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We study the onset of spontaneous magnetization and the hysteresis properties of finite size two-dimensional
Ising spin configurations which are assumed to lie on a smooth nonmagnetic surface. We model the dynamics
of the spin system with and without a time-periodic magnetic field using a Monte Carlo simulation. For dilute
spin lattices, we find that spontaneous magnetization occurs for spin densities well below thermodynamic
predictions; this regime is identified as superparamagnetism. Based on numerical evidence and theoretical
arguments we find that for a range of lattice sizes the density is proportional to T along the line between the
paramagnetic regime and the regime in which spontaneous magnetization can occur. We also study hysteresis
on four different spin structures for a piece-wise-linear magnetic driving field. We find that the hysteresis loop
area depends on the effective exchange coupling as well as the detailed structure of the surface. We define a
nearest-neighbor structure constant and study the dependence of the hysteresis loop area on the effective
exchange coupling for each of the four different spin structures.

DOLI: 10.1103/PhysRevB.74.014407

I. INTRODUCTION

There is now considerable interest in understanding the
magnetic behavior of finite size magnetic dots in thermal
contact with their surroundings.' The magnetic behavior of
such systems is not expected to follow thermodynamic pre-
dictions since finite size effects will play an important role in
determining their behavior. Among the unanswered questions
about such systems are the dependence of their structure on
the growth mechanism and the dependence of their magnetic
properties on their structure.*> Also there is the question of
the behavior of small magnetic systems in a time-periodic
magnetic field.®° Shen et al.* find that different deposition
processes (thermal and pulsed laser deposition) will result in
surfaces with different morphologies and hence different
magnetic properties. In addition, there has been significant
interest in the behavior of hysteresis loops in thin magnetic
films, because seemingly similar experiments can give quite
different results as regards the area of hysteresis loops.'®-2!

In this article we focus on the magnetic properties of par-
tially filled finite Ising spin surfaces and the relationship be-
tween these properties and the underlying structure. Using
the Metropolis algorithm?”?® we computationally study the
onset of spontaneous magnetization in randomly grown, or
dilute, surfaces. We then study the relationship between the
area of hysteresis loops and the spatial distribution of spins
in finite Ising surfaces. In Sec. II we present the tools we will
be using. In Sec. III we study the field-free case for randomly
deposited Ising systems with different occupation probabil-
ity. In Sec. IV we study the behavior of hysteresis loop areas
for a piece-wise-linear time-periodic driving field. We study
four different surface structures: flat, percolating, Sierpinski
type fractal, and a numerical representation of a real surface.
Finally in Sec. V the results are summarized. We also discuss
some auxiliary findings about the Sierpinski fractal in the
Appendix .

II. MODEL

Let us consider a two-dimensional rectangular grid which
is the substrate on which a surface is grown. We grow vari-
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ous surfaces selecting points on this grid which will be oc-
cupied by an Ising spin. The site labeled with i has a spin §;
such that

0 if i empty,
Si= Y (1)

+1 if i occupied.

For the case with nearest-neighbor coupling and an applied
magnetic field the Hamiltonian is

N
H=-J2 88— 2 SH({), (2)

(i.j) i=1

where (i,j) denotes nearest neighbor pairs. The magnetic
field H(z) is the time dependent driving field, and J is the
exchange constant. In the Hamiltonian (2), H, J, and H(z) are
chosen to be dimensionless in units of the thermal energy
kgT, with T the temperature and kp the Boltzmann constant.
This choice indicates that only the ratio between the ex-
change energy (or the total energy in case there are other
interactions) and the temperature is relevant. This means that
systems with the same configuration, but with different J,
=J-kgT (the atomic exchange constant), will behave in the
same way at different temperatures. Indeed this behavior is
not limited to the Ising model but is exhibited for example in
the fact that different ferromagnetic systems undergo a simi-
lar phase transition, but at different temperatures.

We would like to have a measure for the structure of the
surface so we can relate it to the magnetic properties. We use
the average number of nearest-neighbor bonds per spin G,

G=N,/N,. (3)

Here N, is the number of nearest-neighbor bonds, and N, is
the number of occupied sites. The density of particles p
=N,/N, where N is the total number of available sites, is
equivalent to the occupation probability p for large percolat-
ing systems. As we will see, G provides information about
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the bond structure of the spin lattice at the minimum length
scale.

We restrict our attention here to mature hysteresis loops.
By mature hysteresis loops we mean those loops where the
two branches of magnetization coincide before the maximal
(or minimal) magnetic field value. Note that for a given
choice of surface structure and magnetic field profile, we will
define a hysteresis loop as the average magnetization curve
obtained from an average over many field cycles. Since the
area of the hysteresis loop is given by A=$ HdM, where M is
the magnetization per spin, A is equal to the magnetic energy
per spin dissipated in one loop.

