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Scaling and localization in fracture of disordered central-force spring lattices:
Comparison with random damage percolation
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We analyze statistical and scaling properties of the fracture of two-dimensional (2D) central-force spring
lattices with strong disorder by means of computer simulation. We run fracture simulations for two types of
boundary conditions and compare the results both with the simulation of random damage percolation on the
same lattices and with the analytical scaling relations of percolation theory. We investigate the scaling behavior
of the macroscopic failure thresholds, the main features of the developing microscopic cluster statistics and
damage pattern, and the roughness scaling of the final crack. Our observations show that simulated fracture has
three clearly distinguished regimes. The initial phase displays short-range localization of damage, but it is soon
replaced by a regime where damage develops in a uniform manner, qualitatively as in random percolation.
Already before the maximum-stress point macroscopic localization and anisotropy come into play, resulting in
final crack formation. The data of the second, uniform-damage regime can be fitted consistent with the scaling
laws of random percolation. Beyond this regime a clear difference is observed with percolation theory and with
earlier results from fuse-network models. Nevertheless, the final-crack roughness is found to scale accurately
over at least three decades, with a roughness exponent consistent with limited available data for 2D systems

and marginally consistent with the value for 2D percolation in a gradient.
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I. INTRODUCTION

Scaling or size dependence is of a great importance for
any physical theory or experimental study. First of all, it
reflects fundamental laws of the theory or real phenomena.
Secondly, it has a direct practical meaning, showing how the
behavior changes with system size. Scaling laws can be very
different, but in the most simple and pure case, for theories
and experimental observations with no characteristic length,
scaling should have a form

L2 m
S(Ly) °<S(L1)<—) ; (1)
Ly
where m is a scaling exponent.! This dependence represents
how values of the physical quantity S for two different sys-
tem sizes L, and L, are related.

The size effect in fracture was observed as early as in the
1500’s by Leonardo da Vinci, who noticed that a short truss
is stronger than a long one.! Later on it has been found
experimentally for many materials that their strength de-
creases when the size of a sample is getting larger. The sim-
plest explanation for this phenomenon would be the larger
the sample, the larger the probability of finding a defect, and
therefore the smaller the critical strain. In 1939 Weibull was
the first to apply statistics in order to give the size effect a
formal description.!> He discovered the importance of hav-
ing a correct representation for the distribution of strengths
of small material elements, in particular in the range of very
low strength. Weibull introduced a function especially for
this purpose, which is now known as the Weibull distribu-
tion. Most statistical theories of size effects that appeared
later on were based on Weibull’s concept.

Local heterogeneity is inevitable in any material, and the
role of such disorder is crucial for fracture. Ideally homoge-
neous materials would have a fracture threshold many times
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larger than real ones, would not have any size effect and
there would be no reason for quasistatic-crack surfaces to be
rough. Furthermore, microscopic disorder has a very strong
influence on the macroscopic response of a material and can
change it completely, from brittle to ductile, from elastic to
plastic. Considering the extreme case of strong disorder is
important, since it allows to make the effect of disorder re-
ally pronounced and also helps to understand to what extent
the disorder is able to suppress typical features of materials
deformation: localization and long-range interactions be-
tween local stress fields around single defects.

A second interesting and very intriguing experimental ob-
servation in fracture is the universal scaling of crack
roughness.? This reflects the dependence between the rough-
ness (average height variation) Ak of a crack surface and the
size d of the window over which it is calculated:

Ah = (max{h(y),y € [yo,yo +d]}
_mm{h()’)»y € [)’0’)’0+d]}>y0’ (2)

where y is the coordinate along the average crack-
propagation direction and h(y) is the height of the crack pro-
file (Fig. 1).
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FIG. 1. Crack-roughness definition according to Eq. (2).
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Surprisingly, for an extremely broad range of materials,
with different properties and microstructure, the same scaling
dependence

Ah « d* (3)

has been found experimentally for the length scales up to a
certain characteristic correlation length =, after which the
dependence saturates.’> Moreover, the value of the exponent /
has been found to be nearly the same [about 0.8 for three-
dimensional (3D) systems] for almost all investigated mate-
rials, while E changes from one material to another. Al-
though a lot of studies have been performed, there is no
satisfactory explanation of this phenomenon so far.

Over the last decades rather significant efforts have been
made to model deformation and fracture of heterogeneous
materials by means of lattice (or “network”) models.*!3 First
this approach has been applied to “fuse networks”—
networks of resistors that are able to burn out at a certain
critical load. The main focus of this research has been on
such phenomena as threshold scaling, influence of the distri-
bution of local properties on macroscopic behavior, and scal-
ing of the damage-profile roughness. In most of the works
fracture has been interpreted in terms of damage percolation.
This approach has been based on a few important common-
alities between the two phenomena. First of all, fracture of
fuse networks and random percolation have one common
object—the lattice. Secondly, disorder plays an important
role for both, being an essential ingredient of fracture and the
only driving force in random percolation. Scaling is the third
common feature. In fracture experiments size scaling is ob-
served for material strength and crack roughness. Percolation
theory also reveals an intrinsic size effect. The internal struc-
ture of a large but finite cluster on a larger lattice shows
self-similarity, and will become the percolating cluster when
the lattice size decreases.

