy of the 
p-BCS�. As shown in Fig. 2�a�, the optimized
parameters for L=22 are �1=2.947±0.003 and �3
=0.737±0.002 with the notations of Eq. �7�, i.e., �k
=2�1 cos k+2�3 cos 3k. The corresponding variational
estimate of the total energy is E /J=−9.78411±0.00005
which is in excellent agreement with the exact value of
E /J=−9.78688. For larger clusters the variational parameters
change slightly and smoothly, and the same kind of accuracy
is obtained even in the infinite size limit. By simple quad-
ratic �linear� extrapolation in 1/L for the energy ��l� with
data up to L=150 sites, we found E /JL=−0.442991�3� ��1

=3.41�3�, �3=0.90�1�� which compares very well with the
well known exact value E /JL=−�ln 2−1/4�=−0.443147.
This result suggests that our variational method is particu-
larly accurate in describing this 1D exactly solvable case,
which is precisely our starting point for studying weakly
coupled chains with J��0.

In the rest of this subsection, we shall show that also the
low-energy excited states can be described by projected BCS
states. As we mentioned above, to satisfy the Marshall sign
rule, the optimized variational parameters in 
p-BCS� meet
the constraint relation �43� with Q=�. Therefore, the spin-
1 /2 BCS excitation spectrum Ek �Eq. �10�� shows gapless
excitations at k= ±Q /2, in perfect agreement with the exact
spinon spectrum of the Bethe-ansatz solution.14 Since the
elementary excitations of the BCS Hamiltonian with energy
Ek are described by the standard Bogoliubov modes46

�k,↑
† = ukck,↑

† − vkc−k,↓,

�−k,↓ = vkck,↑
† + ukc−k,↓, �45�

the simplest variational state for the spinon at momentum k
is


k� = PG�k,↓
† 
BCS� . �46�

To see whether this state 
k� corresponds to a spinon state,
we consider a ring with odd number of sites L=31 and z
component of the total spin Sz

tot=−1/2. For this case it is
known that a well defined spinon exists only for half of the
total Brillouin zone �� /2� 
k
���.47 For this branch, as
shown in Fig. 4, the wave function 
k� represents very well a
spinon with momentum k, as can be verified by the good
accuracy in the energy and its small variance

�2�
k�� =
�k
Ĥ2
k�

�k
k�
− � �k
Ĥ
k�

�k
k�
�2

. �47�

The variance �2�
k�� is zero for an exact eigenstate, and is
small for a very accurate variational state. As seen in Fig. 4,
this is clearly the case for the momenta 
k 
 �� /2.

For the remaining branch of momenta �
k
�� /2�, the ex-

citations for Ĥ1D are no longer elementary.47 As shown in
Fig. 4, although the state 
k� is formally defined even for
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those momenta, it represents a poor representation for the
exact excited state. In fact E�k� becomes quite off from the
exact value, and �2�
k�� considerably increases when the
momentum crosses the “spinon Fermi surface.” Remarkably,
by projecting a nonelementary excitation of the BCS Hamil-
tonian, namely,


k�3�� = PG�kF,↓
† �−kF,↓

† �k,↑
† 
BCS� �48�

with kF=��L+1� /2L, which mimics the correct three-spinon
eigenstate, we can achieve a good agreement for the spec-
trum even in the region outside the spinon Fermi surface �see
Fig. 4�. Note that, although the projection PG is crucial to
gain a quantitative agreement for the spectrum, the BCS
spectrum Ek already gives a qualitatively correct feature of
gapless excitations with finite spinon velocity at the right
momentum k=� /2 �see Fig. 4�.

Since the state 
k� �Eq. �46�� is very accurate only in the
momentum region � /2� 
k
��, we conclude that only half
of the elementary excitations of the BCS Hamiltonian remain

to be well defined excitations for the spin Hamiltonian Ĥ1D
after applying the Gutzwiller projection PG. This effect is
expected to hold also in a 2D fractionalized phase. It turns
out that the elementary BCS excitations which describe the
correct spinons after applying the projection operator PG can
be obtained by adiabatically switching off the gap function
�k, a process that defines naturally a Fermi surface, so that
fermion quasiparticles can be created �destroyed� in unoccu-
pied �occupied� states only.

In 2D it is very difficult to confirm directly the above
“selection rules” of the Gutzwiller projection acting on the
elementary BCS excitations. For instance, to study single
spinon excitations, one might think of a 2D system on �l

� l� lattice with l odd as a natural extention of the 1D system
considered above. However this 2D system should contain
many elementary excitations of spinons as it is easily under-
stood by considering the J�→0 limit, and thus it is not an
ideal system for studying single spinon excitations. Never-
theless, it is very important to have reached a very accurate
1D limit, with the correct spin fractionalization, within the
present variational approach, because this approach can be
easily extended to higher dimensions.

Finally, it is worth mentioning that, according to the
gauge theory by Wen,48,49 the low energy excitations of sev-
eral 2D spin liquids described by this 
p-BCS� variational
ansatz, can be understood within the mean field level without
taking into account the Gutzwiller projection, simply be-
cause this projection becomes irrelevant for large distance
correlations. This is the case for a “Z2 gapless spin liquid.”
Without entering into too much details of this theory, we
only mention here that a Z2 spin liquid can be described by a

p-BCS� for which no SU�2� gauge transformation—
remaining in the restricted Hilbert space with no doubly
occupation—allows one to eliminate the gap function in the
corresponding BCS Hamiltonian. In such a case, only the
gauge transformation ci,�→−ci,� leaves the BCS Hamil-
tonian unchanged, a transformation which defines the Z2
group toghether with the identity operation. Most of the spin
liquids which we will describe in this paper are Z2 spin liq-
uids in the triangular lattice geometry and should be stable
according to the theory mentioned above.48,49

C. Weakly coupled chains in the triangular geometry with
J� /J small

In this subsection, as a first step towards the 2D limit, we
shall consider the spin-1 /2 antiferromagnetic Heisenberg
model for weakly coupled chains in the triangular lattice
geometry with J� /J small �see Fig. 1�. Note that this region
is appropriate for the material Cs2CuCl4, where J� /J�1/3.11

1. Variational results

Motivated by the great success of the present variational
approach in the 1D system discussed in the preceding sub-
section, the variational ansatz which we shall consider here
for this 2D model in the region J� /J small is a similar pro-
jected BCS state 
p-BCS� described by Eqs. �4�–�10�. Here
both ti,j and �i,j in the BCS Hamiltonian �Eq. �4�� param-
etrizing 
p-BCS� are assumed translational invariant, and

therefore they depend only on the relative vector l�=r�i−r� j
= l1��1+ l2��2= �l1 , l2� �l1 and l2: integer� between the two sites
i and j, i.e., tl� and �l�. Also the C2v point group symmetry is
assumed for the variational parameters, e.g., �l�=�Rxl�=�Ryl�

=�RxRyl� for the A1 symmetry, where Rx �Ry� is the reflec-
tion operator about the xz �yz� plane

Rxl� = �l1 + l2���1 − l2��2,

Ryl� = − �l1 + l2���1 + l2��2.

To optimize the variational wave function, we use the SR
optimization method described in Sec. II B, which enables us

FIG. 4. �Color online� Lowest spin-1 /2 excitation energy E�k�
and E�k�3�� �lower panel� and the variance �2�
k�� and �2�
k�3���
�upper panel� of the projected BCS states with a single BCS mode

k� and three BCS modes 
k�3�� �see text� as a function of momen-
tum k. The model studied is the 1D spin-1 /2 antiferromagnetic
Heisenberg model on a ring with L=31. For comparison, in the
lower panel, the exact lowest excitation energy is plotted by
crosses, and the BCS spectrum Ek denoted by dashed line is scaled
by a factor to match the exact bandwidth. The remaining lines are
guides to the eye.
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to determine the optimized variational parameters with very
high accuracy.

As shown in Table I, the optimized tl� is found to be non-
zero only for the nearest neighbors along the chain direction
��1 �we set t��1

=1�, and negligible otherwise, whereas the op-
timized �l� is instead found to be sizable even among differ-
ent chains �for instance, ��2,1�, shown in Table I�, displaying
a true two dimensional character. It is also found that the
symmetry of the gap function �l� which minimizes the varia-
tional energy is the A1 symmetry under the C2v point group.
Finite-size corrections to the variational parameters scale as
1 /L, and the 18�18 cluster is found large enough to be
close to the thermodynamic limit, at least, for not too small
values of J� /J. All the variational parameters for the
18�18 cluster as a function of J� /J��0.7� are tabulated in
Table I, along with the variational energy. It should be noted
that since the Marshall sign rule is no longer satisfied for this
model, the constraint relation �43� does not have to be met
by the variational wave function. For example, as seen in
Table I, the optimized chemical potential � turned out to be
different from zero.

To gain better insight on the physical nature and proper-
ties of these variational states, let us next evaluate the BCS
excitation spectrum Ek given by Eq. �10� in the thermody-
namic limit with the optimized variational parameters. In
Figs. 5 and 6, the contour lines for 
k=�k−�=0 and �k=0
are plotted together with the boundary of the first Brillouin
zone �BZ� of the triangular lattice for J� /J=0.33 and 0.5,
respectively.50 As can be seen clearly from these figures, 
k
and �k vanish at the same momenta with incommensurate
“nodal” points, and thus the corresponding BCS excitation
spectrum Ek=�
k

2 +�k
2 shows gapless excitations at these

momenta. It is also interesting to notice that with increasing
J� /J the shape of the contour line of the gap function �k
=0 changes form open lines to a closed one in the BZ, ac-
quiring a clear two dimensional characteristic. On the con-
trary, the minimum variational energy is always achieved
with negligible values of the interchain hopping tl� even for
the largest J� /J considered.

Before considering the 2D limit, it is important to discuss
in more details the properties of few coupled chains in the
triangular lattice geometry displayed in Fig. 1. If we consider
only two chains in the ��1 direction, this system corresponds
to the well known zigzag ladder with couplings J and J�. It is
now well established that the ground state of the zigzag lad-
der is spontaneously dimerized with dimers along the rungs
���2 direction� for J� /J�4, and that the low-lying spin exci-
tations are gapped.51 For small values of J� /J, it is impos-
sible at present to detect the dimer order parameter numeri-
cally on finite size clusters simply because this quantity
vanishes exponentially for J� /J→0. However, it was also
shown previously52 that, for systems with finite number of
chains, projected BCS wave functions can show spontaneous
dimerization provided there is a gap in the corresponding
BCS excitation spectrum Ek. This is manifestly the case for
the zigzag ladder system, as well as for any system with
finite even number of chains, as the corresponding finite dis-
cretization for the momenta in the y direction do not allow us
to fulfill simultaneously the two conditions �k=0 and 
k=0

and thus the presence of a gap in the BCS excitation spec-
trum is implied. Therefore, the projected BCS wave func-
tions can naturally describe the crossover from a finite num-
ber of coupled chains, dimerized and gapped, to a gapless
and fractionalized spin liquid in 2D, implying that the limit
of infinite number of chains may be highly non trivial for a
spin liquid wave function.

In order to understand the properties of the present pro-
jected BCS wave function 
p-BCS�, we now report several
physical quantities. Figure 7 shows the spin-spin correlation
functions

C�l�� =
��
Ŝr�

zŜ
r�+l�
z 
��

��
��
�49�

with 
��= 
p-BCS� calculated in the ��1 and ��2 directions for
typical couplings with J� /J=0.33 and J� /J=0.5. As seen in
Fig. 7, even though the interchain spin correlations are very
small, the intrachain spin correlations are appreciably large,
at least, for the clusters studied. In order to examine whether

FIG. 5. �Color online� Loci of k points where 
k=0 �dashed
lines� and �k=0 �solid lines� determined by using the optimized
variational parameters for J� /J=0.33. The boundary of the first
Brillouin zone �BZ� for the triangular lattice is also denoted by long
dashed lines.