Let us now consider the functional form of the driving
field H(z). The usual way of obtaining hysteretic response is
to drive the system with a sinusoidal driving field. The area
of the loop then depends on two independent parameters, the
amplitude of the driving field H, and the angular frequency
of the driving field Q=27/7, with 7 the time period. For
sinusoidal driving fields it has been found, at least for fre-
quency ranges containing several orders of magnitude, that
the area of the hysteresis loop can have power law behavior
of the form Ao H;OP, where a and S are the power law
exponents,®-13-19

It is possible to restrict the dependence of the hysteretic
response to a single parameter Hy() by driving the system
with a sawtooth (piece-wise-linear) magnetic field H(k7+1)
=Hy(2|2-1|-1), with 0=r=r, and k=0,1,2, ... . For the
sawtooth field, in the regime of mature hysteresis, the re-
sponse of the system depends only on the slope of the linear
part of the driving field. Let h=2H{}/ 7 denote the absolute
value of the slope of the sawtooth driving magnetic field. To
see that the hysteresis loop area depends only on this quan-
tity, let H(z) and H’(t):H(’)(Z %—1 ‘—1) be two driving
fields, obeying the condition H,Q)=H/{)’, and such that the
hysteresis loops they produce are mature. Without loss of
generality we assume that Hy<<H{. We start with the ferro-
magnet in the virgin state, with zero magnetization and field.
In the regime where both H(r) andH'(¢) are less than H,, the
two situations are physically identical. Thus we obtain the
same initial magnetization curve for the two fields. If for
fields greater than H, there is a well defined (unique) mag-
netization curve, which is the definition for mature hyster-
esis, then the loops formed will coincide, since for fields
between —H, and H,, both magnetization curves would have
identical starting points and driving fields. As illustrated in
Fig. 1, in the regime of mature hysteresis, the contribution to
the area of the hysteresis loop will come from the darkened
segments of the H(z) versus 7 curves. Thus for the sawtooth
field, in the regime of mature hysteresis, the area of the hys-
teresis loop depends on the product Hy{) in some fashion.

In the following sections, we study the relationship be-
tween the structure of a finite Ising spin surface and its mag-
netic properties. To simulate the dynamics of the systems
under consideration, except where otherwise stated, we use
the Metropolis algorithm with random updates. We generate
pseudorandom numbers using either a linear congruential
generator, seeding it with true random numbers obtained in
various ways,?’ or by using standard programing functions.
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FIG. 1. Two sawtooth driving magnetic fields with the same
slope. The thick lines represent the region where the contribution to
the hysteresis loop area occurs. Since in both cases the system will
start with the same magnetization and will be acted upon by the
same field, the hysteresis loop will be the same. Note, however, that
under the faster oscillating field the system will dissipate more en-
ergy per unit time, since it will complete more loops in a given
time.

III. SPONTANEOUS MAGNETIZATION IN FINITE
DILUTE ISING SURFACES

We begin by studying the magnetic properties of surfaces
where the spins are randomly located. Such systems are
known as dilute ferromagnets. Previous studies have found
that for a given occupation probability p, the critical tem-
perature Y; for the transition between the paramagnetic and
ferromagnetic phases is a fraction of the Curie temperature
T for the fully occupied lattice p=1 (Refs. 29-36) of infinite
extent. In these studies the condition for the transition be-
tween paramagnetism and ferromagnetism is the first appear-
ance of a cluster spanning the entire system, called the per-
colating cluster. The temperature dependent percolation
threshold p,. is taken to be the minimum occupation probabil-
ity for the phase transition point, since it is the minimum
probability where a spanning cluster can form. In this sec-
tion, we show that for finite size Ising surfaces, spontaneous
magnetization appears due to finite size effects for spin den-
sities significantly below the thermodynamic prediction p,
~0.59.

A. Observable quantities

The surfaces we study have a random distribution of
spins. Different distributions of spin with the same occupa-
tion probability p can have different values of the magneti-
zation and other observable quantities. For a lattice with N
lattice sites occupied by pN spins, the number of possible
configurations is ( 13]\,) Numerically we find that in most cases
averaging over seven pseudorandom realizations produces an
average value, of the desired quantity, that differs by less
than five percent from the average taken over twenty realiza-
tions.

