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A “minimal model” of the Kondo-lattice type is used to describe a competition between the localization and
metallicity in doped manganites and related magnetic oxides with Jahn-Teller ions. It is shown that the number
of itinerant charge carriers can be significantly lower than that implied by the doping level x. A strong tendency
to the phase separation is demonstrated for a wide range of intermediate doping concentrations vanishing at
low and high doping. The phase diagram of the model in the x-T plane is constructed. At low temperatures, the
system is in a state with a long-range magnetic order: antiferromagnetic �AF�, ferromagnetic �FM�, or AF-FM
phase-separated �PS� state. At high temperatures, there can exist two types of the paramagnetic �PM� state with
zero and nonzero density of the itinerant electrons. In the intermediate-temperature range, the phase diagram
includes different kinds of the PS states: AF-FM, FM-PM, and PM with different content of itinerant electrons.
The applied magnetic field changes the phase diagram favoring the FM ordering. It is shown that the variation
of temperature or magnetic field can induce the metal-insulator transition in a certain range of doping levels.

DOI: 10.1103/PhysRevB.74.014401 PACS number�s�: 75.30.�m, 64.75.�g, 75.47.Lx, 71.30.�h

I. INTRODUCTION

The effect of electron correlations on the properties of
different materials is currently among the most burning prob-
lems of condensed matter physics. As a rule, strong electron
correlations are accompanied by the formation of nanoscale
inhomogeneous states.1 Such inhomogeneities have been al-
ready studied for several decades. In particular, they were
widely discussed for high-Tc superconductors2 and heavy-
fermion materials.3 In recent years, they have attracted spe-
cial attention owing to the discovery of the colossal magne-
toresistance effect in manganites �the nature of which is
believed to be closely related to inhomogeneous structures4�.
The inhomogeneities manifest themselves in other magnetic
materials such as cobaltites,5 nickelates,6 and also low-
dimensional magnets.7 All these systems are characterized by
a strong interplay of spin, charge, and orbital degrees of free-
dom, leading to rather rich phase diagrams.

One of the first most spectacular examples of such a kind
of inhomogeneities is the formation of ferromagnetic �FM�
droplets �magnetic polarons or ferrons� in antiferromagnetic
�AF� semiconductors at low doping levels as well as FM spin
polarons in the paramagnetic state.8,9 These examples corre-
spond to the case of so-called electron phase separation
caused by self-trapping of charge carriers, which change
their local environment. In addition to such a small-scale
phase separation, in manganites, as well as in other com-
pounds exhibiting first-order transitions �e.g., between FM
and AF phases�, there also arises the phase separation of
another type related to rather wide region where different
phases coexist. An example of such large-scale phase sepa-
ration is the formation of rather large FM droplets with the
size of the order of �100–1000� Å inside the AF matrix.10,11

At higher doping levels close to half-filling, there appears
one more threshold for the phase separation in the system
corresponding again to the formation of ferromagnetic drop-
lets, but now in a charge-ordered insulating matrix.12 The
interaction of spin, charge, and orbital degrees of freedom
can also lead to the formation of stripe structures instead of

droplets at high content of the alkaline-earth element.13 In
manganites, owing to the strong electron-lattice interactions,
such structures are related to the lattice distortions and can be
observed by electron diffraction and low-angle neutron
scattering.14

Both analytical and numerical studies in various models
related to the strongly correlated electrons exhibit a pro-
nounced tendency toward phase separation in a wide range
of temperatures and electron or hole concentrations. Among
these, we can mention s-d,15 t-J,16 Hubbard,17 and Falicov-
Kimball18 models.

Theoretical models usually imply that the number of
charge carriers introduced by doping is equal to the number
of itinerant electrons which take part in the formation of
nanoscale inhomogeneities. However, comparison of experi-
mental data with theoretical results suggests that such an
approach is insufficient19 and the number of self-trapped car-
riers can significantly differ from the doping level.20,21

Here, we analyze the model proposed in our paper, Ref.
22, which relates the doping level and the number of charge
carriers. We take into account the Jahn-Teller �JT� nature of
magnetic ions, which could give rise to the localization of
charge carriers at the lattice distortions. We introduce this
localization effect to the Kondo-lattice model in the double-
exchange limit. Beginning from seminal paper, Ref. 23, the
role of JT distortions was widely discussed in literature.4,24,25

In particular, such distortions were taken into consideration
in Refs. 26 and 27 in the analysis of the phase diagram of
doped manganites. However, none of these papers dealt with
phase separation phenomena. In our paper, the main empha-
sis is made on studying the phase diagram in the doping-
temperature �x-T� plane and its evolution under the effect of
an applied magnetic field.

II. THE MODEL

First, let us note that the doped manganites
�R1−x

3+Mn1−x
3+��Ax

2+Mnx
4+�O3

2− are compounds with mixed
valence. Here R is a trivalent rare-earth element and A is a
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bivalent alkaline-earth element. The ions Mn3+ and Mn4+

have 3d4 and 3d3 electron configurations, respectively. In
such compounds, manganese ions are located in the centers
of O6 octahedra. In a regular octahedron, a fivefold-
degenerate 3d level is split into triple- and double-degenerate
levels t2g �dxy, dyz, dzx� and eg �dx2−y2, d3z2−r2�, respectively.
The t2g level lies lower than the eg level. Manganese ions are
characterized by a strong Hund’s rule coupling, giving rise to
parallel alignment of intra-atomic electron spins. So the spins
of t2g electrons form a local spin S=3/2. In a regular MnO6
octahedron, the Mn3+ ion has one electron at the double-
degenerate eg level.28 According to the Jahn-Teller theorem,
the latter configuration is unstable and the degeneracy is
lifted by a distortion of the octahedron. The Mn4+ is not a
Jahn-Teller ion and the Mn4+O6 octahedron remains undis-
torted. The distortion of the Mn3+O6 octahedron leads to an
energy lowering by �JT. In doped manganites, the eg electron
can hop from the Mn3+ to Mn4+ ion, producing a gain in the
kinetic energy due to electron delocalization. Therefore, an
electron can lower its energy either due to the Jahn-Teller-
induced localization at distorted octahedra or by the delocal-
ization related to the interatomic hopping. The strong Hund’s
rule coupling favors the hopping of an electron when its spin
is parallel to the spin of core �t2g� electrons. This is the origin
of the well-known double-exchange mechanism of ferromag-
netic interactions between localized spins.29

Therefore, it is natural to assume that the eg electron can
be either localized due to Jahn-Teller distortions with the
energy gain �JT �l electron� or to decrease its energy due to
band broadening �b electron�.26,27,30 So there exists a compe-
tition between localization and delocalization. Such a system
with localized and band electrons can be analyzed using the
Hubbard Hamiltonian, taking into account the electron-
lattice interaction, the Hund’s rule coupling, and the ex-
change interaction between core electrons:22