FIG. 6. �Color online� The same as in Fig. 5 but for
J� /J=0.5.
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magnetic long range order occurs, we have studied the sys-
tem size dependence of C�lmax��1��=Ps� at the maximum dis-
tance �lmax� in the ��1 direction compatible with periodic
boundary conditions. There exists long range magnetic order
only when Ps is finite in the thermodynamic limit. Our re-
sults of Ps are shown in Fig. 8�a� for J� /J=0.33 and clusters
up to L=42�42. From the finite size scaling presented in
Fig. 8�a�, it is clearly concluded that the projected BCS state

p-BCS� is not magnetically ordered. This is apparently ex-
pected because the projected BCS wave function 
p-BCS� is
a spin liquid state in 2D.

Another important quantity to study is the dimer-dimer
correlation functions along the chain direction

D�l�� =
��
�Ŝr�

zŜr�+��1

z ��Ŝ
r�+l�
z

Ŝ
r�+l�+��1

z �
��

��
��
− C���1�2. �50�

As is well known, D�l�� shows undamped oscillations at large

distance 
l�
→� when there is a spontaneous broken transla-
tion symmetry characterized by a dimerized spin-Peierls
phase. Since for systems with finite number of chains pro-
jected BCS wave functions show dimer order,52 it is not sur-

prising to see large oscillations in D�l�� as a function of the
distance, as shown in Fig. 9 for J� /J=0.33. In order to rule
out the possibility of a finite dimer order for the present
projected BCS state in 2D, the system size dependence of the
dimer order parameter Pd is studied in Fig. 8�b� for clusters
up to L=42�42. The square of this order parameter �Pd

2� is
related to the calculated largest distance dimer correlations
through

Pd
2 = 18
�D�l/2��1� − D��l/2 − 1���1��


for a cluster of L= l� l sites.53 As seen in Fig. 8�b�, it is clear
that Pd→0 as L→�. As expected, this projected BCS wave
function 
p-BCS� does not show spontaneous dimerization in
2D, and therefore it represents a genuine spin-liquid wave
function.

2. Effective Hamiltonian results

One of the main advantage of our approach is that we can
study the stability of the variational ansatz wave function
using the effective Hamiltonian method described in Sec.
II C.17 Before showing our results, it should be noted first
that one of the important quantities which measure the qual-
ity of our approximation in the effective Hamiltonian ap-

FIG. 7. �Color online� Spin-spin correlation functions C�r�� with
r�= l1��1+ l2��2 for J� /J=0.33 ��a� and �b�� and J� /J=0.5 ��c� and �d��
calculated using both variational Monte Carlo �VMC� and effective
Hamiltonian �FNE� methods. The cluster sizes used are 30�30 ��a�
and �b�� and 18�18 ��c� and �d��. C1�l� and C2�l� indicate C�l��1�
and C�l��2�, respectively.

FIG. 8. �Color online� System size dependence of �a� spin-spin

correlation functions C�l�� at the largest distance in the ��1 direction
�Ps� and �b� the dimer order parameter squared Pd

2 �see the text� for
clusters of L= l� l. The coupling studied is J� /J=0.33. The varia-
tional Monte Carlo and effective Hamiltonian �FNE� results are
denoted by squares and crosses, respectively. The straight dashed
line in �a� is a guide to the eye.

FIG. 9. �Color online� Dimer-dimer correlation functions D�r��
with r�= l��1 for J� /J=0.33 calculated using both variational Monte
Carlo �squares� and effective Hamiltonian �crosses� methods.
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proach is the effective constant K �determined as the result of
Eq. �36��, K=1 meaning that there is no sign problem and
the ground state of the effective Hamiltonian represents the
exact ground state of Ĥ. As shown in the Table I, we found
that the effective constant K is indeed very close to one for
all the cases studied. This indicates that the number of off-
diagonal matrix elements, which cause the sign problem and
are taken into account only approximately in Ĥeff, represents
only a very tiny fraction of the total number of matrix ele-
ments of Ĥ. Therefore, Ĥeff is expected to be rather close to
Ĥ, and indeed it coincides with Ĥ in the large anisotropic
limit J� /J→0, where there is no sign problem.

Encouraged by this observation, we have calculated the
spin-spin correlation functions C�l�� and the dimer-dimer cor-

relation functions D�l�� using the FNE method, i.e., 
��
= 
�0

eff� in Eqs. �49� and �50�, with the optimized 
p-BCS� for

�G� in Ĥeff. Here 
�0

eff� is the exact ground state of Ĥeff

calculated numerically. The typical results for C�l�� and D�l��
are presented in Figs. 7 and 9, respectively. By comparing
the variational results with the FNE ones, it is evident that
these correlation functions appear almost unchanged even at
large distances, strongly suggesting that the projected BCS
state 
p-BCS� is very stable and accurate. This should be
contrasted to the isotropic case �see. Fig. 15�, which will be
discussed in the next subsection.

A systematic finite size scaling analysis of the order pa-
rameters Ps=C�lmax��1� and Pd

2 calculated using FNE is also
reported in Fig. 8 for J� /J=0.33 and L up to 30�30. It is
clearly seen in Fig. 8�b� that Pd

2 diminishes to zero in the
limit L→�. Even though the FNE results for Ps shown in
Fig. 8�a� are almost the same as the ones for the variational
calculations with 
p-BCS�, it is still difficult to rule out com-
pletely the possibility of a very small nonzero magnetic order
parameter Ps�0.001 in the thermodynamic limit. Neverthe-
less, the fact that the spin-spin correlation functions calcu-
lated for L�1000 using the variational wave function 
p
-BCS� are almost identical to the ones calculated using the
more accurate FNE approach �Fig. 7�, strongly suggests that
the magnetic long range order is not likely to occur even for
the more accurate FNE ground state 
�0

eff�. From these re-
sults, we conclude that the ground state of the spin-1 /2 an-
tiferromagnetic Heisenberg model on the triangular lattice
with J� /J�0.6–0.7 �see also Sec. IV� is a spin liquid state
with gapless spin excitations at the incommensurate mo-
menta, described at least approximately by the present pro-
jected BCS wave function 
p-BCS�.

Finally, let us discuss the implication of our numerical
study on the experiments for Cs2CuCl4 where the estimated
coupling is J� /J�1/3.11 Recent inelastic neutron scattering
experiments for this material by Coldea et al.11 have revealed
that the lowest spin excitation appears at an incommensurate
momentum �see Fig. 10�, and the observed excitation spec-
trum consists of a broad incoherent continuum, at least, in
the intermediate temperature region above the magnetic tran-
sition temperature TN. As we have shown in the case of the
1D system �Sec. III B�, the BCS elementary excitations natu-
rally define true spinons in our approach, and according to
the gauge theory48,54 they should behave as free fermions at

low enough energy, namely, close to the nodal points of the
incommensurate momenta where 
k=�k=0 �see Fig. 5�.
Therefore, the low energy spin excitations observed experi-
mentally can be explained by a two-spinon broad continuum.
At present, we cannot calculate directly the dynamical spin
correlation functions. However, using the technique de-
scribed in Sec. II D, we can calculate the lowest spin-1 ex-
citation energy at each momentum, and in Fig. 10 our results
are compared with the experimental values estimated for
Cs2CuCl4 by Coldea et al.11 As seen in Fig. 10, both results
are in excellent agreement, considering that our calculated
excitation spectra with L up to 30�30 appear rather well
converged to the thermodynamic limit. This remarkable
agreement strongly supports the presence of a spin liquid
state in 2D.

D. Isotropic triangular lattice with J�=J

It is well known3 that for the spin-1 /2 antiferromagnet
Heisenberg model on the spatially isotropic triangular lattice
�J�=J�, a faithful variational ansatz is the so-called short
range RVB state 
�RVB� described by the following wave
function:


�RVB� = �
�C� � �

i,j=1

�i�j�

L


�i, j��� , �51�

where the sum �C� runs over all possible nearest neighbor
dimer covering of the triangular lattice �with equal weights
and therefore implying that all the spatial symmetries of the
lattice are satisfied�, whereas the product is over the corre-
sponding nearest neighbor singlet pairs of spins located on
each dimer �defining singlet valence bond configurations for
a given dimer covering� between sites i and j,


�i, j�� =
1
�2

�↑i↓ j − ↓i↑ j� , �52�

sorted according to the lexicographic order �i� j�.

FIG. 10. �Color online� Lowest triplet excitation energy as a
function of momentum for J� /J=0.33 and different cluster sizes L
�indicated in the figures�, calculated using the method introduced in
Sec. II D. For comparison, the experimental values �open circles�
measured by inelastic neutron scattering on Cs2CuCl4 �Ref. 11� are
also plotted. Here G2=4� /�3, and the experimentally estimated
value of J=0.37 meV is used �Ref. 11�.
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Indeed, very recent numerical calculations for the 6�6
isotropic triangular antiferromagnet by the Lanczos method21

have shown that the overlap between the short range RVB
wave function 
�RVB� and the exact ground state 

0� is very
large 
��RVB 

0�
2=0.891,55 and especially the average sign

�S� = �
x


�x

0�
2 sgn��x

0��x
�RVB�� , �53�

is very close to the maximum value, namely, �S�=0.971.
These results clearly indicate that the phases of the exact
ground state 

0� are very well described by the short range
RVB ansatz state 
�RVB�. The values of the overlap

��RVB 

0�
2 and the average sign �S� are even much better
than the ones corresponding to classical Néel ordered wave
functions considered previously, which also contain addi-
tional variational parameters.4 It should be emphasized that
an accurate description of the phases of the exact ground
state 

0� by a simple variational wave function such as

�RVB� is the essential ingredient for reliable calculations
based on the FN or FNE approach.

Although 
�RVB� is a very good variational ansatz for the
ground state of the isotropic triangular antiferromagnet, the
above representation of this state �Eq. �51�� is rather difficult
to handle and is not convenient to improve the state 
�RVB�
systematically by including, for instance, long-range valence
bonds, because, within this representation, there is a “sign
problem” even at the variational level.3 In order to treat more
conveniently the short range RVB wave function 
�RVB� and
its variants, we have derived in Appendix D an exact map-
ping between the short range RVB wave function 
�RVB� and
the projected BCS state 
p-BCS� on planar graphs,56 namely,
for most interesting lattice geometries including the triangu-
lar lattice, the square lattice, and the kagomé lattice.

As shown in Appendixes C and D, the short range RVB
state 
�RVB� is equivalently described by the projected BCS
wave function 
p-BCS� with a special choice of the varia-
tional parameters: the only nonzero parameters are the
chemical potential � and the nearest neighbor singlet gap
functions �i,j with the appropriate relative phases shown in
Fig. 11, and the limit of −�� 
�i,j
 is assumed so that the gap
function �i,j is proportional to the pairing function f i,j �Eqs.
�C10�� considered in Appendix D.

It is easily seen from Fig. 11 that the corresponding BCS

Hamiltonian ĤBCS is defined on a �2�1� unit cell, and thus

ĤBCS is not translation invariant. In fact, ĤBCS is invariant
under an elementary translation T2 :r�→r�+��2 in the ��2 direc-
tion, whereas it is not under an elementary translation T1 :r�
→r�+��1 in the ��1 direction. Let us now show briefly that the
translation symmetry is recovered after the projection PG,
i.e., 
p-BCS� is indeed translation invariant. To this end, one
can combine the translation operation T1 with the SU�2�
gauge transformation U:

cr�,�
† → − cr�,�

† �54�

for r�=r1��1+r2��2 with r2 odd. Under the composite
application of the transformations T1 � U, the projected BCS
wave function 
p-BCS� remains unchanged. Therefore, the

p-BCS� is translation invariant because the SU�2� gauge

transformation U acts as an identity in the physical Hilbert
space with singly occupied sites due to the projection PG.

Owing to this new, more convenient representation of the
short range RVB state 
�RVB� by the projected BCS wave
function 
p-BCS�, we can now calculate various physical
quantities using the standard variational Monte Carlo
method. For example, the variational energy E��RVB� of the
isotropic triangular antiferromagnet is plotted in Fig. 12 for
different system sizes. From the finite size scaling analysis of
lattice sizes up to L=30�30, we can easily provide a very
accurate estimate of the variational energy in the thermody-
namic limit E��RVB� /JL=−0.5123±0.0001 for L→� �see
also Table II�.