The fracture of lattices with moderate disorder or uni-
formly distributed properties is of course a highly correlated
process, different from random percolation. However, the
process of damage accumulation becomes less correlated
with increasing disorder, and in the limit of infinite disorder
it can be mapped onto a percolation problem.'¢ Still it is not
clear to what extent strong, but finite disorder is able to make
fracture statistically similar to percolation. If the answer is
“yes”, it opens a way for percolation-theory arguments to be
applied to fracture. If it is not the case, then another under-
standing of the underlying physics is needed.

A comparison between random percolation and fracture
was already made in Ref. 12 on random 2D triangular lat-
tices with central- and bond-bending forces and power-law
disorder (see also Refs. 13 and 14 for more details). Based
on a graphical representation of the force distributions in the
network it was concluded that only the initial regime of dam-
age development compared well with random percolation;
the range over which this extended was observed to be sig-
nificant only for strong disorder (a strong tail of very weak
bonds), but to end well before the maximum in the curve of
macroscopic stress vs strain. A detailed study for 2D central-
force lattices® has led to the view that for a very strong, but
finite, power-law disorder, fuse networks behave similar to
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percolating systems. For this special case fracture was found
to belong to the same universality class as random percola-
tion, and the exponent for threshold scaling coincided with
percolation-theory predictions. However, the trend of the
threshold scaling observed in Ref. 6 is different from random
percolation: the rupture threshold decreases as the lattice size
grows. In Ref. 6, even the exponent ¢ for the scaling of crack
roughness has been calculated, on the basis of percolation in
a gradient, and was found to agree well with limited data on
2D systems.

The point of view of Ref. 6 has met rather serious oppo-
sition in Ref. 8. In that work the authors have also investi-
gated fuse networks, but for a much larger size range, and
significant deviations from the results of Ref. 6 and therefore
from random-percolation theory, have been found. At the last
fracture stage the authors have found localization in a form
different from the observations of Ref. 6; they analyzed it in
terms unrelated to percolation theory and demonstrated an
accurate size scaling of the avalanchelike final breakdown
event. The similarity to percolation was observed in Ref. 8
only at the early stage of the fracture process, but was not
studied at the microscopic level or quantitatively confirmed.
The two stages were believed to be separated by the
maximum-stress point in the stress-strain curve and treated
as unrelated.

The fuse-network model is anyway only a scalar analog
of fracture. Even if all the features of fuse networks were
known and thoroughly investigated and the question of
(dis-)similarities between fuse networks and random perco-
lation left no doubt, an attempt to associate fuse networks
with fracture has an implicit weak point: mechanical defor-
mation and therefore fracture of materials has a vectorial
nature (it is described by a vectorial displacement field),
while fuse-network simulations are based on conduction of
current, which is described by a scalar potential field. In
terms of lattice models it implies that each node (i.e., dis-
cretization point) has (in 2D) two degrees of freedom in the
case of mechanical deformation and only one degree of free-
dom in the case of current conduction. Related to this, the
central-force spring lattice allows for changes of its geometry
during the deformation process, while in fuse-network simu-
lations the geometry remains fixed. All mentioned features of
the 2D central-force spring lattice imply that it should be a
better model for deformation and fracture.

The main goal of the present research is to explore the
origin of scaling in the fracture of disordered materials and,
in particular, the possible connection with, and deviations
from, percolation theory, with a mechanically more realistic
model than fuse networks. To that end we have chosen
central-force spring networks, simulated the macroscopic
features and underlying microscopic statistics of fracture un-
der uniaxial deformation, and compared the results with
those of random percolation. In such a comparison, only the-
oretical predictions of percolation theory are usually
involved.®® We performed numerical simulation of random
percolation on the same lattices as used for fracture simula-
tions, in order to see the detailed differences at all stages, so
not only in the vicinity of percolation threshold, where the
behavior of percolating lattices can also be assumed from
scaling theory.
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Very recently, the authors of Ref. 8 repeated their study
also for 2D spring networks,” although this time only for
uniform disorder in the threshold distribution. Their conclu-
sion is that with regard to the pattern of damage evolution
and final fracture there are no essential differences between
fuse networks and spring networks. But again, as in Ref. 8,
no microscopic analysis of the percolationlike damage up to
the point of maximum stress was attempted.

It should be realized that the theoretical threshold for ran-
dom scalar percolation on regular triangular networks is
0.347.'7 The threshold becomes 0.333 for percolation on the
geometrically random networks chosen here.!® For elasticity
percolation the value of the threshold is 0.641.'% To have the
thresholds for elasticity percolation and random scalar per-
colation equal we should have included bond-bending forces.
However, for best comparison with the results of Refs. 6, 8,
and 9 we have chosen central forces only; accordingly, we
will not focus on the absolute threshold values in our results.