Ĥ = Hel + HAF + HJT + Hel-el,

Hel = − �
�nm�

�
ab�

�tnm
ab ana�

† amb� + H.c.�

−
JH

2 �
n

�
a���

ana�
† ��Sn����ana��,

HAF = J� �
�nm�

SnSm,

HJT = − g�
n

�
ab�

ana�
† �Q2n��x�ab + Q3n��z�ab�anb�

+
K

2 �
n

�Q2n
2 + Q3n

2 � ,

Hel-el =
U1

2 �
na�

nna�nna�̄ +
U2

2 �
na���

nna�nnā��. �1�

In this Hamiltonian, ana�
† and ana� are creation and anni-

hilation operators for eg electrons at site n with orbital index
a �3z2−r2 or x2−y2� and spin projection �, and Sn is a local

spin of t2g electrons. Below we will consider Sn as classical
vectors. � are the Pauli matrices, and Q2n and Q3n are nor-
mal modes of vibration of MnO6 octahedron. The symbol
�nm� denotes summation over the nearest sites. The electron
part Hel of Hamiltonian �1� includes the kinetic energy of eg
electrons and the Hund’s rule coupling between the spins of
eg and t2g electrons. HAF is the antiferromagnetic �J��0�
exchange interaction between local spins. The HJT term takes
into account interactions between eg electrons and vibra-
tional modes for the MnO6 octahedra; here, K is the elastic
energy and g is the electron-lattice coupling constant. The
on-site Coulomb repulsion Hel-el includes terms correspond-
ing to eg electrons at the same and different orbitals, where
the overbar above a or � means not a or not �, respectively.

We consider the limit JH→� characteristic of manganites.
In this case, the spin of eg electrons is parallel to Sn and we
can eliminate the spin indices by the transformation of ana�

to operators cna with spin projection +1/2 onto the direction
of Sn accompanied by the transformation of hopping
amplitudes:31 tnm

ab → tnm
ab cos��nm /2�, where cos �nm=SnSm /

S2. In addition, we assume that tnm
�l� →0 for l electrons, which

produce a maximum splitting of the eg level with energy gain
−g2 /2K, whereas b electrons with nonzero hopping integrals
tnm
�b� produce smaller distortions of MnO6 octahedra. Prelimi-

nary calculations for the case tnm
�l� �0 demonstrated that the

results are not significantly affected if the “localized” band is
much narrower than the itinerant one. Therefore, in this pa-
per, we consider the limiting case of zero hopping integral
for “localized” electrons. The Hamiltonian then reads

Heff� = Heff − ��
n

�nln + nbn� ,

Heff = − t �
�nm�

cn
†cm�S2 + SnSm

2S2 − �JT�
n

nln

+ U�
n

nlnnbn + J� �
�nm�

SnSm, �2�

where nbn=cn
†cn and nln= ln

†ln are the numbers of b and l
electrons at site n, cn

†, cn and ln
†, ln are the creation and

annihilation operators for the b and l electrons, respectively,
and � is the chemical potential. The first three terms in Heff
correspond, respectively, to the kinetic energy of b electrons,
JT energy of localized electrons, and on-site Coulomb repul-
sion between b and l electrons. The last term in Heff is the
Heisenberg antiferromagnetic exchange between local spins.
The effective on-site Coulomb repulsion U in Eq. �2� can
differ from U2, but has the same order of magnitude
�	5 eV�. �JT	g2 /2K is the JT energy gain for l electrons
counting from the center of the b electron band. The number
of localized, nl, and band, nb, electrons per lattice site obeys
an obvious relation nb+nl=1−x, where x is the doping level.

In our paper, we limit ourselves to the case of the large
on-site Coulomb repulsion U, which strongly suppresses the
double occupancy of the site. Moreover, at large U, the char-
acteristic time of existence of a “double-electron state” is of
the order of 1 /U�1/	, where 	 is the characteristic JT
phonon frequency �
=1�, which is of the order of the Debye
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frequency. Therefore, the adiabatic approximation for the
Jahn-Teller distortions is applicable. As a result, the JT term
in Eq. �2� is determined only by localized electrons.

Hamiltonian �2� was analyzed at zero temperature in Ref.
22. The homogeneous ferromagnetic and antiferromagnetic
states as well as the phase-separated FM-AF state were stud-
ied. The effective parameters t and �JT were considered to be
independent of the densities of the band nb and localized nl
electrons. In the present analysis, we also neglect the depen-
dence of the parameters �JT and t on nb and nl, but take into
account the temperature dependence of the hopping integral
t, which can be rather strong due to polaron band
narrowing.32,33 Following Refs. 32 and 33 we write the ex-
pression for the hopping integral in the form

t�T� = t0 exp
−
2�2

e	/T − 1
� . �3�

In this expression, � is the dimensionless electron-phonon
coupling constant. From Eq. �3�, it is clear that the hopping
integral t�T� decreases with temperature. Even if we take into
account the finite bandwidth for “localized” electrons, it will
also decrease with T. However, the parameters describing
this behavior could be different for different bands. We can-
not assert that at high temperatures the ratio of the widths for
the narrow and wide bands would be larger or smaller than at
low temperatures. In this paper, we consider the temperature
range which is relatively small as compared to the character-
istic value of 	. Thus, t�T� does not vary by orders of mag-
nitude and the bandwidth ratio remains small.

To study the effects of temperature, we use the mean-field
�MF� approximation. For this purpose, we make a decou-
pling procedure in the first term of Heff, Eq. �2�, in the
following way. The values of cn

†cm and �nm
���S2+SnSm� /2S2=��1+enem� /2 can be written as

cn
†cm = �cn

†cm� + �cn
†cm�, �nm = ��nm� + �nm,

where angular brackets mean thermal averaging, Sn=Sen,
and en is the unit vector. Omitting the products proportional
to �cn

†cm��nm, we write the first term in Heff as

− t̄ �
�nm�

cn
†cm − �

�nm�
�cn

†cm�
t�1 + enem

2
− t̄� ,

where t̄= t�T����1+enem� /2�. Note that in the homogeneous
state, ��nm� does not depend on the indices n and m �for
sites m nearest to site n�. Now, the effective Hamiltonian can
be represented as a sum of electronic and magnetic parts:

Heff
MF = Hel + Hm − ��

n
�nln + nbn� ,

Hel = − t̄ �
�nm�

cn
†cm − �JT�

n
nln + U�

n
nlnnbn, �4�

Hm = − �
�nm�

��cn
†cm��t�nm − t̄� − J�S2enem� . �5�

III. HOMOGENEOUS STATES

A. Ferromagnetic state

In the ferromagnetic state, we have �enem�=1, far below
the Curie temperature. First, we consider the electronic sec-
tor of the problem. The Hamiltonian Hel is similar to that
considered in Ref. 22, and the temperature T enters only the
effective hopping integral t̄�T�. To calculate the free energy
of the electronic subsystem, we use the Hubbard I decou-
pling for the one-b-electron Green function Gb�n ,n0 ;�−�0�
=−i��T̂cn���cn0

† ��0���, as in Ref. 22. Here � is the time vari-

able and T̂ is the time-ordering operator. The equation of
motion for Gb�n ,n0 ;�−�0� can be written in the form


i
�

��
+ ��Gb�n,n0;� − �0�

= nn0
�� − �0� − t̄�

�

Gb�n + �,n0;� − �0�

+ UG�n,n0;� − �0� , �6�

where summation is performed over sites nearest to site n
and G is the “two-particle” Green function G�n ,n0 ;�−�0�
=−i��T̂cn���nln���cn0

† ��0���. The equation of motion for G is


i
�

��
+ � − U�G�n,n0;� − �0�

= nlnn0
�� − �0� + it̄�

�
��T̂nln���cn+����cn0

† ��0���

+ ��T̂ln
†���ln+����cn���cn0

† ��0���

− ��T̂ln−�
† ���ln���cn���cn0

† ��0���� . �7�

The decoupling in the first term in curly brackets gives

��nln�������T̂cn+����cn0

† ��0���= inlGb�n+� ,n0 ;�−�0�. Making
similar decoupling in the next two terms, we get

iGb�n,n0;� − �0��
�

��ln
†���ln+������ − ��ln−�

† ���ln������ .

In the homogeneous ferromagnetic state, the sum evidently
vanishes. As a result, we obtain a closed system of equations
for Gb and G. In the frequency-momentum representation,
the solutions for Gb and G are as follows:

Gb�k,�� =
� + � − U�1 − nl�

E2�k� − E1�k�

� 
 1

� + � − E2�k�
−

1

� + � − E1�k�� ,

G�k,�� = nl
1 + w̄��k�Gb�k,��

� + � − U
, �8�

where
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E1,2�k� =
U + w̄��k�

2
��
U − w̄��k�

2
�2

+ Uw̄��k�nl.

�9�

In these expressions,

w̄ = zt0 exp
−
2�2

e
	/T − 1
���1 + e0e�

2
� �10�

and

��k� = −
1

z
�
�

eik�,

where z is the number of nearest neighbors. In the case of the
simple cubic lattice, we have z=6, and in the tight-binding
approximation,

��k� = −
1

3
�cos�k1d� + cos�k2d� + cos�k3d�� , �11�

where d is the lattice constant and ki are the components of
the wave vector.

From Eq. �8�, it follows that the energy spectrum of b
electrons includes two subbands given by Eq. �9� and the
number of states in each subband depends on nl. In the limit
of large U, which is relevant to magnetic oxides, Eq. �9� can
be written as

E1 = w̄��k��1 − nl�, E2 = U + w̄��k�nl. �12�

It is clear from Eq. �12� that the width of the lower subband
is W=2�1−nl�w̄ while the width of the upper subband is
2nlw̄. The total number of states in two subbands per site is
equal to 1 and the number of states in the lower and upper
subbands is equal to 1−nl and nl, respectively. Note that this
result is valid for any value of U as can be demonstrated by
integration of the corresponding terms in the Green function,
Eq. �8�. Thus, at any doping level x and temperature T�U
the upper subband is empty since nb+nl=n=1−x. In this
case, it is reasonable to use the U→� limit. The Green func-
tion Gb then becomes

Gb�k,�� =
1 − nl

� + � − �1 − nl�w̄��k�
. �13�

At low temperatures T� w̄, it is reasonable to represent
the Fermi-Dirac distribution function for b electrons, f�E�
= �exp�E−�� /T�+1�−1, by the step function ���−E�. It can
be shown that this approximation works well at t, �JT�J,
and T�J, where J=zJ�S2. An appreciable discrepancy could
arise only at doping levels x�1 and 1−x�1. However, at
these doping levels, the homogeneous ferromagnetic state is
unfavorable �see below�. Therefore, the number of b elec-
trons can be expressed through the Green function as

nb = − i� d�

2�
� d3k

�2��3Gb�k,� + i0 � sgn ��ei�0. �14�

This relationship defines nb as a function of chemical poten-
tial � and nl. The value of nl depends on the relative posi-
tions of � and �JT.

If ��−�JT, then the Jahn-Teller-induced localization is
unfavorable, nl=0, nb=1−x, and the chemical potential is
found from Eq. �14�. With the increase of nb, � becomes
equal to −�JT, the further growth in the number of itinerant
charge carriers is ceased, nl becomes nonzero, and � is
pinned at the level −�JT. In the latter case, the number of
localized electrons can be found from Eq. �14� at �=−�JT
using the relation nb=1−x−nl. As a result, we get

�1 − nl��1 − n0
−
�JT

w̄�1 − nl�
�� = x , �15�

where

n0���� = �
−1

��
dE��0�E�� �16�

and

�0�E�� =� d3k

�2��3„E� − ��k�… �17�

is the density of states of free electrons.
At zero doping, x=0, the number of localized electrons,

nl=1, and the bandwidth W=0. At low doping, all electrons
are localized, nl=1−x and W=2xw̄, until the bottom of the
band reaches the energy of l electrons, −�JT, at some critical
concentration x=x1�T�=�JT / w̄. At x�x1�T� the localized and
band electrons coexist as long as x is smaller than the second
critical doping level x2�T� at which the existence of localized
electrons becomes unfavorable—that is, nl=0 if x�x2�T�.
From Eq. �15� we find x2�T�=1−n0�−�JT / w̄�. Naturally, such
a picture can exist only for a certain relationship between the
parameters of the model, in particular if �JT� w̄. Since w̄
decreases with the growth of temperature, both these critical
concentrations x1 and x2 become larger when the temperature
increases. Note that the homogeneous ferromagnetic state
can exist only at x�x1 if nb�0.

The values of nl and nb as functions of doping x are
shown in Fig. 1 at typical parameters of the model. These
calculations and the calculations below are performed for a

FIG. 1. The dependence of nl �solid line� and nb �dashed line� on
doping concentration x at �JT / w̄=0.05.
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simple cubic lattice with ��k� given by Eq. �11�. In this case,
the expressions for �0�E�� and n0���� in Eqs. �17� and �16�
are found in the Appendix; see Eqs. �A5� and �A6�, respec-
tively.