Another important advantage of this projected BCS wave
function representation is that it is easy to improve the varia-
tional ansatz state systematically. For instance, only by
changing the chemical potential � from a large value to zero,
the variational energy is significantly improved as is shown
in Fig. 12 and in Table II, where the variational state is
denoted simply by 
�RVB� with �=0. Note that in this case
the 
p-BCS� is equivalent to a Gutzwiller projected free fer-
mion state with nearest neighbor hoppings defined in a �2
�1� unit cell.57,58

More generally, within the framework of the projected
BCS wave function 
p-BCS�, we can easily extend the varia-

FIG. 11. �Color online� Nearest neighbor gap functions ����1�
=����2�=����2−��1�=� �Eq. �55��, which are consistent with the sign
convention for the short range RVB state explained in Appendix D.
The dashed �solid� bonds represent a positive �negative� sign �Eqs.
�D8� and �D9��. Notice that the unit cell is �2�1�. The origin of the
lattice �0,0� �Eq. �55�� is denoted by O.

FIG. 12. �Color online� Variational energy for the isotropic tri-
angular lattice with J� /J=1.0 calculated using the short-range RVB
state 

RVB� �circles�, the short-range RVB state with �=0
�squares�, the classical Néel state 

Néel� �diamonds� �Ref. 4�, and
the present projected BCS state Js 
 p-BCS� with spin Jastrow factor
Js �triangles�.
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tional ansatz state to include long-range singlet valence
bonds simply by adding nonzero gap functions �i,j’s to the

BCS Hamiltonian ĤBCS.59 In order for 
p-BCS� to preserve
translation invariance, the pairing part of the BCS Hamil-
tonian is generalized in the following form:

Ĥpair = �
r�
��

t�m

��− 1�r1m2��t�m��cr�↑
† cr�+t�m↓

† − cr�↓
† cr�+t�m↑

† � + H.c.� ,

�55�

where the first sum runs over all lattice vectors r�=r1��1

+r2��2 �r1 ,r2: integer�, whereas the second sum �t�m
� is for t�m

=m1��1+m2��2 �m1 ,m2: integer� with m2�0 or with m1�0
and m2=0 denoted by solid circles in Fig. 24�a�. It is readily

shown that Ĥpair is invariant under T1 � U and T2. In order to
minimize the number of variational parameters, we have as-
sumed here that ��t�m�=��Ryt�m�. Because of the phases of

the gap functions in Ĥpair �see Fig. 11 for the nearest neigh-
bor gap functions�, this BCS Hamiltonian is not guaranteed
to be reflection invariant around the yz plain �Ry�. Neverthe-
less, as will be discussed later, our numerical calculations
indicate empirically that the considered projected BCS state

p-BCS� becomes a fully symmetric spin liquid state only in
the thermodynamic limit, a state being not only translation
invariant but also reflection invariant. It is interesting to no-
tice that even though this 
p-BCS� is not fully symmetric on
small lattice sizes such as a 6�6 cluster, a much better over-
lap 
�p-BCS 

0�
2 as well as a much better average sign �S�

are obtained for this 
p-BCS� compared to the ones for a
translation invariant complex 
p-BCS� ansatz.19,20 In Appen-
dix C, several peculiar and interesting properties of the cor-
responding unprojected BCS state 
BCS� are derived analyti-
cally. For example, the spectrum of the BCS Hamiltonian Ek
has two branches �due to the �2�1� unit cell� and a small
excitation gap, which vanishes when the long range gap
functions are turned off �provided �=0�.

As mentioned above, it is extremely important to show
that the projected BCS state 
p-BCS�, constructed from


BCS� with the pairing interactions Ĥpair, preserve all reflec-
tion symmetries of the lattice in the thermodynamic limit,
because otherwise some symmetry broken with finite order
parameter occurs, and this variational state is no longer a
spin liquid. This symmetry property is easily proved for the
short range RVB case. Within open boundary conditions, the
short range RVB state 
�RVB� �Eq. �51�� and the projected
BCS state 
p-BCS� with the gap functions defined as in Fig.
11, ti,j =0, and �→−� are exactly the same for any finite
size clusters �see Appendix D�. Therefore the symmetry of
the state 
p-BCS� is implied by the one of the short range
RVB state 
�RVB�. For large clusters the boundary conditions
cannot play a role, and hence the symmetry is approximately
recovered even when periodic boundary conditions are used.
We have checked numerically in Fig. 13 that the reflection
symmetry is very well preserved in the thermodynamic limit
also for the general case where the pairing function f i,j is not
restricted only to nearest neighbor bonds. However, in this
case we could not rigorously prove our empirical observation
of this symmetry invariance because the equivalence of RVB
wave functions and 
p-BCS� no longer holds for long range
pairing functions.

In order to further improve our variational ansatz wave
function, we also introduce a simple spin Jastrow factor Js
into the projected BCS wave function described above, i.e.,

p-BCS�→JS
p-BCS�, where

TABLE II. The energy E and the magnetic moment m �divided
by its maximum value m0=1/2� estimated in the thermodynamic
limit for the spin-1 /2 antiferromagnetic Heisenberg model on the
isotropic triangular lattice �J=J��. In the first four rows are the
variational Monte Carlo �VMC� estimates for different wave func-
tions: �from the top� the short-range RVB state 
�RVB�, 
�RVB� with
�=0 �see the text�, the wave function studied recently by Weber et
al. �Ref. 60� in which a classical Néel order and a singlet pairing
�with symmetry different from ours� are included, and the present
wave function Js
p-BCS�. The fixed node �FN� and effective
Hamiltonian �FNE� results are then provided. For comparison, the
corresponding values estimated by the linear spin wave �SW�
theory and the Green function Monte Carlo method with stochastic
reconfiguration �GFMCSR� �Ref. 4� are also presented. Note that
the energies computed by the last two methods �denoted by an
asterisk� are not a rigorous upper bound of the exact ground state
energy.

Method �wave function� E /JL m /m0

VMC �RVB� −0.5123±0.0001 0.0

VMC �RVB with �=0� −0.5291±0.0001 0.0

VMC �BCS+Néel� �Ref. 60� −0.532±0.001 0.72

VMC �present study� −0.5357±0.0001 0.0

FN −0.53989±0.00003 0.325±0.006

FNE −0.54187±0.00006 0.353±0.007

SW −0.538±0.002* 0.4774

GFMCSR �Ref. 4� −0.545±0.002* 0.41±0.02

FIG. 13. �Color online� System size dependence of the nearest
neighbor spin-spin correlation functions C�r�� �Eq. �49�� for differ-
ent cluster sizes L= l� l up to 30�30 sites and for the three differ-
ent directions of the triangular lattice �r�=��1, ��2, and ��2−��1�. Here

��= 
p-BCS� with ����1�=����2�=����2−��1�=1 �see in Fig. 11 and
Eq. �55��, ti,j =0, and �=−1. This state is a good but not optimal
variational wave function for the spatially isotropic model �J=J��,
and it is used only to show that wave functions of this type recover
all spatial symmetries of the lattice in the thermodynamic limit.
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JS = exp� �
i,j=1

�i�j�

L

v�r�i − r� j�Ŝi
zŜj

z� �56�

and v�r��’s are variational parameters which are optimized
using the SR method explained in Sec. II B �also see in Ap-
pendix A�. Since the most important contributions to the
variational energy are from the short range v�r��’s, in what
follows we consider only terms with 
r�
�3 and the v�r��’s for
larger distances are set identically to zero. As will be dis-
cussed later, the inclusion of the spin Jastrow factor Js is
also crucial for stable FN and FNE calculations. Similarly,
for the gap functions, only ��t�m�’s with 
t�m
�3 are consid-
ered in the present variational wave function. After the SR
optimization calculations, it is found that the optimized
chemical potential � is nonzero and only nearest neighbor
hopping terms with ti,j=1 for all the directions are relevant
for the isotropic case �J=J��. In Fig. 12 and in Table II, the
calculated variational energy is reported and compared with
the results for other variational ansatz states. The improve-
ment of the present variational wave function compared with
previously studied states is remarkable. Our variational en-
ergy is even sizably better than a very recent estimate re-
ported in Ref. 60, in which a variational ansatz state includes
both a classical Néel ordered magnetic moment and a singlet
pairing with symmetry different from ours. To our knowl-
edge, the present value for the energy per site in the thermo-
dynamic limit −0.5357J±0.0001J is the lowest among the
variational estimates reported so far. Of course, within the
present ansatz, this value can be further improved by consid-
ering longer range terms in v�r��’s and ��t�m�’s.

It is worth mentioning here that in general the BCS exci-
tation spectrum Ek �Eq. �C6�� has a finite gap when the
longer range gap functions are included in the BCS Hamil-
tonian as in the present case, and therefore, as opposed to the
spin liquid state discussed in Sec. III C, the spin liquid state
described here by 
p-BCS� generally shows a finite gap in
spin excitations. It should be also noted that, although the
variational ansatz state with the spin Jastrow factor Js breaks
the SU�2� spin rotation symmetry, a short range Js cannot
imply long range magnetic order. This is clearly seen in Fig.
14 where the spin structure factor

S�q�� = �
r�

e−iq� ·r�C�r��

at q� = �4� /3 ,0� is calculated for the optimized variational
wave function mentioned above.

Although the projected BCS wave function considered
here is a spin liquid state with a finite spin gap and without
any type of long range magnetic order �Fig. 14�, when the
FN or FNE method is applied with 
�G�=Js
p-BCS�, long
range magnetic order appears with a finite magnetic moment
in the z direction �the effective Hamiltonian approach breaks
the spin rotational invariance in this case and no detectable
magnetic moment is observed in the other directions�. In-
deed, as shown in Fig. 15, the spin-spin correlation functions
C�r�� along the ��1 direction are drastically increased for the
FNE ground state 
�0

eff�, compared with the ones for the spin

liquid state Js
p-BCS�. Furthermore, the oscillations ob-
served in C�r�� for the FNE ground state �Fig. 15� are consis-
tent with the classical Néel order. These results strongly in-
dicate that, in spite of its good variational energy, the spin
liquid state is not stable against magnetic order for the iso-
tropic case.

The FN and FNE calculations of the spin-spin correlation
functions were carried out by applying the “forward walk-
ing” technique developed in Ref. 33, which will be described
briefly in the following. With this technique, the expectation

value of any operator Ô diagonal in configuration space �x�,
can be computed for the ground state of the effective Hamil-

FIG. 14. �Color online� System size dependence of spin struc-
ture factor S�q�� at q� =Q*= �4� /3 ,0� for the optimized variational
state Js
p-BCS� �see the text� for the spin-1 /2 antiferromagnetic
Heisenberg model on the isotropic triangular lattice of size L. Note
that Q* corresponds to the momentum at which S�Q*� /L is finite for
L→� when the state is classical Néel ordered with relative angle of
120° between the nearest neighbor spins on the different sublattices.

FIG. 15. �Color online� Spin-spin correlation functions C�l��1� in
the ��1 direction for the spin-1 /2 antiferromagnetic Heisenberg
model on the isotropic triangular lattice with L=18�18 calculated
using both variational Monte Carlo �VMC� and effective Hamil-
tonian �FNE� methods. The variational wave function considered
here is the projected BCS state Js
p-BCS� with spin Jastrow factor
Js �see the text�, and this wave function is used as the guiding
function 
�G� for the FNE calculation. The spin-spin correlation
functions in the ��2 and ��2−��1 directions are essentially the same as
the ones presented here.
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tonian. This scheme removes completely the bias of the so-
called mixed average estimate61

Omix =
��G
Ô
�0

eff�
��G
�0

eff�
,

by a large “forward-walking” time � projection of the guid-
ing function 
�G� in the above expression. More precisely,

the expectation value of Ô for the state 
�0
eff� is computed

through the equation

��0
eff
Ô
�0

eff�
��0

eff
�0
eff�

= lim
�→�

��G
e−�ĤeffÔ
�0
eff�

��G
e−�Ĥeff
�0
eff�

, �57�

where the simple relation lim�→�e−�Ĥeff
�G�� 
�0
eff� is used.