Our paper is organized in the following way. In Sec. II we
describe the model (Sec. II A) and the methods, both for the
simulation (Sec. II B) and for the analysis of the results (Sec.
II C). Then in Sec. III we give the main results for two simu-
lated phenomena: fracture and random percolation. We con-
sider in particular the macroscopic features of mechanical
behavior (Sec. IIT A) and finite-size scaling (Sec. III B), and
the microscopic features of damage-cluster statistics (Sec.
III C), damage anisotropy and localization (Sec. III D), and
finally crack roughness (Sec. III E). For fracture we demon-
strate an initial short-range localization phase, subsequent
uniform damage development up to the point of maximum
stress, and the onset of localization and anisotropy in the last
stage of the fracture process. For random percolation of dam-
age we check theoretical predictions on scaling. We compare
the two phenomena both qualitatively and numerically, ex-
plicitly checking to which extent claims on percolation scal-
ing in fracture are (or can be) true. We show the principal
distinctions between the two phenomena, in the very begin-
ning of the processes and beyond the maximum-stress point.
For fracture we estimate the roughness-scaling exponent of
the final crack, based on a direct analysis of spanning-cluster
properties. In Sec. IV we discuss our general observations
and finish with conclusions.

II. MODEL AND METHODS

The simulation scheme which we follow in the present
research is the following. We first generate a spring network
with a random geometry and locally varying properties, then
run two types of simulation: the one of fracture and the one
of random percolation (RP). After that the statistical analysis
of results is performed. In Table I the statistics of the simu-
lation runs is presented.

A. Lattice and boundary conditions

In our study we consider 2D lattices of central-force
springs. The geometry of the lattice is random and is built as
a Delaunay tessellation (a set of lines connecting each node
to its natural neighbors, see, e.g., Ref. 19) of a square region

PHYSICAL REVIEW B 74, 014206 (2006)

TABLE 1. Statistics of simulation runs.

Linear lattice size L (2D) Number of runs

12 500
17 500
25 500
35 150
50 100
70 30
100 20
150 10
200 5

with randomly distributed nodes (Fig. 2). Note that the aver-
age coordination number of an infinite Delaunay tessellation
is always 6, while the local number may vary from 3 to
infinity; due to the boundaries our average coordination
number is very close to 6, ensuring mechanical rigidity of the
intact network.

Obviously one does not need any loading boundary con-
ditions (BC’s) for the simulation of RP, but they are neces-
sary for the simulation of deformation and fracture. In this
work we apply two types of boundary conditions: “busbars”
and periodic. In the first case a uniaxial tensile strain is im-
posed by means of two rigid busbars at the left and right
sides of the lattice, while the upper and lower boundaries
remain free:

u(0,y)=0, ull,y)=U,

where u,,u, are the displacements along x and y axes, re-
spectively, with coordinates x,y each in the unit interval
(0,1) and where U is the prescribed displacement.

In the second case the strain is applied to the lattice via
imposing equal relative displacement to the opposite nodes
at the left and right sides of the lattice. The opposite nodes of
the upper and lower sides are also restricted to have equal
relative displacement, which is defined by the solution as an
independent degree of freedom:

u(1,y) —u(0,y) = U, u,(1,y) =u,(0,y),

1,0,0) = 1,(0,0)=0, (4)

>
>

1 x

FIG. 2. Example of a Delaunay-tessellation lattice (L=15) as
used in the simulations.
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uy(-x’ 1) - uy(x’o) = V, Mx(x, l) = Mx(x’o) P

u,(0,0) = u,(0,0) =0, (5)

where u,,u, are again the displacements along x and y axes,
U is the prescribed horizontal displacement and V is the ver-
tical displacement, which remains an independent degree of
freedom. In this case the shape of the deformed opposite
sides always stays identical, as if the lattice were wrapped
around a torus. This type of loading is used to eliminate the
influence of boundaries.

B. Simulation methods

In the case of RP simulation, lattice bonds are randomly
removed from the lattice one by one. The result of this simu-
lation is nothing more than a random sequence of removed
bonds, without any correlation or underlying physics. The
simulation of fracture is of course different. Upon loading,
each bond behaves first as an elastic spring and as the thresh-
old strain is reached the bond breaks (it is irreversibly re-
moved from the lattice).

In order to simulate strong disorder, the strain thresholds ¢
of individual bonds are randomly generated according to the
following distribution:

P =(1-aw*'r® re[0,w], (6)

while Young’s modulus remains the same for all bonds. So
there is an algebraically diverging tail of very weak bonds.

A finite-element problem is formulated and solved for a
given set of boundary conditions in order to determine the
spring with the highest ratio of actual strain to threshold. If
the highest ratio is more than or equal to 1, the correspond-
ing spring is removed from the lattice and the finite-element
problem is solved again for the modified lattice, until no
break events occur for the given boundary conditions. Thus,
the stiffness matrix is modified and equations are resolved
every time a spring breaks. Bonds are allowed to be broken
only one by one. Removing the broken bond is done for
calculational reasons by putting its stiffness equal to a very
small positive value, i.e., to almost zero.