At x1�T��x�x2�T�, the kinetic energy of b electrons per
site can be written as

Ekin = − t̄�
�

�c0
†c��

= − iw̄� d�

2�
� d3k

�2��3��k�Gb�k,� + i0 � sgn ��ei�0.

�18�

For further purposes we introduce the function

A���� =
1

z
�
�

�c0
†c�� = − �1 − nl��0
−

��

1 − nl
� , �19�

where

�0���� = �
−1

��
dE�E��0�E�� . �20�

The kinetic energy of b electrons then reads

Ekin = − w̄A
 �JT

w̄
� . �21�

The energy of the on-site Coulomb repulsion can be found
using the “two-particle” Green function G:

U�nb0nl0� = − iU� d�

2�
� d3k

�2��3G�k,� + i0 � sgn ��ei�0.

�22�

Since ��U, the pole coming from the denominator of the
function G �see second equation of Eqs. �8�� does not con-
tribute to the integral over �, and in the limit U→�, we get

U�nb0nl0� = nlw̄A
 �JT

w̄
� . �23�

Note that we replace the Fermi-Dirac distribution by the step
function. Therefore, we can omit the electron entropy term
and write the free energy of electrons per site as a sum of
Eqs. �21� and �23�, and the JT term:

Fel = − �1 − nl�w̄A
 �JT

w̄
� − �JTnl. �24�

For x�x2�T� when nl=0, we should replace �JT / w̄ by −�� in
formulas �21�, �23�, and �24�, where �� is found from the
equation 1−x=n0����.

Now, we consider the magnetic part of the Hamiltonian,
Hm, Eq. �5�. Following the conventional mean-field approach
for spin systems,34 we replace

em = sin �m cos �m,sin �m sin �m,cos �m�

in Eq. �5� by its mean value 0,0 ,m�, where m= �cos �m�. As
a result, Hm decouples into a sum of N independent one-site
Hamiltonians, Hm=NHm0, where

Hm0�cos �� = − A
 �JT

w̄
�
w�T��1 + m cos �

2
− w̄�

+ Jm cos � , �25�

w�T�=zt�T�. The value of m is determined by the self-
consistency condition

m =

�
−1

1

du ue−�Hm0�u�

�
−1

1

du e−�Hm0�u�

, �26�

where �=1/T. We should also take into account that w̄ is
related to Hm0�u� and m by Eq. �10�:

w̄ =
w�T�
�2

�
−1

1

du�1 + um e−�Hm0�u�

�
−1

1

du e−�Hm0�u�

. �27�

In order to find the Curie temperature Tc, we expand the
right-hand side of Eq. �26� in a power series in m. Using Eqs.
�25� and �27� we find

m = a1�T��m − a3�T��m3 − a5�T��m5 + ¯ .

The Curie temperature is found then from the condition

a1�TC� =
1

3
�w�TC�

2�2
A
 �JT

�2

w�TC�
� − J� = TC. �28�

If we neglect the effect of polaron band narrowing, �=0, we
find the explicit expression for the Curie temperature TC

= �w0A��JT
�2/w0� / �2�2�−J� /3. It is clear that polaron band

narrowing reduces TC.
Let us now analyze the order of the phase transition at

T=TC, which depends on the sign of a3�TC�; see Ref. 35. If
a3�TC��0, then m tends to zero at T→TC as

m�T� ��a1�T� − T

a3�T�
. �29�

In this case, we have a second-order magnetic phase transi-
tion. In the opposite case a3�TC��0, m behaves approxi-
mately as �a5�T��0�

m�T� � ���a3�T��
a5�T�

+
a1�T� − T

a3�T�
�

T→TC

→��a3�TC��
a5�TC�

� 0,

�30�

and the transition to the paramagnetic �PM� state is of the
first order. The analysis shows that a5�T��0 for any values
of parameters of the model, but the sign of a3�TC� can be
both positive or negative depending on the doping level x. At
some x=x12, the coefficient a3�TC� changes its sign. At low
doping x�x12, we have a3�TC��0 and the transition from
the FM to PM state is of the first order. At x�x12, we have
the second-order phase transition.

The free energy of the system per site is equal to
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Ffm = Fel − T ln Zm, Zm = 
S +
1

2
��

−1

1

du e−�Hm0�u�.

�31�

At T→0, m→1, w̄→w0=zt0, Zm�exp�−�J�, and the free
energy

Ffm�T→0 → − �1 − nl�w0A
 �JT

w0
� − �JTnl + J .

In the PM state, we have m=0, w̄=w�T� /�2, Zm=2S+1, and

Fpm = − �1 − nl�
w�T�
�2

A
 �JT
�2

w�T�
� − �JTnl − T ln�2S + 1� .

The transition from the FM to PM state does not mean
that nb becomes zero. As was mentioned above, nb�0 at x
�x1�T� and the value of x1 increases with the temperature.
At a certain temperature T*, x1�T� exceeds x. It is clear that
T*�TC since the FM state can exist only at nb�0. There-
fore, in our model, in addition to magnetic phase transitions,
there should exist an electronic transition to the state without
itinerant electrons. The temperature T* is determined by the
evident condition x1�T*�=�JT

�2/w�T*�=x.

B. Antiferromagnetic and canted states

In our model, there can exist other homogeneous states
competing with FM and PM states. It is natural to consider
the two-sublattice antiferromagnetic and canted states. In the
canted state, the angle � �canting angle� between the local
spins belonging to two sublattices varies from � �AF state�
to 0 �FM state�. Here we consider AF and canting states of G
type; that is, in the cubic lattice each site of one sublattice is
surrounded by sites of the second sublattice.

At finite temperatures, the canting angle is defined as
cos �= �e0e��. In the mean-field approximation used above,
we have �e0e��= �e0��e��. Thus, we can define the variable m
similar to that introduced in the previous subsection, m2

=cos � if ��� /2 or m2=−cos � if ��� /2. In the first case,
the value of m�T� and the free energy of the system is found
in the same way as for the FM state from Eqs. �25�–�27�. The
only difference is that m=1 at T=0 in the FM state �or �
=0� while m�0��1 �or ��0� in the canted state. Note that
the temperature of the transition from canted to paramagnetic
state, Tcant, is given by Eq. �28�, where TC should be replaced
by Tcant.