This scheme provides for a quantitative estimate of the mag-
netic moment �order parameter�, as shown in Fig. 16, where
one can clearly see that the values of the spin structure factor
S�q�� at the commensurate wave vector q� =Q*= �4/3� ,0�
considerably increase with cluster sizes and with the
forward-walking projection time �, the �=0 value corre-
sponding to the much less accurate mixed average estimate.
In this figure, it is also apparent that a satisfactory conver-
gence in � �Eq. �57�� is always obtained for the clusters stud-
ied. From the technical point of view, this calculation was
made possible due to the quality of our variational ansatz.
For instance, without the inclusion of the spin Jastrow factor
Js a much longer forward-walking time � is necessary to
achieve a reasonable convergence, with an almost prohibitive
computational effort to reduce the statistical errors to an ac-
ceptable value.

Encouraged by these results, let us finally study the sys-
tem size dependence of the spin structure factor S�q�� at the
commensurate wave vector q� =Q*. The results calculated us-
ing both FN and FNE methods, S�Q*�FN and S�Q*�FNE, are
presented in Fig. 17. For each cluster, the FN and FNE

Hamiltonians are constructed using the optimized variational
state Js
p-BCS� as the guiding function 
�G�. In this figure,
to reduce the finite size effects for estimating the magnetic
order parameter, the difference between the FN/FNE results
S�Q*�FN/FNE and the corresponding variational estimates
S�Q*�VMC are plotted. The difference should be extensive
if there exists long range antiferromagnetic order, as the
variational results S�Q*�VMC/L for the spin liquid state
Js
p-BCS� decreases to zero in the limit L→� �Fig. 14�. It is
clearly observed in Fig. 17 that the FN and FNE results for
S�Q*� /L converge to finite values in the thermodynamic
limit.

From these calculations we can estimate the magnetic mo-
ment quantitatively. To this purpose, it has to be taken into
account that the long range magnetic order occurs in the z
direction because the FN Hamiltonian ĤFN and the FNE
Hamiltonian Ĥeff do not commute with the total spin operator
and display magnetic order only in the z direction.62 There-
fore, the magnetic structure factor is related to the magnetic
order parameter �magnetic moment� m up to a simple factor,
namely, S�Q*�FN/FNE/L→m2 /2. Our estimates of m are sum-
marized in Table II along with the ones of the energy E0

FN

and E0
eff in the thermodynamic limit. For comparison, the

estimates calculated by other methods and for different wave
functions are also provided in Table II. It is remarkable that
even though a spin liquid wave function is used here as a
guiding wave function, a finite magnetic moment m is ob-
tained with the FN and FNE approaches. These results
clearly indicate that the spin liquid is eventually unstable in
the isotropic model. It should be noted here that the magnetic
moment estimated with approximate techniques such as the
FN and FNE methods should be considered a lower bound
because they are biased toward nonmagnetic order by the
spin liquid guiding function.

FIG. 16. �Color online� Forward walking time evolution � �unit
J−1� �Eq. �57�� of the spin structure factor S�q�� at q� =Q*

= �4� /3 ,0� for J� /J=1.0. Here our best variational wave function

p-BCS� with spin Jastrow factor Js �see the text� is used as the
guiding function 
�G�. For clarity, for each cluster, the FN results
S�Q*�FN are referenced to the mixed-average estimate S�Q*�mix,
which is set to zero.

FIG. 17. �Color online� System size dependence of the spin
structure factor S�q�� at q� =Q*= �4� /3 ,0� for the spin-1 /2 isotropic
triangular antiferromagnet with J� /J=1.0 calculated using FN and
FNE methods. Here our best variational wave function Js
p-BCS�
with spin Jastrow factor Js �see the text� is used as the guiding
function 
�G�. In order to reduce finite size effects, for each cluster,
the variational result S�Q*�VMC/L for the spin liquid state
Js
p-BCS� �which is zero for L→�� is subtracted from the FN and
FNE results S�Q*�FN/FNE/L.
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It is also important to notice in Fig. 17 and in Table II that
the FNE approach, which is a better variational method than
the standard FN method, provides a sizably larger value of m
compared with the FN result, much closer to previous esti-
mates based on different guiding functions with explicit
magnetic order.4 In the previous work,4 though the energy
was not rigorously variational unlike in the present case,
similar corrections to the guiding function were imple-
mented.63 It is therefore very interesting that, by using two
different variational wave functions with �overestimated� or
without �strongly underestimated� magnetic order, both with
good variational energy, and by applying very similar tech-
niques, a finite order parameter m for the isotropic triangular
lattice is obtained, rather independently of the guiding func-
tion used. This is a very important property of methods, such
as FN, FNE, and the previously introduced Green function
Monte Carlo method with stochastic reconfiguration,4 which
are all based on the numerical solution of an effective Hamil-
tonian. On the contrary, the simple variational approach does
not lead to a reliable prediction for the magnetic moment m
simply because very different variational ansatz states with
or without a finite magnetic moment may have very similar
energy �see, e.g., Fig. 12 and Table II� but opposite long
distance behavior. This is an additional confirmation that the
present approach, a systematic correction to the variational
ansatz, is very useful for understanding quantitative physical
properties of strongly frustrated quantum systems, for which
either numerically or analytically exact solutions are not
known.

E. Nearly isotropic triangular lattice with J�›J: A spin liquid
with a small spin gap

In the previous subsection, we have shown a robust nu-
merical evidence that a spin liquid state is not the ground
state for the isotropic triangular antiferromagnet. However, it
is natural to expect that quantum fluctuations become en-
hanced by increasing the spatial anisotropy J /J��1, and that
the magnetically ordered state eventually melts and a true
spin liquid phase would emerge. In this subsection, we shall
extend the spin liquid ansatz wave function discussed above
away from the isotropic point, and study the stability of the
spin liquid state with the FN or FNE method, as it was done
successfully in the isotropic case.64

1. Stability against magnetic ordering

As reported in previous studies,5 a simple semiclassical
solution implies that the spin structure factor S�q�� displays
Bragg peaks at incommensurate momenta even slightly away
from the isotropic case with J� /J�1. It is confirmed by
our variational approach, which provides a much better
variational state compared to the classical solution, that these
peaks appear in S�q�� and their locations in the Brillouin
zone smoothly evolve from the commensurate momenta
Q*= �4� /3 ,0� �and equivalent ones� to the incommensurate
ones within our accessible finite size clusters.

At the variational level with the same type of spin liquid
wave functions considered for the isotropic case �see also
Table III�, the spin structure factor is finite for these incom-

mensurate peaks, and therefore, as opposed to the classical
solution, no long range magnetic order is implied. To study
this property within the FN or FNE approach, we have to
first note that it is very difficult to perform a finite size scal-
ing analysis when incommensurate correlations are studied, a
situation which is further complicated by the proximity to a
possible phase transition from a magnetic to a nonmagnetic
ground state, because the value of m, as we have shown, is
rather small already in the isotropic case. In order to carry
out a reliable finite size scaling, in the following, we con-
sider a sizable anisotropy within the hypothesis to be far
enough from the critical point �which is unaccessible within
the finite size clusters studied, L�1000�. Indeed, for J� /J
=0.7, we are able to successfully carry out the analysis of the
FNE calculations, and the results are presented in Fig. 18.
Here the guiding wave function 
p-BCS� does not require the
spin Jastrow factor Js to be accurate enough, and it consists
of ��t�m� with 
t�m
�3 �Eq. �55�� as well as the hopping inte-
grals and the chemical potential. All these parameters are
optimized using the SR minimization method. As shown in
Table III, it is found that the optimized chemical potential is
nonzero, and only the nearest neighbor hopping in the ��1
direction is relevant and can be set to unity �t��1

=1�.
The excitation spectrum Ek of the corresponding BCS

Hamiltonian are analytically calculated in Appendix C, from
which several very interesting features are observed. If the
gap functions ��t�m� are restricted to the nearest neighbors,

TABLE III. The optimized variational parameters of the pro-
jected BCS wave function for J� /J=0.7 and 0.8 with L=18�18.
��m1 ,m2� is the singlet gap function ��t�m� for t�m=m1��1+m2��2 in
Eq. �55�, and � is the chemical potential. The remaining variational
parameters are zero except for the nearest neighbor hopping in the
��1 direction, which is chosen to be one. The value of K, variational
energy EVMC=E�p-BCS�, FN �FNE� ground state energy EFN

=E0
FN �EFNE=E0

eff� with 
�G�= 
p-BCS� are also presented. The
number in parentheses is the statistical error bar corresponding to
the last digit of the figure.

J� /J 0.7 0.8

� 0.304�3� 0.243�6�

��1,0� 2.01�3� 2.33�4�
��0,1� 1.08�2� 1.42�2�
��1,1� 0.205�3� 0.215�3�

��−1,2� 0.002�3� 0.001�3�
��2,0� −0.36�1� −0.32�2�
��0,2� 0.01�1� −0.02�3�
��2,1� 0.011�2� 0.063�2�
��1,2� 0.002�2� 0.001�2�

��−2,3� 0.001�1� 0.0008�9�

K−1 1.1886�3� 1.2242�3�

EVMC/JL −0.46467�3� −0.47840�3�

EFN/JL −0.47051�2� −0.48521�2�

EFNE/JL −0.47171�3� −0.48691�4�
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the spectrum of the BCS Hamiltonian is generically gapless
�provided �=0�. Once the gap function is nonzero for longer
bonds, a tiny energy gain is obtained, and correspondingly a
finite excitation gap in Ek is opened. However, this gap is
very small. In fact, it is found that the low energy BCS
spectrum Ek on finite size is almost indistinguishable from a
gapless one, and that the lowest excitation gap in Ek is esti-
mated as small as 	0.3% of 2W for J� /J=0.7 where W is the
maximum excitation energy of Ek.65 The reason for the ap-
pearance of a finite excitation gap in Ek is simply understood
because the BCS Hamiltonian with broken translation sym-
metry has two sites per unit cell, and thus the BCS spectrum
is in general gapped. It should be emphasized here that, as
explained in the previous subsection, after applying the pro-
jection PG onto the GS 
BCS� of this BCS Hamiltonian, the
translation symmetry of the projected BCS state 
p-BCS� is
recovered. Therefore, a quite new, remarkable possibility to
form a spin liquid state with a finite spin gap66 and with a
single spin per unit cell can be easily established here within
the present variational framework without breaking the
translation symmetry.

Let us now discuss the static magnetic properties for
J� /J=0.7. As seen in Fig. 18, the finite size scaling analysis
of the FNE results for the spin structure factor clearly indi-
cates a vanishing magnetic order parameter. We have also
found that the FNE spin structure factors as well as the FNE
spin-spin correlation functions do not differ significantly
from the ones computed for the variational spin liquid state

p-BCS� explained above �Table III�. This should be con-
trasted to the isotropic case shown in Sec. III D, where sig-
nificant differences were observed. These results strongly
suggest that the spin liquid ansatz state described here by the
projected BCS wave function 
p-BCS� is stable within the

present approach. Therefore, another spin liquid region dif-
ferent from the one discussed in Sec. III C might exist in the
anisotropic triangular lattice with J� /J closer to one, the state
of which can be described, at least approximately, by this
proposed spin liquid wave function.