In Fig. 2, we show the average absolute value of the mag-
netization per spin m for a 40X40 lattice as a function of the
spin density p. The temperature is fixed at a value T
=0.13T}, where T7 is the critical temperature of the fully
occupied (p=1) infinite Ising lattice. We start the surface
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FIG. 2. Absolute value of the average spontaneous magnetiza-
tion per spin as a function of density for randomly deposited sur-
faces with T/T{=0.13. The two lines correspond to taking an aver-
age over seven and twenty realizations of the surface. The smoother
curve corresponds to an average over twenty realizations. Bars give
the average of the standard deviations in the sampled data.

with 32 spins randomly positioned and oriented randomly.
We evolve the spins for 25 X 10* Monte Carlo steps per spin
(MCSS) and take data for 5 10* MCSS. Then 32 spins are
added at random locations with random orientation and the
system is restabilized and remeasured, etc., until p=0.98. We
repeat this process for several realizations of spin configura-
tion and average the standard deviations and the absolute
value of the magnetization obtained for each realization. The
two lines in Fig. 2 correspond to an average taken over seven
and twenty realizations. The error bars give the average over
the standard deviations of the magnetization for the indi-
vidual runs. As can be seen from Fig. 2, for densities less
then p<<0.35, the average magnetization per spin is statisti-
cally zero. For larger values of p, the average magnetization
begins to deviate significantly from zero, but does not in-
crease rapidly until p=~0.8, where the increase in the mag-
netization towards the saturation value occurs more rapidly.

For these low values of spin density where a spontaneous
magnetization appears, the surface consists of isolated is-
lands of spin. Each of these isolated islands acts as a separate
collection of spins, and undergoes a transition from a disor-
dered state to a ordered state as more and more spins are
added to it. The reason that the magnetization due to these
isolated islands does not cancel out is because the distribu-
tion of islands is not uniform. The largest relevant island
controls the net magnetization.

Since we expect that the island distribution would become
more uniform as the system size is increased, we can expect
that for the infinite system there would be no controlling
cluster below the percolation threshold and hence no sponta-
neous magnetization for the procedure described in the pre-
vious paragraph. One should note that if an external mag-
netic field is applied to the system, either as a seeding field or
in hysteresis, the external field will define a preferred orien-
tation and the response would be typical of ferromagnetism,
e.g., metastability. To preselect the positive state we also
perform the previously described simulation for a 40X 40
sample but adding spins with positive orientation, and apply-
ing a strong positive field to the system before equilibration
and measurements. The system is equilibrated and measured
as before without an external magnetic field. Results for this
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FIG. 3. Spontaneous magnetization per spin as a function of
density for seven randomly deposited surfaces with 7/77=0.13. A
strong field is applied to the system for 10° MCSS, the system is
allowed to relax without a field for 105 MCSS, and measured for
5X 10* MCSS. The two lines correspond to the field cases H
=1.0(X) and H=0.5 (+).

simulation are given in Fig. 3 for the field cases H=1.0, 0.5.
In Fig. 4, we give the average energy per lattice site,
(H)/N as a function of p, for the simulations presented in
Figs. 2 and 3. Since the MC method evolves the system
according to the thermal distribution, we obtain the thermal
average by taking the time average. Figures 2—4 can be un-
derstood by considering that Eq. (2) is a measure of the local
bonding in the system. In the case of spontaneous magneti-
zation, below p, each isolated island on the lattice can be in
either one of two orientations, and thus generally no global
order can form. However, since the energy depends only on
the relative orientation of the spins, (M) is independent of the
direction of magnetization of a given island. From the view-
point of energy, where order is represented by alignment of
spins and a lower potential energy, order can effectively
cover the whole system even for densities less than p,.

For ferromagnets, hysteresis forms for driving magnetic
fields with time periods considerably larger than the relax-
ation times under sudden field reversal. This is due to the
metastability of the system. A dilute surface with occupation
probability below p,. is composed of isolated islands of spins.
Each of these islands presents a local free energy minimum
creating the required metastability. Unlike the global meta-
stability for connected systems where the global transition is
smooth, this metastability is composed of a series of meta-
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FIG. 4. The average Ising energy (H)/N as a function of density
for the systems presented in Figs. 2 and 3. The bars give the average
of the standard deviations for each realization.
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FIG. 5. Relaxation of the magnetization for a 100X 100 Ising
surface with density 0.4 and 7/77=0.1 acted on by a constant field
H=1.0. The half reversal time of this system is estimated to be 1500
MCSS.

stable wells. This can be observed in the hysteresis loops. In
Fig. 5 we plot the magnetization curve of a 100 X 100 system
with p=0.4 and 7=0.1T7]. The system is prepared in the
down orientation and acted on by a constant magnetic field
H=1.0. The time for reversal of half of the spins is estimated
to be about 1500 MCSS. In Fig. 6 we give the hysteresis
loop produced by a sawtooth field with Hy=4.0 and a time
period of 10° MCSS, significantly above the half reversal
time for the same temperature and density. We see that below
the percolation threshold there is enough local order to sup-
port metastability in the system.