Technically the fracture part of our model is an iterative
finite-element model, consisting of breakable central-force
springs with random properties. The stiffness matrix is fully
assembled and constrained according to boundary conditions
only once (in the beginning) and after that it is only modified
when any bond breaks. The obtained system of linear alge-
braic equations is solved as many times as breaking events
occur until the boundary conditions are satisfied or the sys-
tem falls apart.

Calculations are performed for a range of lattice sizes
from L=12 to L=200 and for a set of samples per size (from
500 to 5, depending on size) in order to get sufficient statis-
tical information. The results presented in this paper have
been obtained for the particular case of “strong disorder,”
governed by the threshold distribution (6) with a=0.7. Al-
though the disorder would be stronger for « closer to 1, the
value 0.7 provides a reasonable compromise whereby the
disorder is strong enough, but the problem is still not com-
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putationally too demanding. In the mentioned studies®®° the
same general power-law threshold distribution (6) was used,
with disorder exponents «=9/10 and a=2/3,° =19/20 and
a=0 (i.e., uniform disorder),® and a=0.°

C. Methods for the analysis of results

We obtain two types of results in our simulation: me-
chanical and statistical ones. The mechanical responses of
the lattices (or stress-strain relationships) are calculated di-
rectly and rather easily from the reaction forces. This is the
analog of data that would result from real fracture experi-
ments. Statistical results of course require some processing.
The methods we use in this paper to analyze them are mostly
taken over from percolation theory!”?° and simulation.

From the macroscopic stress-strain curves we calculate
two important properties: the survival probability Pg,,—the
probability that a lattice survives (remains unbroken) at a
certain density p of broken (removed) bonds—and the criti-
cal strain e—the strain at which the stress reaches its maxi-
mum and the lattice starts breaking. An effective threshold
pso—the density at which 50% of lattices survive—can be
obtained from Pg,,.

By analyzing the damage patterns we identify clusters of
connected broken (removed) bonds and calculate the follow-
ing set of microscopic cluster properties as functions of
p—the density of broken (removed) bonds.

The cluster-size distribution 7, (the number of clusters of
weight s divided by the total number of sites in the lattice),
together with the weight-averaged cluster size

S=—== (7)

describing the statistics of damage clusters (M;=p and M,
are the first and the second moment of the cluster-size distri-
bution, respectively).

The average squared gyration radius R,, showing the spa-
tial extent of clusters of a particular weight s:

s
N

s 2
r,—r
R2= §:| i c.m.| ) (8)
i=1

(all s-clusters)

where r_ , is the center-of-mass of an individual cluster and
r; defines the location of each cluster node.

The correlation length &, which is an average distance
between two sites of the same cluster

225 R?szn s
> s,

In order to identify possible anisotropy of the developing
fracture pattern we also calculate longitudinal and transversal
correlation lengths

22.; stzns ZES stzns
2 sty 3, s

where X, Y, are defined similar to the gyration radius

& )

&= & (10)
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s |X' —x |2
2 1 c.m.
X‘Y = E s s

i=1 (all s-clusters)

s 2
Yi~ Yem.
Yf, — E M , (11)
i=1 $ (all s-clusters)
with x. ., ,V.n denoting the coordinates of the center-of-
mass and x;,y; being the coordinates of cluster nodes. From

Eq. (10) a shape factor can be defined as

gl _gH (12)

EL+&
describing the damage anisotropy.

In the case of random damage, percolation theory de-
scribes the large-scale statistics of the developing cluster dis-
tribution and cluster pattern, when local details in the under-
lying lattice become irrelevant. In particular it predicts then
the following universal scaling laws for an infinite lattice in

the vicinity of the percolation threshold p:'7-20
Soc My |p—p[7, (13)
Exlp=p”, (14)
n, < ps~f(s*771S), (15)
R, s'/Ps, (16)

where f is a scaling function and where the exponents take
universal values depending only on dimension D and obey-
ing the following relations:

Dy _ 1 o 3—-71

D 7-1 vD 71-1
For D=2 one has y=43/18, v=4/3, Df=91/48, 7=187/91,
while p. and all the proportionality factors depend on lattice
details. The scaling function f(z) should approach a constant
for z< 1 and decrease to zero for z>> 1.

In practice, of course, only finite-size lattices are consid-
ered. For a finite system, & approaches the lattice size at an
effective threshold when a spanning cluster appears. For a
series of finite-size samples ps, is a natural estimate of the
average threshold. Substituting é=L, p=ps into Eq. (14) re-

sults in the finite-size scaling relationship for the percolation
threshold

(17)

c
P50=Pc—m, (18)

where ¢ is a constant. Finite-size scaling also adds an extra
proportionality factor in form of (b(%) to the expressions
(13)—(16).