2. Stability against spontaneous dimerization

Since the BCS Hamiltonian is defined with a �2�1� unit
cell �Eq. �55��, it is natural to ask ourselves if a valence bond
solid �not liquid� would be stabilized, which should also ex-
hibit a finite spin excitation gap at the expense of a broken
translation symmetry. In order to examine whether the va-
lence bond solid is energetically more favored than the spin
liquid state for the present anisotropic antiferromagnetic
Heisenberg model, it is sufficient to study the translation
symmetry of the optimized projected state because the va-
lence bond solid necessarily breaks this symmetry. This pos-
sibility can be easily considered within our approach by us-
ing a BCS Hamiltonian that is not invariant under the
transformation T1 � U. In Eq. �55� it is assumed that the gap
function �i,j connecting sites i and j depends only on j− i up
to the sign. To check the possible instability toward the va-
lence bond solid, we have released these constraints for �i,j
but with remaining in the same �2�1� unit cell; for example,
�0,��1

can be different from ���1,2��1
, but �0,��1

=�2��1,3��1
. We

have then optimized independently the first four �i,j’s at the
shortest distances:

�1 = �0,��1
,

�2 = ��1,2��1
,

�3 = �0,��2
,

�4 = − ��1,�1+��2
, �58�

whereas all the other ones are kept fixed at the values ob-
tained assuming the translation invariant ansatz �shown
in Table III�. Whenever the optimized parameters satisfy
�1=�2 and �3=�4 within the statistical errors, the projected
BCS state is a spin liquid. Otherwise the optimized state is a
valence bond solid simply because this state is no longer
translation invariant. In order to optimize these variational
parameters, we have used the SR minimization method de-
scribed in Sec. II B. Our results are presented in Fig. 19,
where the Monte Carlo evolution of these four parameters
are plotted for J� /J=0.7 and L=18�18. It is clearly seen in
Fig. 19 that, although the initial values of the parameters are
far off form the symmetric condition ��1=�2 and �3=�4�,
after a few hundred SR iterations these parameters converge
to the symmetric values �Table III�. The inset of Fig. 19
shows the Monte Carlo evolution of the corresponding en-
ergy as a function of the SR iterations �each iteration corre-
sponds to a small variational Monte Carlo simulation with
fixed variational parameters�. After the first few SR iterations
the energy appears to be trapped in a metastable state with a
broken symmetry solution, but then after one hundred SR
iterations the energy eventually converges to a lower value

FIG. 18. �Color online� System size dependence of the spin
structure factor S�q�� at q� =Q*= �q* ,0� for J� /J=0.7 calculated using
the FNE method. The incommensurate momenta q* as well as the
corresponding value for the classical limit �Ref. 5� are plotted in the
upper panel. For clarity, the variational estimates of the structure
factor S�Q*�VMC are subtracted from the FNE results S�Q*�FNE. The
optimized projected BCS state 
p-BCS� without spin Jastrow factor
Js �see the text� is used for the variational calculations. The same
wave function 
p-BCS� is used as the guiding function 
�G� for the
FNE calculations. The system sizes used are indicated in the figure.
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corresponding to the spin liquid fully symmetric solution.
These results, therefore, strongly indicate that the optimized
state is translation invariant, and spontaneous dimerization is
very unlikely to occur in this model because it is not stabi-
lized even when the variational ansatz wave function allows
to stabilize this kind of order.

In principle, as shown in Ref. 52 for 1D systems, also a
translation invariant state can give rise to a spontaneously
dimerized order after applying the projection operator PG on
this state. In order to rule out this possible order, we have
also calculated explicitly the dimer-dimer correlation func-
tions D�r�� defined in Eq. �50� for the variational wave func-
tion described above �see also Table III�. The results are
compared with the ones computed using the FNE method. A
typical example of the results is presented in Fig. 20 for
J� /J=0.7 and L=30�30.67 As seen in Fig. 20, the two re-
sults do not show significant differences, confirming that the
spin liquid variational ansatz appears very stable in this case.
It should be emphasized once again that the situation is very
different from the isotropic case where a magnetic instability
was clearly detected with the FNE method �Sec. III D�.

The numerical calculations presented here strongly sug-
gest that a new type of spin liquid discussed here is an ap-
propriate ground state description of the spin-1 /2 antiferro-
magnetic Heisenberg model on the anisotropic triangular
lattice, at least in the region around J� /J�0.7−0.8 �also see
Sec. IV�. In the present work, we have not attempted to
determine the critical value of J� above which the incom-
mensurate magnetically ordered state is stable, which was
previously suggested in, e.g., Ref. 5. Indeed, there exists an-
other more interesting phase boundary between the two pos-
sible spin liquid states, the one presented here and the one
considered in Sec. III C, which will be discussed in the next
section.

IV. CONCLUSIONS AND FINAL REMARKS

In this paper, using various quantum Monte Carlo tech-
niques, we have studied the ground state phase diagram as
well as the low-lying spin excitations for the spin-1 /2 anti-
ferromagnetic Heisenberg model on the triangular lattice as a
function of the spatially anisotropic coupling J� /J �Fig. 1�.
We have found numerical evidence for the presence of two
different spin liquid states. The first spin liquid �“algebraic
spin liquid”� is stable for J� /J�0.65 �see Fig. 21�, and is
characterized by gapless spin excitations, thus very similar to
1D spin liquids. Conversely, the other spin liquid is rather a
new type of spin liquid state, stable for 0.65�J� /J�0.8, and
should show a small spin excitation gap. Starting from the
isotropic limit J�=J where the ground state is magnetically
ordered �classical Néel ordered�, quantum fluctuations in-
crease strongly with decreasing the coupling J� /J down to
zero. Therefore, the stability of a spin liquid in this region of
the phase diagram is quite clear.

The critical coupling JC� discriminating these two spin liq-
uid phases can be determined in principle by comparing the
corresponding energy, and our best estimates of the energy as
a function of J� /J are summarized in Fig. 21. From these
results, it is concluded that the critical coupling JC� /J is about
0.65. Because of the limitation of currently available cluster
sizes, our approach cannot either determine precisely the
critical coupling or describe accurately the nature of the tran-
sition. At the variational level, a first order transition occurs
at a critical point where the energy curves of the two spin
liquid phases �as a function of J� /J�, shown in Fig. 21, in-
tersect with different slopes. In the same figure, it is also
clear that the two slopes become very close within the FNE
calculations, suggesting that the transition would eventually
turn to a conventional second order transition, when the
quantum fluctuations are more accurately taken into account.

Likewise, we have not tried to determine the critical cou-
pling and to study the nature of the transition between the
spin liquid phase and the magnetically ordered phase with
incommensurate magnetic order. The latter phase should ap-

FIG. 19. �Color online� Monte Carlo evolution of the variational
parameters defined in Eq. �58� as a function of SR iterations for the
spin-1 /2 antiferromagnetic Heisenberg model on the anisotropic tri-
angular lattice with J� /J=0.7 and L=18�18. Here the SR minimi-
zation method explained in Sec. II B is used with �t=0.25/J �Eq.
�23��. Inset: the corresponding energy evolution as a function of SR
iterations. At each SR iteration, the energy is computed for the wave
function with the fixed variational parameters given at the corre-
sponding iteration in the main figure.

FIG. 20. �Color online� Dimer-dimer correlation functions D�r��
with r�= l��1 for the spin-1 /2 triangular antiferromagnet with J� /J
=0.7 and L=30�30 calculated using both variational Monte Carlo
�VMC� and FNE methods. The variational ansatz state considered
here is the projected BCS state 
p-BCS� �see text�, and this state is
used as the guiding function 
�G� for the FNE calculations.

TWO SPIN LIQUID PHASES IN THE SPATIALLY¼ PHYSICAL REVIEW B 74, 014408 �2006�

014408-21



pear somewhere around J� /J�0.8.5 However, it is very dif-
ficult to perform a finite size scaling analysis to determine
the magnetically ordered incommensurate phase simply be-
cause too large clusters are necessary for an accurate esti-
mate of the magnetic moment.

Our numerical results were obtained using the quantum
variational Monte Carlo method as well as the lattice FN and
FNE methods, which are essentially the Green function
quantum Monte Carlo method with the fixed node approxi-
mation. The FNE �“effective Hamiltonian approach”� is a
further improved version of the standard FN method and
developed here in Sec. II C. Although our results might be
affected by this approximation in general, we have shown
that the present methods provide very sensible results for the
isotropic triangular antiferromagnet with J�=J �Sec. III D�,
and the numerically exact results for the strongly anisotropic
limit of the 1D uncoupled chains with J�=0 �Sec. III B�.
Therefore, we have obtained rather reliable results for both
limits of the phase diagram, and the same numerical tools
have been applied also to the still controversial region of the
phase diagram for 0�J� /J�1.

The quality of our approximation in the FN and FNE
methods depends mostly on the choice of the guiding func-
tion 
�G�, for which we used the best variational ansatz state,
optimized using the SR minimization method �Sec. II B�.
The optimization of 
�G� is a crucial ingredient of our ap-
proach, because the approximate ground state which we con-
sider, i.e., the numerically exact ground state 
�0

eff� of the
effective Hamiltonian Ĥeff, can be computed with the restric-
tion to have the same signs of 
�G�. Indeed, on small clusters
for which numerically exact diagonalization of the systems
can be done, the variational ansatz state described by a pro-
jected BCS wave function 
p-BCS� provides a very good
average sign �S� �Eq. �53�� for both frustrated and non frus-
trated systems as discussed in Sec. III D and also in Refs. 4,
17, and 68

Within this approach, which was shown quite reliable, we
have found a surprisingly stable spin liquid �“algebraic spin
liquid”� phase in the regime of large anisotropic couplings
J� /J�0.65 �Sec. III C�. Our numerical calculations also in-
dicate that this spin liquid state shows gapless, fractionalized
spin excitations �Figs. 5 and 6�.48,54 Therefore, we predict
that this 2D algebraic spin liquid state should show peculiar
low energy properties similar to the 1D systems. Although
our conclusion is based on numerical calculations for rather
large clusters �up to 42�42 sites�, to be fair, we cannot rule
out a very weak instability toward symmetry-broken ordered
states, as predicted in the J� /J→0 limit by using the suscep-
tibility criterion based on a random phase approximation
�RPA�.69 Even in that study, the instability occurs in an irrel-
evantly small temperature region, as also pointed out by the
authors.69 Moreover, it is not clear how reliable the RPA
calculation is for finite values of J� /J.

We have also found another type of spin liquid phase
in the region J� /J close to the isotropic limit, i.e., for
0.65�J� /J�0.8 �Sec. III E�. This rather new type of spin
liquid state is characterized by a small spin excitation gap,
and is described by the projected BCS state 
p-BCS� with a
gap function defined by Eq. �55� with a �2�1� unit cell. This
spin liquid state is an extension of the conventional short
range RVB state 
�RVB� �Eq. �51��, which has been consid-
ered before in the context of the isotropic triangular lattice3

and is indeed a very good representation of the exact ground
state of the isotropic triangular antiferromagnet for small
clusters �Sec. III D and Ref. 21�.

To extend the short range RVB state, we have constructed
an exact mapping between the short range RVB state and the
projected BCS state 
p-BCS� �Sec. III D and Appendix D�. In
doing so, the unit cell of the BCS Hamiltonian, defining the

BCS� state, is expanded to a �2�1� unit cell. This mapping
is crucial in the present study because within this approach
the short range RVB state can be easily extended and im-
proved systematically by including hopping integrals, a finite
chemical potential, and most importantly long range gap
functions in the BCS Hamiltonian, with no particular
numerical effort. An additional advantage of using the

p-BCS� representation is that it is easy to gain qualitative
insight of the low-lying spin excitations from the corre-
sponding BCS excitation spectrum Ek.48,54 For instance, Ek
of the BCS Hamiltonian, corresponding to the short range
RVB state, shows a finite excitation gap simply because
−�� 
�i,j
 �Sec. III D and Appendix C�, and therefore a finite
spin gap is expected in the short range RVB state. This is
indeed the correct property of the short range RVB state,
because the presence of a finite spin gap and a very short
correlation length have been established before.7

It is worth mentioning a further remarkable property of
this new type of spin liquid state described by this projected
BCS wave function. Without the projection PG, the BCS
state 
BCS� breaks translation and reflection symmetries be-
cause the BCS Hamiltonian is defined with a �2�1� unit
cell. As a consequence, the BCS excitation spectrum Ek has
a finite gap in general. However, as discussed in Sec. III D,
the translation symmetry is recovered after applying the pro-
jection operator onto 
BCS�. Therefore, within the projected
BCS wave functions, we have discovered a peculiar way to

FIG. 21. �Color online� Energy per site for the spin-1 /2 antifer-
romagnetic Heisenberg model on the spatially anisotropic triangular
lattice calculated using the variational Monte Carlo �VMC� and the
effective Hamiltonian �FNE� methods. Here two types of spin liquid
wave functions are considered, the one described in Sec. III C �de-
noted by “1D type”� and the other described in Secs. III D and III E
�denoted by “2D type”�. These wave functions are used as the guid-
ing functions for the FNE calculations.
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open a finite spin gap without breaking the translation sym-
metry of the state. It is also important to emphasize that the
reflection symmetry of the projected state is also restored in
the thermodynamic limit, as we have systematically tested
numerically �Fig. 13�, which, however, cannot be proved rig-
orously except for the limiting case of the symmetric short
range RVB state.