Two quantities which typically have special behavior near
the critical point of a thermodynamic system, are the suscep-
tibility and heat capacity. For dilute systems some remnants
of the thermodynamic behavior of the fully occupied system
remains, but also significant differences occur. These differ-
ences have been studied for the case of p=0.6.3"3237 In
these studies it was found that the susceptibility has a peak at
the critical temperature for a given density, but the heat ca-
pacity goes through a maximum at a higher temperature.
As part of the preparation for this work we have repeated
these studies and found similar results. We have also studied
the behavior of the susceptibility and heat capacity for values
of p<<0.6 and find similar behavior. In Fig. 7 we show these
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FIG. 6. Hysteresis loop for the 100X 100 Ising surface with
density 0.4 and 7/T{=0.1. The driving magnetic field is taken with
amplitude H=Hy/kzT=4.0 and time period 10° MCSS. The indi-
vidual metastable states can be observed in this global hysteresis
curve.
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FIG. 7. (a) Susceptibility versus temperature on a semilog plot
and (b) heat capacity versus temperature obtained from the Me-
tropolis algorithm on a 100 X 100 lattice with p=0.5. The different
points correspond to different seeds in the random number genera-
tor. Error bars give the standard deviation of the distribution of
points resulting from the different seeds.

quantities for p=0.5, below the percolation threshold.

The susceptibility and the heat capacity were obtained in
Fig. 7 using the Metropolis algorithm.’® The systems are
typically evolved from the random state for 10 MCSS at the
highest temperature for the plot. Then for each point the
system is stabilized for 10*—~10° MCSS and data is taken for
2 X 10° MCSS. To obtain a more independent set of obser-
vations, measurements were taken at 10-20 MCSS intervals.
We find a clear peak in the susceptibility and a broad maxi-
mum in the heat capacity at a higher temperature. This dif-
ferent transition behavior results from each island of spins on
the surface being composed of smaller clusters of aligned
spins connected by few border spins. As explained by
Heuer,! when such a cluster flips, contribution to the heat
capacity results only from the few border spins, while con-
tributions to the susceptibility come from the entire flipping
cluster.

B. Regions of spontaneous magnetization for finite lattices

In Fig. 8, we show the regions of nonzero spontaneous
magnetization for a dilute 100 X 100 square Ising lattice, as a
function of temperature and density. Below we discuss how
this diagram is obtained. Let (p,7}) be a point along the line
between the regions with zero and nonzero spontaneous
magnetization, and let J; be the exchange constant at the
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FIG. 8. Regions of zero and nonzero spontaneous magnetization
in the density-temperature plane, for 100X 100 Ising surfaces, ob-
tained from Monte Carlo simulations using the various conditions
described in the text. SM (empty squares) corresponds to the spon-
taneous magnetization condition, SCP (full triangles) to the maxi-
mization of the susceptibility, HCP (empty triangles) to the maxi-
mization of the heat capacity, and IC (full squares) corresponds to
the invaded cluster algorithm. Three regimes are designated in the
figure: (PM) paramagnetism with zero spontaneous magnetization,
(LSM) local spontaneous magnetization in a system composed of
isolated spin islands, and (GSM) global spontaneous magnetization
in a globally connected system. Eq. (5) refers to Eq. (5).

interface between regimes with zero and nonzero spontane-
ous magnetization. Then, J,=Jy/kpT,, with J, the micro-
scopic exchange constant.

The appearance of a nonzero spontaneous magnetization
is accompanied by a rapid reduction in the standard deviation
oM of the magnetization. As a numerical test for a nonzero
spontaneous magnetization in the finite system, we find that

the condition |%| >1 is useful. Note that for densities be-
low the percolation threshold, since the system is not glo-
bally connected, only local order can form. We start our
simulation on a N=100X 100 rectangular grid with p<<0.1
and the spins in a random state. Since this is a finite system,
with an uneven distribution of islands, a method such as the
seeding field described above need not be used. The system
is cooled to a temperature T=0.057, in 10* MCSS and the
magnetization is calculated for another 10* MCSS. We repeat
this for 11 more surfaces with the same density, average the
absolute value of the magnetization, and average the stan-

dar(li deviation for the different surfaces. The condition
(M)

(8M),
a factor of 1/50. When the condition tests false four times
consecutively the density is recorded as the density for the
second test, and this density is passed as the initial density
for the next temperature, incremented by 0.057,. We take 2
X % to be the error for the calculation of p. This error esti-
mate accounts only for the error in identifying the transition
and not for the error from not sampling the entire space of
random surfaces. We repeat this for different random seeds in
the random number generator to get a better statistical distri-
bution. The estimated limits for the critical densities are
shown in Fig. 8 under the heading SM.