By checking the validity of the above expressions for our
simulation results we can find out to what extent the simu-
lated fracture process resembles random percolation of dam-
age. While in RP damage develops isotropically and the
spanning cluster looks similar to a cloud rather than a crack,
in our fracture simulation the crack and the corresponding
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FIG. 3. Stress-strain relationship (dots represent breaking
events) for a single fracture simulation (L=200).

spanning cluster of broken bonds is easily identified as a
localized and anisotropic object elongated perpendicular to
the applied load. The roughness A/ in the loading direction x
can subsequently be calculated according to Eq. (2) as a
function of the window length d in the perpendicular direc-
tion y, whereupon the roughness scaling exponent { is ob-
tained as a result of least-squares fitting.

A way of estimating the roughness scaling exponent di-
rectly from percolation theory was suggested by Hansen and
Schmittbuhl, who used the concept of percolation in a
gradient.® They argue that at breakdown the damage density
{p) averaged in the direction perpendicular to the loading on
the one hand satisfies (p)—p, & ¥ and, on the other hand,
(p)=p.(h/L)* (a symmetric damage profile, with & the co-
ordinate in the loading direction). Subsequently assuming
that the final roughness A# is reached around h=¢, they thus
derive

2v
1+2v

AhxLf (= (19)
The use of this method for fuse networks is based on the
applicability of the arguments of percolation in a gradient
and on the RP-like scaling of ¢ in this case. With the RP
value v=4/3 in 2D it leads to the value {=8/11=0.73 for
the roughness exponent.

III. RESULTS

Macroscopically the fracture process in our model has
some features very typical for highly disordered systems.
With the chosen strong disorder there is no linear-elastic part
in the stress-strain dependence; the stress-strain curve for one
particular lattice with size L=200 is shown in Fig. 3. Weak
springs start breaking from the very beginning, decreasing
the overall stiffness and bending the stress-strain curve
downwards. This is very much different from the well-
known “weakest link” concept, according to which global
failure develops as an avalanche right after the failure of a
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(©

FIG. 4. (Color online) Developing damage pattern in a single fracture simulation with lattice linear size L=100 (red/dark gray dots
represent the centers of broken bonds): maximum-stress point with main-crack appearance (a), main-crack growth (b), and broken lattice (c).

few weakest bonds. In our case the lattice starts breaking
apart after a rather long quasielastic regime.

In our simulations the two types of boundary conditions
give qualitatively identical results with very close values of
fit parameters. The only significant numerical difference was
observed for the values of the macroscopic critical stress and
strain, which appear to be higher for busbars boundary con-
ditions. Therefore, only results for periodic boundary condi-
tions are presented graphically in the present section, while
the numbers are given for both.

For RP the criterion for identifying when the lattice is
broken is obvious: at the point of the first spanning-cluster
formation. On the contrary, in fracture simulation we can
identify at least two characteristic points on a stress-strain
curve: the point of maximum stress and the point where
stress drops down to zero or almost zero. The first point
precedes fracture and the second one is the mechanical
breakdown itself. On top of that there a final point at which
the first spanning cluster is formed—the percolation thresh-
old in the ordinary sense. So note that the percolation thresh-

old and the mechanical breakdown are not necessarily iden-
tical: the former is defined according to topological
connectivity, while the latter has to do with rigidity.

When the microscopic damage is considered, our simula-
tions show that during the initial phase of fracture short-
range localization takes place. However, this is rather soon
suppressed by disorder. Then coarse-grained damage devel-
ops in a distributed way, but already before the maximum-
stress point it is possible to see the beginning of macroscopic
localization. Beyond the maximum-stress point this localiza-
tion develops further, along with a steep stiffness decrease,
until finally a spanning crack is formed (Fig. 4). The full
damage development happens in the same way for both types
of applied boundary conditions. The observations suggest
that if there is a similarity between fracture in our model and
RP it is only expected to occur after the end of the initial
short-range localization phase and well before the point of
maximum stress. The stress-drop point, representing me-
chanical breakdown, is far beyond the expected percolation-
like regime. This implies that the study of the 50% survival
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FIG. 5. (Color online) Size scaling of the macroscopic critical
stress o (upper curve) and strain & (lower curve) according to the
maximum-stress criterion for fracture with periodic boundary con-
ditions; drawn lines correspond to least-squares fitting.

probability for fracture (in particular with the stress-drop
point taken as the point of failure, but probably also with the
maximum-stress point) in terms of RP is then doubtful due to
the fact that in this measure both lattices inside and outside
of the regime of distributed damage are taken into account.

A. Macroscopic critical stress and strain

The macroscopic critical stress o and critical strain € are
defined for each sample as the maximum stress and the cor-
responding strain, respectively. The values of o and & are
averaged over a set of samples for each system size. Similar
to experimental observations, the critical stress and strain
decrease as the size of the lattice becomes larger, due to
disorder. The size dependence of the macroscopic critical
stress follows a power law o—o0,,«<L™™ for both types of
boundary conditions, with k=1.04, 0,,=4.9 X 1073 for peri-
odic BC’s (Fig. 5) and k=0.97, 0,.=1.3X 1072 for busbars.
The critical strain follows the same behavior £—&.,% L™, but
with different numbers N=0.60, &,=1.3 X 10~* for periodic
BC’s (Fig. 5) and A=0.59, £.,,=2.2X 107* for busbars. Ap-
parently the exponents are independent of boundary condi-
tions within the considered data accuracy A=0.6, k=1,
while the absolute values of & and o are significantly higher
for the busbars case.