Our finding of stable spin liquid phases in the spin-1 /2
anisotropic triangular antiferromagnet is in good agreement
with recent studies of the half-filled Hubbard model on the
triangular lattice with spatial anisotropic hopping based on
the Gutzwiller approximation70 and the variational Monte
Carlo simulations.71 However, it should be remarked here
that the gap function in 
p-BCS� which we found energeti-
cally favorable for the nearly isotropic case is rather different
from the ones considered in the previous studies.70,71 Our
spin liquid state is defined by a BCS Hamiltonian with a
nontranslation invariant gap function, whereas the conven-
tional ansatz state such as the ones considered in Refs. 70
and 71 is defined with a homogeneous gap function, which
we found much less accurate close to the isotropic point �see
Fig. 21�. Although both the Hubbard model in the limit of
large on-site repulsion U and the Heisenberg model consid-
ered here should be the same, we just note that, with a varia-
tional method sensitive only to the energy, it is much easier
to find good variational wave functions for a low energy
effective Heisenberg model rather than for the corresponding
Hubbard model, because the latter contains also the large
energy scale U.

In order to have better insight on the low-lying spin exci-
tations of the spin liquid phases, we have directly calculated
the spin one excitation dispersion with the method described
in Sec. II D. This quantity is particularly important since it
can be compared directly with inelastic neutron scattering
experiments. The detailed measurements on Cs2CuCl4 by
Coldea et al.11 are indeed available, for which a spin-liquid-
like behavior has been observed.11 It has been also reported
that this material can be described by the model Hamiltonian
Eq. �1� with J� /J�1/3.11 As shown in Fig. 10, our calcula-
tions were found to be in excellent agreement with the ex-
periments with no fitting parameters. It is also clear from
Fig. 10 that the dispersion is 2D characteristic because for
uncoupled chains �J�=0� the dispersion should be symmetric
around the momenta �� /2 ,0� and �� ,0�. This excellent
agreement strongly supports the existence of this type of 2D
spin liquid state. The successful comparison also indicates
that our numerical technique can compute accurately the ex-
citation dispersion for the non-trivial strongly anisotropic an-
tiferromagnetic Heisenberg model on the triangular lattice.

Encouraged by these results, we have also calculated
the low-lying spin one dispersion for the other spin liquid
phase which appears in the region of 0.65�J� /J�0.8.
A typical results for J� /J=0.8 is reported in Fig. 22. This
coupling regime is relevant for the organic material
�-�ET�2Cu2�CN�3 for which a spin-liquid-like behavior has
been also observed.12,72 Since there is no experimental data
available for the spin excitations of this material, our results
shown in Fig. 22 provide a theoretical prediction for the spin
excitation dispersion, which should be compared with the
future neutron scattering experiments. It is interesting to no-

tice that the dispersions for J� /J=0.8 and for J� /J=0.33 are
very similar along the x direction, whereas the difference
becomes evident in other momentum regions, for example,
along the y-direction. This feature should be also checked
experimentally in the feature.

In both spin liquid phases described by our variational
ansatz, the spin excitation gap in the thermodynamic limit
cannot be resolved by directly computing the excitation dis-
persions with the method introduced in Sec. II D as the
present available system sizes are not large enough. Accord-
ing to the argument presented in the previous section,
for J� /J�0.8 a finite spin excitation gap is implied by the
corresponding gap in the BCS excitation spectrum Ek of the

p-BCS� ansatz. However, this gap should be very small be-
cause �i� it is close to a transition to an ordered state appear-
ing for larger J� /J and �ii� it is due to the rather small long
range part of the gap functions �i,j’s. In fact, we have found
that the lowest excitation gap in Ek is as small as 	0.2% of
2W for J� /J=0.8 �where W is the maximum excitation en-
ergy in Ek�.65 This small gap might also explain an apparent
finite spin susceptibility observed on �-�ET�2Cu2�CN�3,12

which should eventually vanish exponentially at very low
temperatures with an activated behavior.

It is also very interesting to note that the organic material
�-�ET�2Cu2�CN�3, which shows a spin-liquid-like behavior
under ambient pressure,12 has been very recently found to
become a superconductor under small applied pressure
�about 4–6�10−1 GPa �.73,74 If we assume that the origin of
the superconductivity is intimately related to the spin-liquid-
like nature of the phase observed next to the superconducting
phase, the present study implies a rather unique, unexpected
pairing symmetry of the superconductor with a non transla-
tion invariant pairing amplitude. This is a measurable
effect because the projected BCS state 
p-BCS� discussed in
Sec. III E is no longer translation invariant once the projec-
tion constraint PG is released or mobile carriers are intro-
duced into the homogeneous spin liquid state. Therefore, we
expect that this unconventional pairing formation can be
probably observed by, e.g., scanning tunneling microscopy
experiments.75

Based on our numerical calculations and their comparison
with experiments, we conclude that the spin liquid is a ge-

FIG. 22. �Color online� Lowest triplet spin excitations as a func-
tion of momentum for the spin-1 /2 antiferromagnetic Heisenberg
model on the triangular lattice with J� /J=0.8 and L=18�18, cal-
culated using the method introduced in Sec. II D. Here G2

=4� /�3.
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neric phase of quantum matter, and that, for its stability, it is
not important to be very close to a phase transition, unlike
the recently proposed scenario in which a spin liquid state
appears only at a transition point between a magnetically
ordered phase and a spontaneously dimerized phase.76

Within the projected BCS wave function approach, sponta-
neous dimerization can be correctly described in quasi-1D
systems, but not in 2D unless the translation symmetry of the
variational state is explicitly broken.52 Even allowing this
possible symmetry breaking, by adding appropriate symme-
try breaking terms to the BCS Hamiltonian, we have not
found a stable dimerized phase in the present 2D system.
Instead, we have found rather stable spin liquid phases. Fi-
nally, our phase diagram of the spin-1 /2 antiferromagnetic
Heisenberg model on the triangular lattice is summarized in
Fig. 23, where possibly related materials are also indicated.
In particular, it would be very important to distinguish ex-
perimentally the two different spin liquid phases predicted
here for different values of the coupling J� /J.
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APPENDIX A: DETAILS OF THE NUMERICAL
CALCULATIONS

In this appendix, we will explain how to define appropri-
ately and calculate efficiently the quantity Ok�x� �Eq. �12��
for each variational parameter �k of the wave function


��k��. Since the derivation is rather general and not re-
stricted to the particular form of the wave function used, we
will here indicate the determinantal part of the wave function
by 
�0�, instead of 
BCS�, and thus 

��k��=PG
�0�. Since it
is generally found much more efficient, we will consider a
wave function with definite number N of electrons, for which

there are also important simplifications in deriving computa-
tionally convenient expressions for the quantities Ok�x�.

To this purpose, we will use a particle-hole transformation
introduced by Yokoyama and Shiba,77 which is defined by
the following canonical transformation:

ci↑
† = C̃i

†,

ci↓
† = �− 1�i1+i2C̃i+L. �A1�

Here ci�
† �ci�� is an electron creation �annihilation� operator

at site r�i= i1��1+ i2��2 with spin ��=↑ , ↓ �, whereas C̃i
† and C̃i

represent the new canonical operators corresponding to the
original spin up �spin down� electrons for i�L �L� i�2L�.
L is the total number of sites.

After this particle-hole transformation �A1�, it is clear that
the BCS Hamiltonian �Eq. �3�� can be written as

H̃BCS = �
I,J=1

2L

C̃I
†�H̄�HF��I,JC̃J, �A2�

where �H̄�HF��I,J are appropriate 2L�2L matrix elements,
which can be straightforwardly computed from Eq. �3�. Note
that this matrix can be easily evaluated also for rather general
Hartree-Fock, BCS Hamiltonians containing, e.g., non trans-
lation invariant terms, or several types of orders. The total
number of particles N�ph� after the transformation �A1� is
related to the total spin along the z direction Sz= �N↑
−N↓� /2 in the original representation through the following
equation:

N�ph� � �
I=1

2L

C̃I
†C̃I = �

i=1

L

�ci,↑
† ci,↑ + ci,↓ci,↓

† � = L + 2Sz.

Since Sz is conserved in the original BCS Hamiltonian, the
transformed Hamiltonian �A2� has a definite number N�ph� of
particles, as anticipated. With this particle-hole transforma-
tion, it is possible to study the spin excitations of the BCS
Hamiltonian with Sz�0, as well as the ground state which
belongs to the singlet Sz=0 sector. Therefore, in the follow-
ing, we will consider the general case with unrestricted N�ph�.

By using an appropriate unitary transformation

C̃I = �
�=1

2L

�Ū�I��̂�,

�̂�
† = �

i=I

2L

�Ū�I�C̃I
†, �A3�

H̃BCS is diagonalized with a new set of quasiparticle opera-
tors ��̂�

† , �̂��:

H̃BCS = �
�=1

2L

	��̂�
† �̂�, �A4�

where, for convenience, the eigenvalues are sorted in ascend-
ing order 	1�	2� ¯ �	2L.

FIG. 23. �Color online� A schematic phase diagram of the spin-
1 /2 antiferromagnetic Heisenberg model on the triangular lattice. J
�J�� is the nearest neighbor antiferromagnetic coupling between the
spins in the chain �in different chains� �see Fig. 1�. SL and AFMLO
stand for spin liquid and antiferromagnetic long range order �in-
commensurate spin order for J� /J away from the isotropic case�,
respectively. Materials possibly described by this class of models
are also indicated.
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A natural choice of the Slater determinant part 
�0� of the

variational wave function is the ground state of H̃BCS with
N�ph� particles:


�0� = �̂1
†�̂2

†
¯ �̂N�ph�

† 
0̃� , �A5�

where 
0̃� is the vacuum �C̃I
0̃�=0� of the Hilbert space after
the particle-hole transformation. Thus the Slater determi-
nant for a particle-hole transformed configuration


x�= C̃I1

† C̃I2

†
¯ C̃IN�ph�

† 
0̃� is

�x
�0� = det�S̄� , �A6�

where S̄ is a N�ph��N�ph� matrix, whose elements are

�S̄�l,� = �0̃
C̃Il
�̂�

† 
0̃� = �Ū�Il�
, �A7�

Il’s �1� Il�2L� are the “positions” of the N�ph� particles �l
=1,2 , . . . ,N�ph�� corresponding to the configuration 
x�, and
�= �1,2 , . . . ,N�ph��.

Now let us consider small changes for �k→�k�=�k+��k.