In the case cos ��0, instead of Eq. �26� and �27�, we
have

− m =

�
−1

1

du ue−�Hm0�u�

�
−1

1

du e−�Hm0�u�

, �32�

w̄ =
w�T�
�2

�
−1

1

du�1 − um e−�Hm0�u�

�
−1

1

du e−�Hm0�u�

, �33�

where the mean-field Hamiltonian Hm0�u� is given by Eq.
�25�. The temperature of the phase transition from canting to
PM state is found now from the equation

1

3
�J −

w�Tcant�
2�2

A
 �JT
�2

w�Tcant�
�� = Tcant. �34�

The canted state can exist at nb�0 since it arises in our
model due to the motion of conduction electrons.

At doping levels x�x1�T�, we have nb=0 and the AF
ordering is favorable. At rather low doping x�x1�0�, nb=0 at
any temperature. In this case, the Néel temperature is inde-
pendent of x and is determined by Eq. �34� as TN

0 =J /3. At
higher doping, there can occur a transition from the AF state
to the PM state with nb�0, and the Néel temperature TN is
determined by a comparison of the free energies of the cor-
responding states. In this doping range, the AF state turns out
to be more favorable than the canted state. With the further
increase of x, the phase with nb�0 has the lower energy, but
this phase is FM rather than canted. The temperature of the
AF-FM transition is found from a comparison of the corre-
sponding free energies. This transition is of the first order.
Note that the phase diagram exhibits an AF-FM-PM triple
point at x=x3 �x3�x12�. The canted state can exist in the
doping range 1−x�1, where the number of itinerant elec-
trons is too small to stabilize the FM state. The correspond-
ing phase diagram in the x-T plane is shown in Fig. 2. We see
that the competition between the itinerant and localized elec-
trons gives rise to a rather complicated magnetic phase dia-
gram of the system.

IV. PHASE SEPARATION

Up to this point, we considered only homogeneous states;
however, it is well known that different inhomogeneous
states are possible in systems with strongly correlated elec-

FIG. 2. The phase diagram of the system without taking into
account the possibility of phase separation. The regions 1 and 2
correspond to the canted states with cos ��0 and cos ��0, respec-
tively. The parameters are �JT /w0=0.05, J /w0=0.01, �=10, and
	 /w0=0.03.
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trons. So we should compare the free energies of the states
studied in the previous sections with those for inhomoge-
neous states. As a typical example of an inhomogeneous
state, we analyze here the droplet model of electronic phase
separation widely discussed in connection with manganites
and other magnetic oxides. Among the possible types of
phase separation, we treat below the coexistence of different
phases: AF-FM, FM-PM, and PM phases with different val-
ues of nb. For simplicity, we do not include into consider-
ation the phase separation involving the canted state since it
exists only in the narrow doping range. Note that our model
always leads to such a kind of phase separation, where we
have nb=0 in one of the phases.

We consider a system separated into two phases with the
volume concentrations p and 1− p. In the homogeneous
phases, the electron concentration per site coincides with the
doping level x. In the inhomogeneous states, the electrons
can be redistributed between the regions with different
phases. Let nb�0 in the first �F� phase and nb=0 in the
second �A� phase; the electron density per site in the first
phase is xf and in the second phase is xa. So the doping level
x lies between xa and xf. Charge conservation requires pxf
+ �1− p�xa=x.

In Fig. 3, we show the dependence of the free energy
of the most favorable homogeneous state Fhom
=min�Ffm,Faf ,Fpm,Fcant� on the doping level at different
temperatures. The Fhom�x� curves have two minima: one at
x=0 and another near x=x2�T�. Then we could expect that xa

should be around zero, while xf should be close to x=x2�T�.
The phase separation corresponds to the nonuniform

charge density and we should take into account the Coulomb
contribution to the total energy. This contribution depends on
the structure of the inhomogeneous state. To evaluate the
Coulomb energy, we assume the spherical geometry of the
phase-separated state. Namely, at p�0.5, the sample is mod-
eled as an aggregate of spheres of F phase embedded into an
A matrix or that of A spheres in the F phase for p�0.5. For
this geometry, it is reasonable to calculate the Coulomb en-
ergy using the Wigner-Seitz approximation: each F or A

sphere of radius Rs is surrounded by a spherical cell of radius
Rcell, such that the volume of the cell is 4�Rcell

3 /3=V /Ns,
where V is the volume of the sample and Ns is the number of
spheres. The radius Rcell is related to Rs as Rs= p1/3Rcell for
p�0.5 and Rs= �1− p�1/3Rcell for p�0.5. The total electric
charge inside this cell is zero, and the Coulomb energy of the
system is the sum of the electrostatic energies of these cells.
Following Ref. 36, we obtain the expression for the Coulomb
energy per site Ec at p�0.5:

Ec =
2�e2

5�d
�xf − xa�2
Rs

d
�2

p�2 − 3p1/3 + p� , �35�

where � is the average permittivity of the sample and d is the
lattice constant. In the case p�0.5, we should replace
xf ↔xa and p→1− p.

The b electrons in the phase-separated state are confined
within a restricted volume. The corresponding size quantiza-
tion gives rise to a change in the density of states. The addi-
tional contribution to the energy �per site� is proportional to
the total surface area between F and A phases, and at p
�0.5 can be written in the form

Es = p
3d

Rs
��xf� , �36�

where the surface energy ��xf� is calculated in the Appendix.
In the case p�0.5, we should change p→1− p.

The Coulomb �35� and surface �36� contributions to the
total energy depend on the size Rs of the inhomogeneities.
Minimization of Ecs=Ec+Es with respect to Rs gives, at p
�0.5,

Rs = d
 15��xf�
4�u�xf − xa�2�2 − 3p1/3 + p��

1/3

, �37�

Ecs = 3
u
9�

10
�xf − xa�2��xf�2�1/3

p�2 − 3p1/3 + p�1/3,

�38�

where u=e2 /�d.
Let us estimate the parameter u and the characteristic size

of the inhomogeneities Rs. Using typical values of the pa-
rameters for manganites, z=6, t0=0.3 eV, d=0.4 nm, and �
=20, we find u�0.18 eV and u /w0�0.15. The surface en-
ergy ��x� is calculated in the Appendix. For example, at x
=0.2 the optimization procedure gives xa�xf �0.5, p�0.4,
and ��xf��1.4�10−2w0 and from Eq. �37� we find Rs

�1.5d; that is, the inhomogeneity contains Ns
=4��Rs /d�3 /3�15 unit cells. Thus, we see that Ns�1 for
characteristic values of parameters and the Wigner-Seitz ap-
proximation is applicable. However, this approximation
overestimates the Coulomb contribution because of a sharp
boundary of the inhomogeneities. Therefore, the above val-
ues for Rs and Ns could be considered as lower estimates.