B. Finite-size scaling

As has been already mentioned, random percolation on a
lattice must reveal finite-size scaling in the form (18) with a
proper threshold and a scaling exponent. For our simulation
of RP we have checked this scaling law by collapsing the
survival-probability plots for different lattice sizes (not
shown). Scaling in the form of psy—p, L™, with v=4/3 as
predicted by theory, and p.=0.3333 as given in Ref. 18 for
random lattices, matches our results very well. Contrary to
that, the data for fracture cannot be fitted to Eq. (18) with the
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FIG. 6. (Color online) Size dependence of the effective thresh-
old psg, scaled with the theoretical exponent v=4/3 of RP, for ran-
dom percolation and fracture with periodic boundary conditions.

theoretical values. It is clearly seen (Fig. 6) that the graph
corresponding to the stress-drop criterion has a significant
curvature when scaled with the exponent of 4/3. The graph
following from the criterion of maximum stress does not
look straight either, although the deviations are not as dra-
matic. Furthermore, the data corresponding to fracture simu-
lation show a decrease of ps, with increasing lattice size,
while RP simulation gives an opposite dependence. A similar
contradiction for fuse networks, although not noticed, can be
found in the results of Ref. 6, while the scaling exponent is
found there to coincide with percolation theory.

Both fracture curves in Fig. 6 get straighter with increas-
ing scaling exponent, as was also observed in Ref. 8. For the
periodic BC’s and the maximum-stress criterion, the values
of the exponent and threshold that provide the straightest ps
graphs and the best collapse of survival probability plots, are
p.=0.14, v=2.24 (Fig. 7). If the criterion of “broken lattice”
is taken according to stress drop, the values become p,
=0.05, v=4.57, but with less fitting quality. These numbers
are the result of nonlinear fitting of ps,, which allows one to
obtain v and p, together.

The observations for the option with busbars boundary
conditions give, within this accuracy, the same values for p,
and v for the maximum-stress criterion, and slightly different
ones if the criterion of stress drop is chosen: p.=0.08,v
=3.72.

The above results show that for a real fracture simulation
the size dependence can be made to fit at least approximately
a power-law scaling, but with parameters much different
from those valid for RP and found in Ref. 6. However, as
mentioned already, the very nature of the survival distribu-
tion implies that here data without and with a strong macro-
scopic localization have been combined in one analysis;
without further study of the localization regime no conclu-
sions should be attempted from such deviating power-law
scaling, except that there is a clear difference with earlier
results for fuse-network models that suggest a quantitative
agreement with RP up to the final failure point.
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FIG. 7. (Color online) Survival probability for fracture simula-
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terion: not scaled (a) and scaled with a power law for p—p, accord-
ing to the best least-squares fit of ps, (b).

C. Cluster statistics

We have taken lattices of one particular size L=50 and
analyzed the average behavior of the distribution n, of
damage-cluster sizes. Figure 8 gives the full distribution for
RP (upper part) and fracture (lower part). For RP the power-
law scaling at the approach of p,. is recognized, with the
correct value of the Fisher exponent 7=187/91. A qualita-
tively similar scaling is suggested for fracture, though in a
smaller range of p. To accurately plot the scaling according
to percolation theory, we have replotted the data in the form
of Eq. (15), see Fig. 9. The requirement that the scaling
function f(z) has a plateau for z—0 then proves a fairly
sensitive test to the value of 7. Although a slight shape dif-
ference exists between the scaling functions for RP and frac-
ture, it has to be concluded that in the considered interval of
p (i.e., before the macroscopic localization occurs) the frac-
ture data are consistent with the scaling law (15) and the
exponent value 7=187/91 of random damage percolation.
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FIG. 8. (Color online) Cluster-size distribution for random per-
colation (upper graph) and fracture (lower graph) simulations. The
data represent averages over all samples of size L=50. The solid
lines show the theoretical RP slope on approach of p..