In Fig. 9 we plot the average energy per lattice site for the
values of density and temperature where the spontaneous
magnetization first appears. An interesting property emerges,

<1 is checked and, if true, the density is increased by
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FIG. 9. Average energy (H)/N obtained at the spontaneous
magnetization points of Fig. 8. The error bars give the standard
deviation of the average energy.

namely, that E.=(H)/N is a constant when the spontaneous
magnetization first develops. We find that E.~—-0.66, inde-
pendent of p. This value is consistent with the known critical
value of the 2d Ising system —2J{tanh(2J{)=-0.623, ne-
glecting the additive term as we do here.*04!

Next we define a measure, S, of ferromagnetic bonding
for the surface

Do | =

Ve

S > 5:8;~N,=GN,, (4)
j—n.n

1

l

where G is defined in Eq. (3). If all the spins are aligned then
the approximation made in Eq. (4) becomes exact. In general
one can write N,—S=2L, with L the total length of the
border between domains of opposite spin in lattice units,
because §;S;=—1 if i and j are in opposite domains. Thus,
this approximation gets better as the domains of aligned
spins get bigger. This is approximately the situation near the
critical point as the correlation length becomes larger.

We can now obtain a simple analytic estimate for the
location of the transition line, in the p-T plane, between re-
gions with zero and nonzero spontaneous magnetization.
First note that along the line E.~—J,G,p, with G, the values
of G at the transition for a given occupation probability p.
Since for a general percolating surface we have (N,)=2Np?,
G,=2p, we can write EC%—ZJ;pZ. For the fully occupied
surfaces with G{=2,p=1 we find E.=-2J{. Equating this
with the same expression for a general percolating surface
we find that the density at which spontaneous magnetization
occurs in the finite size system is given by

p = \J{J, =NT,/T;. (35)

Based on this calculation, the critical density at which spon-
taneous magnetization occurs is proportional to \/ﬁ. Within
the boundaries of this calculation this result is independent of
the spatial dimension D, since G=pD and the dimension
would cancel out. Note also that one could relax the assump-
tion that E. is a constant and allow it to depend on the di-
mension without changing Eq. (5). The result, Eq. (5), is
plotted in Fig. 8 under the heading Eq. (5).

It is interesting that a typical method for locating a ther-
modynamic  phase transition, the invaded cluster
algorithm,*>*3 can give misleading results as regards regions
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of finite spontaneous magnetization in a finite system. In
essence for a given configuration of spins the invaded cluster
algorithm tests for the lowest bond probability needed to
achieve a globally spanning cluster of aligned spins and per-
forms a step equivalent to a Swendsen-Wang** step at that
addition probability. As this procedure is repeated it produces
a feedback loop that drives the system towards the transition
from ferromagnetism to paramagnetism.”’ We use the ver-
sion of the algorithm which uses a wrap around the periodic
boundary conditions as a test for percolation.**> A main as-
sumption of this algorithm is that the set of occupied sites is
globally connected, and hence it would work only for perco-
lating surfaces above p,. For a given density we perform the
invaded cluster algorithm for a dozen deposited surfaces
with L=100 and average the resulting critical temperature
for the transition to the ferromagnetic phase. Our results for
this calculation are shown in Fig. 8 under the heading IC. It
is useful to note that the agreement for p>p,. is quite good
between all methods considering that we average over such a
small part of the possible surfaces.

Since the regime of local spontaneous magnetization is
manifested by isolated clusters of spins we can identify it as
a regime of superparamagnetism.* In a superparamagnetic
system the ferromagnetic particles are gathered in isolated
islands of spin, where each island is in the ferromagnetic
state but isolated islands do not interact. As proposed by
Cowburn*® the characteristics of superparamagnetism can
determine the ultimate density of magnetic random access
memory devices.

Finally, we performed a study of the local spontaneous
magnetization regime as a function of system size. Before
presenting the results it is worth while to note that special
care must be exercised when choosing a random number
generator for a large simulation where many random num-
bers are needed. It has been our experience that simple meth-
ods for calculating pseudorandom numbers fail for large lat-
tices since the simulation requires more random numbers
than the total number of integers available to the compiler.
On the other hand we find that standard random packages,
e.g., the FORTRAN function RAND, do better in larger simula-
tions. In Fig. 10 we present the points where spontaneous
magnetization appears for systems with L=50, 71, 100, 141,
200, 283, 400. The lattices are started with random orienta-
tions, relaxed for 20 000 MCSS and the magnetization is
averaged over 20 000 MCSS. The results for the minimum
density where spontaneous magnetization appears are aver-
aged over seven realizations of random surfaces, the bars
give the standard deviations for these densities. In the figure
Eq. (5) again refers to Eq. (5), reasonable agreement is found
between it and the data points for all sizes. The region right
of the data points is characterized by local order. As ex-
plained previously, such local order can become global if
external fields are used even below the percolation threshold,
e.g., in hysteresis.