Since H̃BCS depends linearly on ��k�, the perturbed system is
described by

H̃BCS� = H̃BCS + �
k=1

p

��k · V̂k, �A8�

where V̂k=�I,J=1
2L �V̄�k��IJC̃I

†C̃J is a suitable operator propor-
tional to the chosen variational parameter �k. For instance,
when the chemical potential is changed �→�+��, namely,

a term −���i=1
L ��ci,�

† ci,� is added to ĤBCS, the corresponding

matrix element �V̄�k��IJ is −�I,J for I�L and �I,J for I�L, due
to the particle-hole transformation �A1�. Here �i,j is the Kro-
necker � function. When a small change in a pairing term
��i,jci,↑

† cj,↓
† +H.c.� is considered, the corresponding matrix el-

ement �V̄�k��IJ is �−1� j1+j2��I,i�J,j+L+�I,j+L�J,i� where r� j = j1��1

+ j2��2.
With the basis set formed by the quasiparticle operators

��̂�
† , �̂��, the matrix V̄�k� is transformed as V̄�k�→ Ū†V̄�k�Ū,

and thus the first order correction to the state 
�0� is easily
computed as follows:


�0�� = �1 + �
k=1

p

��k �
�,�=1

2L

�Q̄�k������
†���
�0� + O���k

2� ,

�A9�

where

�Q̄�k���� = � �Ū†V̄�k�Ū���

	� − 	�

for � � N�ph� and � � N�ph�,

0 otherwise.
�

�A10�

This expression is well defined as long as 
�0� is nondegen-

erate, so that the denominator in the definition of Q̄�k� is
always nonzero. This condition is rather generally satisfied

for the BCS Hamiltonian. We can now readily express the

state 
�0�� in terms of the �C̃† , C̃� basis set


�0�� = �1 + �
k=1

p

��k �
I,J=1

2L

�M̄�k��IJC̃I
†C̃J�
�0� + O���k

2� ,

�A11�

where M̄�k�= ŪQ̄�k�Ū†. At each iteration of the SR minimiza-

tion procedure described in Sec. II B, M̄�k� has to be com-
puted, because the operators ��̂�

† , �̂�� change every time a
new set of ��k� is calculated. This can be done using four
matrix-matrix multiplications.

From Eq. �A11�, it is now easy to evaluate the perturbed
Slater determinant �x 
�0��, and thus an explicit expression
for Ok�x� defined by Eqs. �12� and �13�:

Ok�x� = �
I=1

2L

�
J=1

2L

�M̄�k��IJ

�x
C̃I
†C̃J
�0�

�x
�0�
= �

l=1

N�ph�

�
J=1

2L

�M̄�k��IlJ
GJl.

�A12�

Here GJl is a local single-particle “Green’s function”

GJl �
�x
C̃Il

†C̃J
�0�

�x
�0�
= �

�=1

N�ph�

�Ū�J��S̄−1��l, �A13�

which is computed and updated during the variational Monte

Carlo iterations. Since the matrix M̄�k� does not depend on
the configuration 
x� and GJl is always known, only about L2

operations are required to evaluate Ok�x� for each k and for
each sampled configuration 
x�. Finally, we note that when
the variational wave function 

��k�� contains the spin Ja-

strow factor JS=exp��i,j=1�i�j�
L vijŜi

zŜj
z�, i.e., 

��k��

=PGJS 
�0�, the calculation of Ok�x� corresponding to the
variational parameter vij is much simpler and straightfor-

ward, because Ok�x� is simply �x 
 Ŝi
zŜj

z 
x� in this case.

APPENDIX B: MARSHALL SIGN RULE AND PROJECTED
BCS WAVE FUNCTIONS

In this appendix, we will show that a BCS wave function
projected onto the subspace of singly occupied sites satisfies
the Marshall sign rule provided the corresponding BCS
Hamiltonian

ĤBCS = �
j,l
�tj,l
�

�

cj�
† cl�� + �� j,lcj↑

† cl↓
† + H.c.�� �B1�

satisfies the following conditions:

tj,l = � j,l = 0: for j and l on the same sublattice. �B2�

Here ci�
† �ci�� is an electron creation �annihilation� operator

at site ri= i1��1+ i2��2 with spin ��=↑ , ↓ �, and tj,k and � j,k are
assumed symmetric under j↔k interchange and real. It is
also assumed that the ground state of the BCS Hamiltonian

BCS� is unique, namely with a finite size gap to the first
excitation, a condition which can be generally met for non-
trivial values of �i,j and ti,j.
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In what follows, we will show that the projected BCS
wave function 
p-BCS�=PG
BCS� constructed from the BCS
state above satisfies the Marshall sign rule, namely,

sgn��x
BCS�� = �− 1�NA, �B3�

where NA is the number of down spins on one of the two
sublattices, and 
x� is an electron configuration with no dou-
bly occupied sites, which can be written as

�x
 = �0
�
i=1

L

ci�i

with the ci�i
factors being ordered from left to right accord-

ing to the increasing index i ��i is the spin of the electron on
site i�. Here it is assumed that the number of sites �L� is even.

First, it is convenient to perform the following particle-
hole transformation for the down spins only:

cl↑ = dl↑,

cl↓ = �− 1�l1+l2dl↓
† . �B4�

With this transformation, the BCS Hamiltonian is trans-
formed to a standard one-body Hamiltonian commuting with
the total number of particles, i.e.,

ĤBCS = �
j,l
�tj,l
�

�

dj�
† dl�� + � j,l�− 1�l1+l2

�
�
�,��

dj�
† dl��2iS���

y �� , �B5�

where “i” denotes the imaginary unit, Sy is the y component
of the spin matrix, and condition �B2� is used. On the other
hand, after this transformation �B4�, the basis of no doubly
occupied sites turns into


↑� → 
↑↓� ,


↓� → 
0� ,

namely, the sites are either doubly occupied or empty in the
new representation, and all configurations �x̂� are now de-
fined by the L /2 positions of the doubly occupied sites:

�x̂
 = �0
dR1↓dR1↑dR2↓dR2↑ ¯ dRL/2↓dRL/2↑,

where Rl� �r1 ,r2 , . . . ,rL�. Because of the additional phase
in Eq. �B4�, �x
 is related to �x̂
 by �x
= �−1�NA�x̂
. Therefore,
using the definition of the Marshall sign �B3�, a state with
the Marshall sign rule in the original basis �x� is equivalent
to a bosonic state in the particle-hole transformed basis �x̂�:
for each configuration 
x̂�, the wave function should be al-
ways positive �or always negative�.

In order to show this bosonic rule for the projected BCS
state considered, it should be noticed that the new basis �x̂� is
invariant under a global rotation of the spins which trans-
forms the spin matrix S���

y into S���
z =����� /2:


dj↑

dj↓
� =

1
�2


 1 i

− i − 1
�
aj↑

aj↓
� . �B6�

Indeed, dj↑dj↓ is transformed into aj↓aj↑. It is also easily
shown that this transformation �B6� factorizes the Hamil-
tonian �B5� as

ĤBCS = �
�
��

i,j
�H̄��ijai�

† ai�� , �B7�

where H̄↑= H̄↓
*, H̄↑ and H̄↓ being appropriate one-body

Hamiltonian matrices whose eigenstates are ���r� and ��
*�r�,

respectively ��=1,2 , . . . ,L�. Therefore, the ground state


BCS� of ĤBCS once computed in the basis of doubly occu-
pied and empty sites �x̂� reads

�x̂
BCS� = 
Det�S̄�
2 � 0, �B8�

where S̄ is a �L�L� matrix with �S̄�l,�=���Rl�. This proves
the statement given at the beginning of this Appendix.

Finally, we note that the condition �B2� is satisfied when-
ever the BCS Hamiltonian �B1� is invariant under a particle-
hole transformation

ci�
† → �− 1�i1+i2ci�, �B9�

provided tj,k= tk,j and � j,k is real. Equation �43� in Sec. III A
follows readily from this particle-hole symmetric condition.

APPENDIX C: BCS WAVE FUNCTION WITH A BROKEN
TRANSLATION SYMMETRY

In this Appendix, several important properties are dis-
cussed on the ground state 
BCS� of the BCS Hamiltonian
which breaks primitive lattice translation symmetry by ex-
tending the unit cell to �2�1�. The resulting state 
BCS� is
used to build projected BCS states 
p-BCS�=PG
BCS� for
the isotropic and nearly isotropic triangular systems dis-
cussed in Secs. III D and III E, respectively.

Let us start with defining the BCS Hamiltonian ĤBCS in-
troduced in Sec. II A in a slightly different way. A part of

ĤBCS which is invariant under any primitive lattice transla-
tions on the triangular lattice �Fig. 1� can be generally de-
scribed by the following Hamiltonian:

ĤBCS
�0� = − �

r�,�
��

t�m

�tt�m
�cr��

† cr�+t�m� + cr�+t�m�
† cr����

+ �
r�
��

t�m

��t�m
�cr�↑

† cr�+t�m↓
† − cr�↓

† cr�+t�m↑
† � + H.c.�

− ��
r�,�

cr��
† cr��, �C1�

where the first sum �r� runs over all lattice vectors r�=r1��1

+r2��2 �r1 ,r2: integer�, whereas the second sum �t�m
� is for t�m

=m1��1+m2��2 �m1 ,m2: integer� with m2�0 or with m1�0
and m2=0 as denoted by solid circles in Fig. 24�a�. Now let

us add to ĤBCS
�0� an additional pairing term V̂pair which breaks

the underlying lattice translation symmetry
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V̂pair = �
r�
��

t�m

��− 1�r1�̄t�m
�cr�↑

† cr�+t�m↓
† − cr�↓

† cr�+t�m↑
† � + H.c.� .

�C2�

Note that the unit cell of the total BCS Hamiltonian ĤBCS

= ĤBCS
�0� + V̂pair is now extended to �2�1�. In the following,

tt�m
, �t�m

, �̄t�m
, and � are all assumed to be real.

Let us first explore the excitation spectrum of ĤBCS. For
this purpose, it is convenient to Fourier transform the BCS
Hamiltonian to the momentum space with the reciprocal lat-
tice vectors g�1=2��1,− 1

�3
� and g�2=2��0, 2

�3
� �see Fig. 24�b��.

After the Fourier transformation with cr��
† = 1

�L
�k�e

−ik�·r�ck��
† ,

ĤBCS can be conveniently described by the following �4
�4� matrix form:

ĤBCS = �
k�

��ck�↑
† , c

k�+Q� ↑
†

, c−k�↓, c−�k�+Q� �↓�

��

1�k�� 0 �11�k�� �12�k��

0 
2�k�� �12�k��* �22�k��

�11�k�� �12�k�� − 
1�k�� 0

�12�k��* �22�k�� 0 − 
2�k��
��

ck�↑

ck�+Q� ↑

c−k�↓
†

c
−�k�+Q� �↓
† � ,

�C3�

where


1�k�� = − 2�
t�m

�tt�m
cos�k� · t�m� − � ,


2�k�� = − 2�
t�m

�tt�m
cos��k� + Q� � · t�m� − � �C4�

and

�11�k�� = 2�
t�m

��t�m
cos�k� · t�m� ,

�22�k�� = 2�
t�m

��t�m
cos��k� + Q� � · t�m� ,

�12�k�� = �
t�m

��̄t�m
�ei�k�+Q� �·t�m + e−ik�·t�m� �C5�

with Q� =g�1 /2 so that Q� ·r�=�r1. The primed sum �k�� runs
over the reduced Brillouin zone shown in Fig. 24�b�, or
equivalently, e.g., for parallelogram lattice of L=L1�L2 �L1,
L2: even� with k� =

k1

L1
g�1+

k2

L2
g�2, the primed sum is taken over

k1=0 ,1 , . . . ,L1 /2−1 and k2=0 ,1 , . . . ,L2−1.
The excitation spectrum of the BCS Bogoliubov mode for

this BCS Hamiltonian is now easily calculated by diagonal-
izing the �4�4� Hamiltonian matrix given in Eq. �C3�. It
turned out that the excitation spectrum Ek� is doubly degen-
erate at each momentum k� and is given by Ek� =E

k�
�±�

, where

Ek�
�±� = �Q0�k�� ± Q1�k���1/2 �C6�

and

Q0�k�� =
1

2
�
1�k��2 + 
2�k��2 + �11�k��2 + �22�k��2 + 2
�12�k��
2� ,

Q1�k�� =
1

2
„�
1�k��2 − 
2�k��2 + �11�k��2 − �22�k��2�2

+ 4
�12�k��
2��
1�k�� − 
2�k���2 + ��11�k�� + �22�k���2�…1/2.

From this expression, it is clear that generally E
k�
�±�

has a
finite excitation gap except for some special cases.