Following this conclusion we can also verify the addi-
tional scaling laws (13) and (14) vs distance to p,, for the
second moment M, of the mass distribution and for the spa-
tial correlation length &, respectively. As seen from the
graphs (Figs. 10 and 11) the second moment M, of the
cluster-size distribution as well as the correlation length ¢ do
not develop in the same way for RP and for fracture simula-
tion. In the case of fracture the cluster mass and cluster ex-
tent on average progress faster with damage concentration p.
There is a difference in the initial regime, especially well
observed for &; snapshots of the damage suggest that this is
related to an initial enhanced fracture of springs oriented
parallel to the loading direction, and to short-range localized
growth of the initial fractures. Also the anisotropy and mac-
roscopic localization that in fracture set in around the
maximum-stress point, cause visible difference from RP be-
havior. However, in the intermediate regime, at concentra-
tions corresponding with the scaling in Fig. 9, the fracture
data for M, and & can be consistently fitted to the RP scaling
laws and exponents. The extrapolated fracture percolation
threshold p.=0.27 is well below that of RP (p.=0.33). Note
that the fracture data in which scaling can be observed are in
relative terms still farther from p,. than those for RP; this is
again consistent with the cluster-size statistics of Fig. 8, in
which the range of algebraic scaling remains smaller for
fracture.
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FIG. 9. (Color online) Scaling function of the cluster-size dis-
tribution for RP (upper graph) and fracture (lower graph) simulation
within the scaling regime. The data represent averages over all
samples of size L=50; scattered data for large s are excluded;
curves are leveled vertically to match one another [see Eq. (15)].

The above picture of three regimes, with accelerated clus-
ter growth in the initial and final stages, and with intermedi-
ate RP statistics, is supported by Fig. 12; here we have plot-
ted as a function of increasing damage the joining
probability—the probability for an individual newly broken
bond to be joined to an already existing damage cluster in-
stead of nucleating a new cluster of one bond.

The relationship between the cluster size (weight) s and
the cluster spatial extent R, for big clusters defines the fractal
dimension Dy. Figure 13 again shows for a damage concen-
tration inside the scaling regime (p=0.14) that fracture and
RP data match, with the correct theoretical value Dy
=91/48. This observation further supports the statement that
there is a regime in fracture that matches the scaling relations
of RP.

D. Damage anisotropy and localization

The final damage patterns are completely different for RP
and fracture. For the former case one sees several big isotro-
pic damage clusters, one of which spans through the lattice
[Fig. 14(a)]. In the case of fracture, anisotropy of a final
damage pattern can be easily noticed by the naked eye [Fig.
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length & (lower graph) for simulations with linear lattice size L
=50. Limits of the scaling regime are denoted by solid markers; the
straight solid lines show the theoretical RP slopes on approach of

Pe-

14(c)]. Tt is also seen that the biggest fracture cluster is far
larger than any other, suggesting that the damage pattern is
localized; the damage pattern at the point of maximum stress
still remains rather isotropic and does not reveal pronounced
localization, although the major cluster has been nucleated
by this moment [Fig. 14(b)].

Anisotropy can be observed quantitatively by monitoring
the shape factor @ constructed from the two components &,
&, of the correlation length, and defined by Eq. (12); here we
take spanning clusters into account together with others,
while in the scaling analysis of M, and ¢ spanning clusters
are always excluded from consideration. For an uncorrelated
and delocalized process @ should obviously remain statisti-
cally equal to zero for any density of broken bonds. Although
the shape factor corresponding to fracture has a stable non-
zero level from the very beginning, it starts to deviate from
zero significantly only slightly before the point of maximum
stress and grows dramatically beyond the maximum stress
(Fig. 15). This results in a final ratio of the components of
the correlation length of about three. Hence the fracture pro-
cess gains two clear principal features just before the
maximum-stress point: damage anisotropy and localization.

E. Roughness scaling

Damage clusters forming in RP simulation are isotropic,
and the largest one is not much larger than others. Therefore
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it is impossible to recognize a cluster that looks similar to a
crack. Contrary to this, in our fracture simulation it is always
possible to identify the dominant final damage cluster that
contains a path connecting opposite sides of the lattice, i.e.,
the crack. The obvious question then is whether the rough-
ness of this crack scales as like it does in experimental ob-
servations.

In order to obtain the crack profile as a function of the
transversal coordinate, we average in the direction of applied
strain the coordinates of bonds of the heaviest damage clus-
ter of an individual lattice (Fig. 16). Subsequently we calcu-
late the roughness scaling exponent of the obtained profile,
using Eq. (2), by least-squares fitting. This procedure is per-
formed for all samples with L="70. The data collapse onto a
straight line on a log-log plot remarkably well (Fig. 17),
giving very close values of the scaling exponent for different
samples and different lattice sizes. It is indeed surprising to
find such a pronounced scaling law at a stage far beyond the
scaling range of RP-like damage. The scaling exponent, av-
eraged over all considered samples, is {=0.65+0.07.

The above procedure of averaging in the horizontal direc-
tion of loading to get the position of the crack, is in line with
the way in which the horizontal fluctuation of the crack po-
sition is described in the original paper® in terms of damage
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FIG. 12. (Color online) Joining probability (the probability for
an individual newly broken bond to be joined to an already existing
damage cluster) for simulations with linear lattice size L=50 for RP
(red or dark gray) and fracture simulation (green or light gray). The
curves are smoothed by a moving average over ten subsequent
points.