IV. DEPENDENCE OF HYSTERESIS LOOP AREA ON
STRUCTURE

In this section, we study the behavior of the area of a
hysteresis loop as a function of the slope of a sawtooth mag-
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FIG. 10. Regions of spontaneous magnetization for system with
L=50, 71, 100, 141, 200, 283, 400. For a given temperature, each
point in the plot represents the average density where spontaneous
magnetization first appears for one of the sizes above. Eq. (5) refers
to Eq. (5). Reasonable agreement is found between it and the data
points for all sizes.

netic field. With this driving field, for mature hysteresis
loops, we have found that the area of the loop depends on a
single parameter Hy{). We wish to study four distinct struc-
tures in two dimensions: a flat plane,® a Sierpinski
carpet,’>3 a percolating surface at the percolation
threshold, 2 and a numerical representation of a real surface.
The real surface was acquired from a printed STM image of
a 0.5 monolayer surface.’ Representations of the fractal, per-
colating and real surfaces are plotted in Figs. 11-13, respec-
tively.

Before showing results for this system we wish to under-
stand the role of the competing interactions in the Hamil-
tonian (2), and how they may shed some light on the relation

200r
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50t
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FIG. 11. Sierpinski type fractal approximation generated by the

procedure described in the text. The fractal dimension for the com-

log(8)
log(3)”
nearest neighbors in this 3% X 3 lattice is 52040. Dark regions con-
tain no spins.

pletely self-similar fractal is G=1.6. The number of pairs of
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FIG. 12. An example of a percolating surface with occupation
probability held close to the percolation threshold p=0.5927=p..
Dark regions contain no spins.

between surface structure and the magnetic properties. In the
models we use, the exchange interaction is only between
nearest neighbors. Thus the exchange energy will depend on
the number of nearest neighbors at each site. In Eq. (2) we
have two competing interactions; the driving field H(z) and
the Ising interaction J,_, , S;. Since J and X;_, , S; appear
side by side, we can expect the response to depend on each
of them in qualitatively the same manner. This means that

120t

100;

80t

60+

4071

20t

0 20 40 60 80 100 120

FIG. 13. Numerical representation of an STM image from a 0.5
monolayer Fe surface, deposited on Pd(100) using a thermal depo-
sition process, G=1.7. Taken from part of Fig. 2(b) in Jin et al.
(Ref. 5). Dark regions contain no spins.
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increasing the number of nearest neighbors for fixed J will
have the same effect on the response to the driving field as
increasing J (or lowering the temperature) for a fixed number
of nearest neighbors. Since G is a measure of the number of
nearest neighbors, we expect changes in magnetic properties
resulting from changes in J and changes in G to be corre-
lated.

Our simulations were carried out using the following lat-
tices of Ising spins.

(1) A 100X 100 fully occupied lattice with helical bound-
ary conditions (G=2),

(2) A 243243 Sierpinski lattice constructed from the
generator,

111
10 1],
111

with zero boundary conditions (G = 1.59, see the Appendix).

(3) A 200X 200 percolating lattice with helical boundary
conditions near the percolation threshold p=0.59275 (G
~1.2).

(4) A 122X 122 lattice graphically acquired from an STM
image of a 0.5 monolayer ferromagnetic surface® with helical
boundary conditions (G=1.7).

In helical boundary conditions, sites are labeled consecu-
tively using a one dimensional list. Nearest neighbors to site
i in a two-dimensional lattice are {i+1,i+L,i—1,i—L},
where L is the length of the system, and the last spin is
considered neighboring the first spin. In this way the lattice
is represented as a toroidal helix. The reason we do not im-
pose helical boundary conditions, or even more standard pe-
riodic boundary conditions on the Sierpinski lattice, is that
this will change the self similar structure on the largest scale.

The simulation was carried out as follows. Each of the
surfaces was started with all the spins having S;=1 and the
driving magnetic field at its maximum positive value. The
dynamics was then simulated using the Metropolis algorithm
of the MC method,**3> assuming the energy is given by Eq.
(2) with a sawtooth driving magnetic field. For a given ex-
change coupling we obtain hysteresis loops and their corre-
sponding average area following maturation for several
slopes of the driving field. Typical hysteresis loops obtained
are given in Fig. 14, and typical area plots are given in Fig.
15. From the area plots we find that a power law dependence
of the form (H,()“ is valid over the range of parameters of
our calculation. The Pearson correlation coefficient®* be-
tween the logarithm of the variables /4 and A, for example,
for the full surface, is 0.998. It is very close to 1, which is the
value for a perfect linear relationship. Hence, we calculate
power law exponents for the area curves.