In the phase-separated state, to find the values of xf and xa
at given x and T, it is necessary to minimize the total free
energy,

FIG. 3. Free energy of the homogeneous state Fhom

=min�Ffm,Faf ,Fpm,Fcant� vs doping level x, at different tempera-
tures. The dotted curve corresponds to the function x2�T�. The pa-
rameters are �JT /w0=0.05, J /w0=0.01, �=10, and 	 /w0=0.03.
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FPS�xf,xa� = pFF�xf� + �1 − p�FA�xa� + Ecs�xf,xa,p� ,

�39�

with respect to xf and xa, where p= �x−xa� / �xf −xa�.
At temperature T�Tmax

* =T*�x=1� �see Fig. 2� only the
homogeneous PM state with nb=0 is possible. As follows
from the numerical and analytical analyses of the free en-
ergy, below Tmax

* , the function of two variables FPS�xf ,xa�
has two minima if x�x2�T� for any phases F and A within
the considered hierarchy of parameters �J��JT�w0�. The
first minimum at the point xa=xf =x corresponds to some
homogeneous state while the second minimum at the point
xa=0, xf =x2�T� corresponds to the phase-separated state. In
the limit u→0, the second minimum is the global minimum
of the function FPS�xf ,xa� at 0�x�x2�T� and T�Tmax

* , and
the PS state is favorable. When u increases, the range of
phase separation in the plane �x ,T� gradually narrows and
disappears at some critical value uc. Note that there are no
localized electrons in the more metallic F phase �xf =x2�T��,
and vice versa, in the insulating A phase nb�T�=0 since xa

=0, as was mentioned in connection to Fig. 3.
Since the concentrations xa and xf are independent of the

doping level, the temperatures of the magnetic phase transi-
tions in both phases do not depend on x. The Néel tempera-
ture of the AF phase is TN

0 =J /3, whereas the Curie tempera-
ture for the FM phase can be found from the equation

1

3
�−

w�TC�
2�2

�0
−
�JT

�2

w�TC�
� − J� = TC. �40�

The Néel and Curie temperatures in the PS state calculated in
such a way correspond to the macroscopic phases with the
size of inhomogeneities Rs /d�1. If Rs	d, the values of TN
and TC in the PS state can differ from those calculated above.

The region where the PS state is favorable can be found
from a comparison of the free energy FPS(x2�T� ,0) with the
free energies of homogeneous states at a given x and T. The
phase diagram of the system in the �x ,T� plane is shown in
Fig. 4. The range of existence for the PS state is bounded by

the curve TPS�x�. In the PS state, the content p of the metallic
�nb�0� phase varies with the temperature and doping level.
Hence, the insulator-metal transition is possible when p ex-
ceeds the percolation threshold.

Let us now discuss the transition of the system from the
PS to a homogeneous state. The volume fraction of the F
phase in the PS state is p�T�=x /x2�T�. Depending on the
relation between the temperatures TPS, TC, TN, and T*, the
system can pass from the PS state to the FM �p=1�, AF �p
=0�, and PM �with nb�0 or nb=0� homogeneous states. In
all cases, the number of itinerant electrons, nb, undergoes a
sudden change at the transition to the homogeneous state.
The temperature dependence of nb is shown in Fig. 5.

V. EFFECT OF MAGNETIC FIELD

In this section, we consider the effect of magnetic field on
the properties of the system. We take into account only the
effect of the magnetic field on the local spin. This corre-
sponds to the limit of classical local spin S�1. Thus, in the
presence of external dc magnetic field H, we should add the
term −�Bg�nSnH in Hamiltonian �2�, where �B is the Bohr
magneton and g is the Landé factor. As a result, the magnetic
field term modifies only the magnetic Hamiltonian, Eq. �5�,

Hm = − �
�nm�

��cn
†cm�
t�1 + enem

2
− t̄� − J�S2enem + enh� ,

h = �BgSH . �41�

In the FM state, the one-site magnetic Hamiltonian �25�
corresponding to the MF approximation takes the form

Hm0�cos �� = − A
 �JT

w̄
�
w�T��1 + m cos �

2
− w̄�

+ Jm cos � − h cos � , �42�

where the direction of the magnetic field is parallel to the z
axis. The mean value m= �S0

z� /S is found by solving the sys-
tem of equations �26� and �27� with Hamiltonian �42�. At T
�TC, the correction to the free energy in the presence of a
magnetic field is F	−h, whereas in the paramagnetic phase
F	−h2 /TC.

FIG. 4. The phase diagram of the model at �JT /w0=0.05,
J /w0=0.01, �=10, 	 /w0=0.03, and u /w0=0.5. The numbers de-
note �1� homogeneous AF phase, �2� the mixture of two PM states
with nb�0 and nb=0, and �3� and �4� homogeneous canted states.

FIG. 5. The temperature dependence of nb at x=0.3, �JT /w0

=0.05, J /w0=0.01, �=10, 	 /w0=0.03, and u /w0=0.5.

SBOYCHAKOV, KUGEL, AND RAKHMANOV PHYSICAL REVIEW B 74, 014401 �2006�

014401-8



In the AF or canted states, the result depends on the mu-
tual orientation of h and the vector l= ��e0�− �e��� /2. The
minimum of the free energy corresponds to the case h� l.
Let the vector l be parallel to the z axis and the magnetic
field h be parallel to the x axis. The mean values of the
directions of local spins in the two sublattices, �e0� and �e��,
can be written as �e0�= m ,0 , l� and �e��= m ,0 ,−l�, where m
is proportional to the magnetization of the system. The one-
site magnetic Hamiltonian then has the form

Hm0��,�� = − A
 �JT

w̄
�
w�T��1 + e0�e��

2
− w̄�

+ Je0�e�� − h sin � cos � , �43�

where e0= sin � cos � , sin � sin � , cos �� and

e0�e�� = − l cos � + m sin � cos � .

The values of l and m are found from the equations

l =
� d� cos � e−�Hm0��,��

� d� e−�Hm0��,��

,

m =
� d� sin � cos � e−�Hm0��,��

� d� e−�Hm0��,��

. �44�

The expression for the effective bandwidth w̄, Eq. �33�, now
takes the form

w̄�H,T� =
w�T�
�2

� d��1 + e0�e�� e−�Hm0��,��

� d� e−�Hm0��,��

. �45�

At high magnetic fields h	TN	J, we get from Eq. �44�
that l=0, and the system passes from the AF or canted state
to the FM one. The typical Néel temperature in manganites is
TN	100 K, and the value of h=J corresponds to fields of
the order of H	100 T.