So far no assumption has been made for the values of real

gap functions �t�m
and �̄t�m

. As will be discussed in Appendix
D, in order to be consistent with the phase rule �Eqs. �D8�
and �D9�� and for ĤBCS to be invariant under the transforma-

tion T1 � U �Sec. III D�, the gap functions �t�m
and �̄t�m

are
subject to the following conditions:

�t�m
= 0 for m2 odd,

�̄t�m
= 0 for m2 even. �C7�

With this condition, ��t�m� given in Eq. �55� is equivalent to

�t�m
and �̄t�m

defined here.
Let us now consider one special but important case for

which all hopping terms tt�m
are zero and �11�k��=−�22�k��. In

this case, Q1�k��=0, and therefore the excitation spectrum for
the Bogoliubov mode is simply

Ek� = ��2 + �11�k��2 + 
�12�k��
2�1/2. �C8�

After tedious but straightforward calculations, the ground

state 
BCS� of the BCS Hamiltonian ĤBCS for this special
case can be calculated analytically:

FIG. 24. �Color online� �a� Region of �m1 ,m2� �denoted by solid
circles� considered for the sum over t�m=m1��1+m2��2. Each circle
corresponds to a pair of integers �m1 ,m2�. �b� The first Brillouin
zone �hexagon drown by dashed lines� for the triangular lattice
shown in Fig. 1. The corresponding reciprocal lattice vectors are
g�1=2��1,− 1

�3
� and g�2=2��0, 2

�3
�. The reduced Brillouin zone �tilted

rectangle� is also given by solid lines. Several symmetric points are
�: �0,0�, P: � 4

3� ,0�, Q: �� , �
�3

�, P�: � 2
3� , 2

�3
��, and Q�: �0, 2

�3
��.

TWO SPIN LIQUID PHASES IN THE SPATIALLY¼ PHYSICAL REVIEW B 74, 014408 �2006�

014408-27




BCS� = exp��
t�m

��f11�k��ck�↑
† c−k�↓

† + f22�k��c
k�+Q� ↑
†

c
−�k�+Q� �↓
†

+ f12�k��

��ck�↑
† c

−�k�+Q� �↓
†

− ck�↓
† c

−�k�+Q� �↑
† ���
0� , �C9�

where

f11�k�� = − f22�k�� = −
�11�k��
Ek� − �

,

f12�k�� = −
�12�k��
Ek� − �

, �C10�

and �12�k��*=�12�−k�� is used. This state should be compared
with the more conventional one given by Eq. �9� where there
is only one site per unit cell. Finally, let us consider two
more specific cases separately. Case �1�: �=0 and only near-

est neighbor gap functions are finite, i.e., ���1
= �̄��2

= �̄��2−��1

=� �see Fig. 11�. Because �11�k��=−�22�k��=2� cos�k� ·��1�
and �12�k��=2��cos�k� ·��2�− i sin�k� · ���2−��1���, Ek� has gapless
excitations at k� =g�1 /4±g�2 /4 and −g�1 /4±g�2 /4. Case �2�: �
→−�. Since f11�k���−�11�k�� and f12�k���−�12�k�� in this
limit, i.e., a pairing function is proportional to a gap function,
a projected BCS wave function 
p-BCS� built from this BCS
state becomes

lim
�→−�


p-BCS� = PG��
r�
��

t�m

���t�m
+ �− 1�r1�̄t�m

��cr�↑
† cr�+t�m↓

†

− cr�↓
† cr�+t�m↑

† ���L/2

0� . �C11�

From this result, it it clear that the projected BCS state dis-
cussed here indeed includes a short range RVB wave func-

tion 
�RVB� since if ���1
= �̄��2

= �̄��2−��1
�all other gap functions

are zero� is chosen, the above wave function �C11� consists
of the pairing functions with exactly the same phase as in
Eqs. �D8� and �D9�. More details of this relation will be
found in the next Appendix.

APPENDIX D: PFAFFIAN AND PROJECTED BCS WAVE
FUNCTIONS

We start from the definition of a Pfaffian in terms of an

antisymmetric 2N�2N matrix f̄ where f i,j =−f j,i. The Pfaff-

ian of matrix f̄ is

P� f̄� = �
�i1�j1�,�i2�j2�,. . .,�iN�jN�

and i1�i2¯�iN

�− 1�p�
k=1

N

fik,jk
, �D1�

where the sum runs over all possible covering of indices
��i1 , j1� , �i2 , j2� , . . . , �iN , jN�� such that ik� jk and i1� i2� i3

� ¯ � iN, being p the parity of the permutation of the 2N
indices


1 2 3 4 ¯ 2N − 1 2N

i1 j1 i2 j2 ¯ iN jN
� .

The most important relation known for the Pfaffian is that

�P� f̄��2=Det� f̄�, which, however, will not be used in the fol-
lowing.

Now let us suppose that the indices 1 ,2 ,3 , . . . ,2N label
the positions of a lattice �not necessarily one dimensional�.
Then each covering of the indices in the Pfaffian is inter-
preted as a particular dimer configuration in which, for ex-
ample, a spin singlet pair located at sites �ik , jk� is assigned.

We can now define two spin wave functions in terms of
these dimer coverings. The first wave function is expanded in
the well known valence bond basis78


RVB� = �
�i1�j1�,�i2�j2�,. . .,�iN�jN�

and i1�i2¯�iN

�− 1�p��
k=1

N

fik,jk
�Sjk

− − Sik
−��
F� ,

�D2�

where Si
− is the spin-1 /2 lowering operator at site i, 
F� is the

ferromagnetic state defined by


F� = c1,↑
† ,c2,↑

† , . . . ,c2N,↑
† 
0� , �D3�

and 
0� is the electron vacuum. Notice that for convenience
we have included in the definition of the wave function the
same permutation sign �−1�p appearing in the Pfaffian �D1�.
The second wave function is the projected BCS state


p − BCS� = PG exp� �
i,j=1

�i�j�

2N

fi,j�ci,↑
† cj,↓

† − ci,↓
† cj,↑

† ��
0� ,

�D4�

where PG is the Gutzwiller projection operator onto singly
occupied sites. In both wave functions, we have used the

upper triangular part of the antisymmetric matrix f̄ , whereas
the tedious permutation sign�−1�p is present only in the wave
function 
RVB�. We shall now show that the two wave func-

tions 
p-BCS� and 
RVB� are actually the same for any f̄ and
on any lattice with all possible boundary conditions.

Proof. Because the projection PG forbids double occu-
pancy and thus singlet bonds sharing the common site, the
projected BCS wave function 
p-BCS� can be expanded for
all dimer coverings as follows:


p-BCS� =
1

N!
PG� �

i,j=1

�i�j�

2N

fi,j�ci,↑
† cj,↓

† − ci,↓
† cj,↑

† ��
N


0�

= �
�i1�j1�,�i2�j2�,. . .,�iN�jN�

and i1�i2¯�iN

�
k=1

N

�f ik,jk
�cik,↑

† cjk,↓
† − cik,↓

† cjk,↑
† ��

�
0� , �D5�

where in the last formula the constant 1 /N! cancels out the
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factor due to the ordering of the indices i1� i2 , . . . , � iN. On
the other hand, by substituting the definition of the ferromag-
netic state in the wave function 
RVB� and making the nec-
essary p* fermion permutations for each dimer covering, we
arrive at the following expression:


RVB� = �
�i1�j1�,�i2�j2�,. . .,�iN�jN�

and i1�i2¯�iN

�− 1�p�− 1�p*

���
k=1

N

fik,jk
��Sjk

− − Sik
−�cik,↑

† cjk,↑
† ��
0� . �D6�

By simple inspection, it is readily realized that the fermion
sign �−1�p*

is exactly the one �−1�p defining the permutation
sign of the covering of indices ��ik , jk��, and that �Sjk

−

−Sik
−�cik,↑

† cjk,↑
† 
0�=cik,↑

† cjk,↓
† −cik,↓

† cjk,↑
† 
0�. Thus it is proved that

two wave functions 
RVB� and 
p-BCS� are exactly the same.
In the remaining of this Appendix, we will show that even
for the triangular lattice geometry, the so-called short range
RVB wave function 
�RVB� �Eq. �51�� can be described by
the projected BCS wave function �D4� with a particular

choice of the matrix f̄ .

1. Consequences of the theorem: short range RVB wave
function

The short range RVB wave function 
�RVB� �Eq. �51�� is
defined with the same weight for all nearest neighbor valence

bonds. Therefore, if we can find the matrix f̄ in Eq. �D2� in
such a way that the sign of the permutation for each dimer
covering is exactly canceled, i.e.,

�− 1�p�
k=1

N

fik,jk
= 1, �D7�

then a relation is established between RVB wave functions
and projected BCS wave functions. The condition �D7� is
highly nontrivial and difficult to satisfy as the number of
dimer coverings is exponentially large and the entries of the
matrix are few in comparison. Nevertheless, this problem for
the case of nearest neighbor dimer covering was solved in all
planar graphs.79

By applying these old results,79 we can generalize the
Read-Chakraborty relation between the short range RVB and
projected BCS wave functions on the square lattice80 for the

triangular lattice case. Namely, by using the known matrix f̄
reported in Ref. 79, it is possible to satisfy the condition �D7�
even for the triangular case.7 Here we use open boundary
conditions for a lattice of l� l sites �l being multiple of 6�
where site i is ordered lexicographically: i= lm2+m1+1
= �m1 ,m2�. The Cartesian coordinates of the triangular lattice
�Fig. 1� are thus

r�i = m1��1 + m2��2 = �m1 + m2/2,�3m2/2� .

The pairing functions fk,j which meet the condition �D7�
reads

fk,j = �1 for j = �1,0� ,

1 for j = �0,1� ,

1 for j = �− 1,1�
� �D8�

for k= �0,0�, whereas

fk,j = �1 for j = �2,0� ,

− 1 for j = �1,1� ,

− 1 for j = �0,1�
� �D9�

for k= �1,0�. All the other values of fk,j are obtained by
translation of 2��1= �2,0� and/or ��2= �1,0�. Therefore, the
unit cell of fk,j is �2�1� on the triangular lattice �see Fig.
11�.

2. Complex representation (Ref. 7)

We can multiply by the imaginary unit i all the cj,�
† for the

odd ��1 components of j since the resulting wave function is
equivalent to the original one �Eq. �D4�� in the presence of
the projection operator PG �apart from an overall phase�. The

obtained new complex matrix f̄ consists of

fk,j = �i for j = �1,0� ,

1 for j = �0,1� ,

i for j = �− 1,1�, the diagonal bond
�

for k= �0,0�, whereas

fk,j = �i for j = �2,0� ,

1 for j = �1,1� ,

− i for j = �0,1�, the other diagonal bond
�

for k= �1,0�. All the other values of fk,j are obtained
by translation of 2��1= �2,0� and/or ��2= �1,0�. Notice that if
the diagonal bonds are eliminated, we end up with again a
�1�1� unit cell with fk�cos�kx�− i cos�ky� in Fourier space,
thus recovering the Read-Chakraborthy result for the square
lattice with r�i= �m1 ,m2�.80

It is important to emphasize that for the triangular lattice
geometry a �2�1� unit cell is inevitable even with the com-
plex representation �as the diagonal bonds acquire different
signs�. Thus, we conclude that the translation symmetry in
fk,j has to be broken for a good projected BCS wave function
in the triangular case. It is interesting that two sites per a unit
cell is enough, in contrast to the classical Néel order state
with 120° of mutual spin orientations which contains instead
three sites per unit cell.

3. Periodic boundary conditions

For the short range RVB state with periodic boundary
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conditions, it is known that condition �D7� cannot be satis-
fied by a single 
p-BCS�, but by four, all obtained with the
possible choices of periodic and antiperiodic boundary con-
ditions in ��1 and ��2 directions.79 The proof can be applied for

each of such 
p-BCS�, showing that these four projected BCS
wave functions have to be used to exactly match the short
range RVB wave function with periodic boundary condi-
tions.
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