Recent work?>2> suggests that this type of power law
behavior of the hysteresis loop is valid only in a finite range
of parameter space, with different ranges having different
power law exponents. However, in many previous studies,
the power law exponents are either computed or measured in
the region following maturation of the hysteresis loops, i.e.,
for HOEHj where, for a given frequency, H: is the first field
value where the hysteresis loop matures.'® In these studies,
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0.4

FIG. 14. Typical hysteresis loops obtained for the four different
surfaces. Here J=0.7, Hy=1.0, 1=0.00015 1/MCSS. The labels
correspond to (a) percolating surface at p., (b) real surface, (c)
Sierpinski square surface, and (d) fully occupied surface.

as well as our own, for field amplitudes greater than H:
mature hysteresis loops have formed and no deviation from
power law behavior was found for several orders of
magnitude.6-1%-26

The most condensed surfaces, next to the fully occupied
surface, are the Sierpinski and the real surface, having the
most neighbors per site. As can be seen from Figs. 14 and 15
these two surfaces respond in a very similar way to a driving
field although the distribution of their spins is quite different.
The percolating surface has the lowest number of nearest
neighbors. Since we see a clear reduction in « as we lower
the temperature, we can expect a reduction of the exponents
for an increase in G. This is confirmed by the ordering of the
exponent for the different surfaces. The reduction of the «
exponent for reduced temperatures appears also in the ex-
perimental work of Suen and Erskine.!®

The information about the power law dependence of the
area of hysteresis loops for mature hysteresis is summarized
in Fig. 16, which gives the hysteresis power law exponents,
a, as a function of J for the different structures on a log-log
plot. There are several important trends we can identify in
Fig. 16. First we notice that « decreases as we decrease the
temperature at fixed J,. For the homogeneous surfaces (full,
real, and percolating) we can write this dependence as «
o J-! and for these surfaces this functional dependence is
independent of the surface. The Pearson coefficient between

=
£ A
< L
0.1 A ul o+
frac D
AT real @
perc 4
<
0.01 b : :
0.0001 0.001 0.01
h kg T/MCSS]

FIG. 15. Log-log plot of the area of the hysteresis loops as a
function of the slope of the driving field. Here J=0.7. Note how
close the behavior of the real and the Sierpinski surfaces is. This is
consistent with their close G value.
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FIG. 16. The power law exponent « as a function of the effec-
tive exchange coupling J for the four different surfaces on a log-log
scale. We also give the best fit curve for the full, real, and perco-
lating cases.

the logarithm of J and «, for example, for the percolating
surface, is 0.997. For the nonhomogeneous Sierpinski sur-
face we find deviations from this dependence for low tem-
peratures. We also find that the structure plays a role in the
value of a which is qualitatively similar to the role of J.
Surfaces with a higher concentration of nearest neighbors
have a lower value of the power law exponent « and vice
versa.

We have also performed a study of the dependence of
these results on the size of the system for the fully occupied
case. Results for lattices of sizes 712, 1002, 1412, 2002, 2832,
and 400 Ising spins are given in Fig. 17. These results were
obtained by using a trivially parallel Monte Carlo program.
As is clear from the results, for the range studied the power
law exponent are almost independent of the system size.

These trends of the « versus J curve are also qualitatively
supported by additional MC studies we have performed on
hysteresis loops in percolating systems as a function of the
occupation probability and of Sierpinski structures with in-
creasing G.

Finally we note several other studies of magnetization in
partially filled Ising surfaces.?®>>3 Most particularly Zheng

1F T =

ful  +
71 x
L100 %
- (141 O
X (200 m
§ X (283 ©
j‘j .
3 01 1
2
e
X T
s
0.01

Jo/ kaT

FIG. 17. The power law exponent « as a function of the effec-
tive exchange coupling J for square Ising lattices of sizes: 712,
1002, 1412, 2007, 2832, and 400%. Results from Fig. 16 are given
under the label “full”. The label “fit]” corresponds to the best fit
line given in Fig. 16 for the fully occupied case. The label “fit2”
corresponds to a best fit of the data points for the five lattice sizes.
The two curves are indistinguishable in the plot.
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and Zhang?® study the scaling of the area of the hysteresis
loop in both the percolating and the Sierpinski surface.
Trends similar to the ones we report here for the scaling
exponent were observed by them for hysteresis in percolat-
ing surfaces. For the Sierpinski surface however, they report
a constant exponent with a value «=0.25+0.04 independent
of temperature. As presented here, the Sierpinski surface fol-
lows the same trends as the other three surface types we
study, i.e., the scaling exponent for the Sierpinski surface is
temperature dependent. We note that Zheng and Zhang base
their conclusion of a constant exponent for the Sierpinski
surface on a limited range of exchange coupling, three points
at J=0.5, 0.6, 0.7. We also note that a a value of approxi-
mately 0.3 for J=0.6 is consistent with our calculations of
the exponent « presented in Fig. 16 for the Sierpinski sur-
face. However, our results indicate that over a broader range
of J values the exponent a changes.