If h /J�1, the system �44� can be solved perturbatively.
The correction to the free energy of the AF state is F	
−h2 /TN both below and above TN, because there is no spon-
taneous magnetization in the system at H=0. The external
magnetic field favors the FM state in comparison to the AF
and canted states. In particular, it reduces the temperature of
the transition from the AF to FM state. The magnetic field
leads to an increase in the effective hopping integral t̄ due to
the alignment of local spins and thus to the growth in the
number of b electrons and the value of T*. At the transition
from the PS to PM homogeneous state the magnetic field
results in an increase of the transition temperature and the
difference �TPS=TPS�H�−TPS�0�	h. At the transition from
the PS to FM state, �TPS can be both positive and negative
depending on the parameters.

As was mentioned above, the number of itinerant elec-
trons, nb, differs significantly below and above TPS. There-
fore, the shift of the transition temperature TPS with the mag-
netic field gives rise to a significant change in the number of
itinerant electrons. The temperature dependence of the ratio
�nb�H�−nb�0�� /nb�0� near the transition temperature TPS�0�
is shown in Fig. 6. The narrow peak in this ratio is a mani-
festation of the step in nb�T� shown in Fig. 5. Since the
position TPS of the step in nb�T� depends on the magnetic
field, a small change in H causes a significant change in the
number of charge carriers at a fixed temperature near TPS.
The number of itinerant charge carriers determines the value
of metallic conductivity of the system. Thus, the large
change of nb in magnetic field can be related to the colossal
magnetoresistance effect.

VI. CONCLUSIONS

We discussed a “minimal model” dealing with the com-
petition between the localization and metallicity in mangan-
ites. The Hamiltonian of the model takes into account the
essential physics of strongly correlated electron systems with
the Jahn-Teller ions: it is, in fact, the Hubbard model with
the strong electron-lattice interaction, the Hund’s rule intra-
atomic coupling, and AF interatomic exchange between local
spins. Such an approach provides a possibility to understand
the difference between the number of itinerant charge carri-
ers, nb, and the doping level.22 It is shown that nb can be
significantly lower than the number of the charge carriers
implied by the doping level. Models of a similar type were
discussed in Refs. 26, 27, and 30. However, the possibility of
the phase separation was not considered in these papers.

Here we demonstrate that in the framework of our model
phase separation can exist in a wide range of intermediate
doping concentrations disappearing at low and high doping
levels. These predictions are in agreement with the general
features of the experimentally found phase diagrams of
manganites.4,37,38 The obtained results suggest the existence
of the droplet type of electronic phase separation that was

FIG. 6. The temperature dependence of �nb�h�−nb�0�� /nb�0� at
h /J=0.2, x=0.3, �JT /w0=0.05, J /w0=0.01, �=10, 	 /w0=0.03,
and u /w0=0.3.
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widely discussed in the literature �see, e.g., Ref. 4�. We cal-
culated the relative content of different phases in the phase-
separated states and found the size of such droplets �ferrons�.
For the characteristic values of parameters, a droplet includes
10–30 unit cells. These results could, in particular, serve as a
key to an adequate description of the transport properties of
manganites that could not be done in the framework of the
single-band models.20,21

As was mentioned above, various models related to
strongly correlated electrons exhibit a pronounced tendency
toward phase separation. The effective Hamiltonian of our
model �2� is, in fact, a generalization of the Falicov-Kimball
model.39 The latter model describes a system with the hy-
bridization of an electronic band and a localized level. The
Falicov-Kimball model is often used as a toy model in the
analysis of heavy-fermion materials, and it also leads to the
phase separation phenomena.18 So we believe that our ap-
proach could be applicable not only to manganites but also to
a wider class of strongly correlated electron systems. Note
that the analogy between the Falicov-Kimball model and the
Hamiltonian of the s-d type with the Jahn-Teller interaction
was indicated in Ref. 30 but in the case without phase sepa-
ration.

In this paper, we analyzed the phase diagram of the model
in the x-T plane. The effect of temperature manifests itself
mainly in the change of effective hopping integral t due to
the polaron band narrowing and the entropy term in the free
energy due to thermal fluctuations of local spins. The polaron
band narrowing is described by the standard formula �3�; see
Refs. 32 and 33. The behavior of the local spins was treated
using the mean-field approximation. We find that at low tem-
peratures the system is in a state with a long-range magnetic
order: AF, FM or AF-FM phase-separated state. We demon-
strate that at high temperatures there can exist two types of
the paramagnetic state: a usual one with nb=0 and that with
nb�0. In the intermediate-temperature range, the phase dia-
gram includes different kinds of the PS states: AF-FM, FM-
PM, and PM with different content of itinerant electrons.

The applied magnetic field leads to changes in the phase
diagram. It evidently favors the FM ordering and, conse-
quently, the increase of the number of itinerant electrons.
The effect of the magnetic field was analyzed accounting for
the alignment of the local spins in the applied magnetic field.

It is demonstrated that in our model the metal-insulator
transition can take place at some characteristic values of the
doping x corresponding to the crossover between different
kinds of phase separation. It can be induced by changing the
temperature or the magnetic field and is of a percolation
type. This transition can be related to the colossal magnetore-
sistance effect.

Note that in the present treatment we assume that the
effective parameters t and �JT do not depend on the doping
level x. To verify the applicability of such an approximation,
we calculated the phase diagram with t and �JT depending
linearly on x. We found that the phase diagram remains
qualitatively the same even if t and �JT vary by a factor of
2–3 provided the hierarchy of the model parameters
�J��JT�w0� remains unchanged.

Note also that we included to our analysis the long-range
Coulomb interaction related to the macroscopic charge redis-

tribution in the phase-separated state. It allowed us to esti-
mate the size of the inhomogeneities. At the same time, we
did not take explicitly into account the corresponding terms
in the model Hamiltonian �2�. However, if we would like to
consider the effect of charge ordering, we have to include at
least the nearest-neighbor Coulomb repulsion.

Here we considered only the “minimal model” describing
the effect of phase separation. Therefore, we did not include
into consideration the possibility of charge ordering to focus
the discussion on the interplay between localized and itiner-
ant electrons. It is not impossible to include charge ordering
in a model of such a type. The first attempt was made in Ref.
27, but the possibility of phase separation was not considered
there. The effect of charge ordering could change the results
for x near 0.5. Therefore, it is reasonable to consider only the
range x�0.5, if we want to compare our predictions with the
actual situation in doped magnetic oxides.
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APPENDIX: SURFACE ENERGY

In this section, we calculate the surface energy coming
from the size quantization. The expression for the free en-
ergy of b and l electrons can be written in terms of the
density of states in the form �see Eqs. �19� and �24��

Fel = w̄�1 − nl�2�
−1

��
dE�E��0�E�� − �JTnl, �A1�

where

�� = −
�JT

w̄�1 − nl�
.

This expression is valid for x�x2�T� and �=−�JT. The den-
sity of states for the system of itinerant electrons in the vol-
ume V is

�0�E�� =
1

V
�
n

„E� − ��kn�… , �A2�

where the momentum k varies over a discrete set of values,
depending on the boundary conditions and geometry of the
system. The function ��kn� is normalized to unity—that is,
���kn� � �1. In the thermodynamic limit V→�, the sum in
Eq. �A2� can be replaced by the integral over k in the first
Brillouin zone multiplied by V / �2��3. At finite V, we derive
an approximate expression for the density of states in the
case of a cubic lattice, corresponding to a small value of �
=Sd /V, where S is the surface area and d is the lattice con-
stant.

Let the sample have the shape of a parallelepiped P with
sides L1, L2, and L3 �in units of the lattice constant d�. The
Dirichlet boundary conditions for the conduction electron
wave function �m is used—that is, �m=0 for m$”P. In this
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case, the momentum kn takes the values kn=�n / �L�+1�,
where n�=1,2 , . . . ,L� ��=1,2 ,3�. For large L�, we can use
the trapezium rule for the sum over k�:

�
n=1

L�

f�kn
�� =

L� + 1

�
�

0

�

dk f�k� −
1

2
�f�0� + f���� + O
 1

L�
� .

As a result, for a three-dimensional �3D� sum over n we
obtain

�
n

f�kn� � 
V +
S

2
� � d3k

�3 f�k�

−
V

2

� d2k

�2L1
�f�0,k2,k3�� + f��,k2,k3���

+� d2k

�2L2
�f�k1,0,k3�� + f�k1,�,k3���

+� d2k

�2L3
�f�k1,k2,0�� + f�k1,k2,����� ,

�A3�

where 3D and 2D momentum integrations are performed in
the range 0�k��� and S=2�L1L2+L1L3+L2L3� is the sur-
face area of the parallelepiped in the units of lattice constant.

Using formula �A3� with f�k�=(E�−��k�), we can cal-
culate the density of states. Relation �A3� can be simplified
for the case of cubic symmetry since ��k1 ,k2 ,k3�
=��k2 ,k1 ,k3�=��k3 ,k2 ,k1�. In the absence of external fields,
we have ��k�=��−k�, and the integration in Eq. �A3� can be
extended to −��k���. As a result, we obtain, for the den-
sity of states,

��E�� = 
1 +
�

2
��0�E�� −

�

4
� d2p

�2��2 �„E� − ��0,p1,p2��…

+ „E� − ���,p1,p2��…� , �A4�

where �0�E�� is the density of states at V→�. Note that the
density of states in the form �A4� depends only on the ratio
S /V and does not depend on the shape of the sample. We
believe that Eq. �A4� is applicable for any geometry of the
system, provided that the minimum linear dimension L is
large compared to the lattice constant �see, for example,
Refs. 40 and 41�.

Let us calculate now the surface energy for the spectrum
in the tight-binding approximation for the simple cubic lat-
tice, ��k�=−�cos�k1d�+cos�k2d�+cos�k3d�� /3. In the limit
V→�, the formulas for the density of states �0�E��, density
of itinerant electrons n0���, and their kinetic energy �0���
can be written in the following form:

�0�E�� = �
0

+� du

�
J0

3
u

3
�cos�E�u� , �A5�

n0���� = �
0

+� du

�
J0

3
u

3
� sin�u� + sin���u�

u
, �A6�

�0���� = �
0

� du

�
J0

3
u

3
����sin���u� − sin�u�

u

+
cos���u� − cos�u�

u2 � , �A7�

where J0 is the Bessel function. Now, Eq. �A4� can be re-
written as

��E�� = 
1 +
�

2
��0�E�� −

�

4
��0

�2��E� + 1/3� + �0
�2��E� − 1/3�� ,

�A8�

where

�0
�2��E�� = �

0

+� du

�
J0

2
u

3
�cos�E�u� �A9�

is the density of states in the 2D case. The number nl and the
free energy of electrons �in the case nl�0� is given by Eqs.
�15� and �A1�, where instead of �0�E�� we should use the
density of states, Eq. �A8�. Note that nl and Fel are functions
of �. In the considered limit ��1, we can use the pertur-
bation technique to calculate the surface energy �. Repre-
senting the number of l electrons and the free energy Fel in
the form nl=nl

�0�+�nl
�1�+¯, Fel=Fel

�0�+��+¯, and expand-
ing Eqs. �15�, �16�, and �A1�, one obtains

nl
�1� = −

1

2
�1 − nl

�0��

�

n0��0�� −
1

2
�n0

�2�
�0� +
1

3
� + n0

�2�
�0� −
1

3
��

1 − n0��0�� + �0��0��0��
,

�A10�

� = w̄��1 − nl
�0����0�

2�0��0�� − 2�0��0��� −
�JT

w̄
�nl

�1�

+ �2�0��0�� − �0
�2�
�0� +

1

3
� − �0

�2�
�0� −
1

3
�

+
1

3
�n0

�2�
�0� +
1

3
� − n0

�2�
�0� −
1

3
��� w̄�1 − nl

�0��2

4
,

�A11�

where nl
�0� is determined by Eq. �15� at �=0, �0�=

−�JT / �w̄�1−nl
�0���, n0

�2�����, and �0
�2����� are the number of b

electrons and their energy in 2D case at �=0,

n0
�2����� = �

0

+� du

�
J0

2
u

3
� sin
2u

3
� + sin���u�

u
, �A12�
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�0
�2����� = �

0

� du

�
J0

2
u

3
����sin���u� −

2

3
sin
2u

3
�

u

+

cos���u� − cos
2u

3
�

u2 � . �A13�

At doping concentration x�x2�T� when nl=0, we should
use the equation 1−x=n0���� for the chemical potential,
where �0�E�� is substituted by ��E��. As a result, we obtain
the expression for the surface energy:

� =
w̄�0�

4
�n0

�2�
�0� +
1

3
� + n0

�2�
�0� −
1

3
� − 2n0��0���

+
w̄

2
��0��0�� −

1

2
��0

�2�
�0� +
1

3
� + �0

�2�
�0� −
1

3
��

+
1

6
�n0

�2�
�0� +
1

3
� − n0

�2�
�0� −
1

3
��� , �A14�

where �0� is found from the equation 1−x=n0��0�� at �=0.
The dependence ��x� is shown in Fig. 7. The function ��x� is

discontinuous at x=x2�T�. This singularity stems from the
kink in the free energy Fel�x� �see Fig. 3�.

In the approximation under discussion, the corresponding
corrections to the magnetic contribution to the free energy
Fm are of the order of �2, and therefore we omit them.
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