V. CONCLUSION

We have studied the relationship between the structure of
finite Ising surfaces and their resulting magnetic properties.
We have found that for a fixed temperature and number of
lattice sites a finite average number of nearest neighbors is
needed to achieve nonzero average spontaneous magnetiza-
tion. We have mapped out regions of nonzero spontaneous
magnetization in the (p,7) plane for a randomly deposited
finite Ising surface and observed nonzero spontaneous mag-
netization at spin densities smaller than those predicted by
thermodynamics. Based on numerical studies and theoretical
arguments we find that 7,,/T]~ p* along the transition line
between zero and non-zero spontaneous magnetization.

For hysteresis loop areas, we have found that the structure
of the magnetic surface, effectively measured by G, and the
effective exchange coupling play a joint role in determining
the power law behavior of the hysteresis loop area for the
finite Ising surface. For homogeneous surfaces the depen-
dence of a on J seems to have a universal functional form,
independent of the underlying structure a(J)%J~!, where the
structure appears in the proportionality constant. We remark
that additional calculations of hysteresis area for partially
filled surfaces have been performed,?®3-¢ with the work of
Zheng and Zhang?® the closest to our work. However, our
calculations only support their conclusions with regard to
power law behavior of hysteresis loop area in percolating
surfaces, since in our simulation « is dependent on the tem-
perature for all of the surfaces we studied.

The behavior of a as a function of the exchange coupling
is consistent with experiments showing that the distribution
of activation volumes becomes more peaked for stronger ex-
change coupling.’” A more peaked distribution would mean
that the reversal of magnetization in the hysteresis loop
would occur along a more narrow strip of magnetic field
values. Qualitatively this means that less change in the form
of the hysteresis loop (and therefore less change in the hys-
teresis loop area) is possible as the driving parameters are
varied. Thus a lower value of the exponent « is expected for
higher J values.

The properties of hysteresis we have discussed for this
system may shed light on the differing experimental results
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on hysteresis power law behavior for seeming similar experi-
ments. Changes in the temperature of the experiment or,
more critically, changes in the structure of the deposited sur-
faces can change the hysteresis area power law exponent. As
recent experiments suggest,*> the deposition process can re-
sult in different surface structures and, thus, different experi-
ments can produce different power law behavior for the area
of the hysteresis loops.
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APPENDIX

To construct the Sierpinski-type fractal surfaces consid-
ered here, we devised the following method. Our goal is to
build a numerical fractal surface, i.e., a finite two-
dimensional grid of points S,,, (here m and n denote the site
position along the x and y axis, respectively). To do this we
define a generator matrix for the fractal. For example the
generator for the square Sierpinski fractal we have consid-
ered earlier is

(gij)i,j =

[ 'y

11
0 1] (A1)
11

In two dimensions the generator g;; is a square matrix of
size £ X L with 0/1’s representing an empty/occupied gen-
erator site. To find whether S, is occupied or empty we
decompose m, n in base L; that is, m=2,’;(§ak£" and n

=S{2obLF, with ay, by < L. Then,

v—-1
Smn= H gakbk’ (AZ)
k=0

Eq. (A2) is simply a statement that for a given site to be
occupied, on all iterations of the fractal the site was part of
an occupied block. Here v can be interpreted as the number
of iterations the numerical fractal contains; in a more general
sense, v—1 is the largest power of £ needed in the expansion
of the lattice indices. In this way the geometric self-similar
structure of the fractal is carried by the self-similar structure
of the decomposition in base L. The fractal is obtained in the
limit v— o under appropriate choice of limit lattices. This
construction can be extended to any number of dimensions.
Penrose gives a similar but more general discussion, from
the perspective of set theory.>®

The quantity G which we introduced quantifies the
nearest-neighbor structure, by definition it is the density of
bonds per spin. It is interesting to note that G coincides with
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the Euclidean dimension for Euclidean lattices. As an ex-
ample, a calculation of the quantity G for the infinite square
Sierpinski fractal considered earlier is now presented. We
create the Sierpinski surfaces starting with a primitive sur-
face with eight occupied sites as in Eq. (Al). At each itera-
tion step v, eight copies of the previous configuration are
created with an additional 8(3") nearest-neighbor bonds
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formed between the copies. Hence, we can write Nj ..
=8(N,, ,+37), with N, , the number of bonds at the beginning
of iteration step v. Since the number of spins at iteration step
v, N, ,=8", the value of G at step v can be written as G,
:G,,_1+(§)V_l. Using this last recursion relation, and the ini-
tial value G;=1, we find for the infinite square Sierpinski

fractal G=8/5.
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