correlations in gradient percolation, and taken there as a ba-
sis for the roughness scaling. However, this is a rather vague
way of defining the real-crack roughness, and as an alterna-
tive we can choose the backbone of the infinite cluster, how-
ever, with at least one important caveat. The infinite cluster
may have loops, leading to nonunique crack paths in the
backbone, and possibly also vertical overhangs. Comparison
with real cracks is then probably only meaningful on a length
scale larger than the typical local width of the infinite cluster,
i.e., the depth of the subsurface damage. We have used the
burning algorithm?! to determine the infinite backbone clus-
ters of our simulations, and analyzed their roughness scaling.
Taking all length scales into account we then find a rough-
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FIG. 13. (Color online) Relationship between the cluster weight
s and the cluster gyration radius R, at the density of broken bonds
p=0.14 for L=50. The data for fracture are shifted one unit up.
Solid lines show the theoretical RP value of the fractal dimension.
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FIG. 14. (Color online) Clusters of broken bonds for a single
lattice with linear size L=100. (a) For RP simulation at the thresh-
old, (b) for fracture simulation at the maximum-stress point, and (c)
for fracture simulation at the stress-drop point.

ness exponent (=0.81+0.06, somewhat higher than the
above result from horizontal damage averaging. Eliminating
the lower length scales we see as expected that the roughness
changes, and get {=0.74+0.11; this is statistically suffi-
ciently close to our averaging value, which hardly changes
when lower lengths are ignored: {=0.67+0.12.
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size L=50. Markers indicate the regime where in Figs. 10 and 11
the correlation length ¢ is shown to numerically obey RP scaling.

IV. DISCUSSION AND CONCLUSIONS

The work reported in this paper is an attempt to under-
stand similarities and distinctions between fracture of
central-force spring lattices and random percolation, both on
macroscopic and microscopic levels, by elaborating the sta-
tistical and scaling features of the two phenomena.

The fracture scenario of our model is very typical for
highly disordered systems: break events start to occur from
the earliest stage of deformation, but do not lead to macro-
scopic failure until, after progressive distributed damage, the
system reaches its critical state. This behavior is different
from the way fracture happens in nondisordered or weakly
disordered systems, where failure develops as an avalanche
already after only few break events.
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FIG. 16. (Color online) Example of a crack profile (red or dark
gray line) obtained from the biggest damage cluster (green or light
gray) for a single simulation with L=100 by averaging in the direc-
tion of applied load.
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FIG. 17. (Color online) Roughness A of a single crack profile
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=100; the position of the crack has in this case been determined by
horizontal damage averaging (see text). The corresponding rough-
ness exponent { is equal to 0.68.

For the considered case of strong disorder damage devel-
ops in three different stages. Initially some short-range local-
ized growth of small fractures occurs, but this damage nucle-
ates throughout the sample, due to the disorder. In the second
stage the effect of disorder takes over and progression of the
distributed damage follows a percolationlike picture, with
random coalescence of different damage clusters. Already
before the point of maximum stress macroscopic localization
sets in, with a rough final crack preferentially growing in the
direction perpendicular to the loading.

Numerical analysis shows that the macroscopic break-up
mechanics and survival-probability statistics allow a power-
law fitting of their size dependence; however, the power-law
exponents are clearly different from those of random perco-
lation. Such a macroscopic break-up analysis ignores the dif-
ferent mechanisms of damage development in the different
stages before break-up, so no further interpretation on the
deviating power-law fits can yet be drawn in terms of scal-
ing; the latter may also be approximate and accidental. How-
ever, the microscopic data from the intermediate stage, with
distributed development of damage, can clearly be fitted con-
sistent with the theory of random percolation and with the
theoretical values of its scaling exponents. This applies both
to the damage-cluster mass statistics and to the spatial cluster
extent. Surprisingly enough, scaling is still present in the last
regime of damage development although the damage pattern
is then strongly localized and anisotropic. Power-law depen-
dence is followed very nicely by the crack roughness. The
scaling of crack roughness is observed over more than three
decades in lengthscale, only limited by the maximum size of
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the lattice. When the final crack is identified by averaging the
damage in the fracture cluster in the loading direction, the
obtained value {=0.65+0.07 for the roughness-scaling expo-
nent is consistent with the value 0.68+0.04 that was deter-
mined experimentally for quasi-two-dimensional cracks in
wood,?? with the result 0.71+0.10 of numerical simulations
for 2D graphite,?® and marginally consistent with the predic-
tion for random percolation in a gradient {=8/11=0.73.%
When alternatively the large-scale roughness is determined
from the backbone of the infinite cluster, a roughness expo-
nent {=0.74+0.11 is obtained; this is statistically sufficiently
close to our averaging value. One may speculate that the
agreement with the gradient-percolation value {=8/11 is due
to the fact that the average position of the developing crack
in the direction of load has already been largely frozen in
around the maximum-stress point, and that further crack de-
velopment is dominated by growth and coalescence in the
transversal direction.

Our results may be compared with earlier simulation stud-
ies which consider fracture vs percolation. The results par-
tially confirm those of Arbabi and Sahimi,'”> who used 2D
triangular networks with the same type of power-law disor-
der, however, with bond-bending forces included and with
disorder exponents a=0.8 and 0; they identified the percola-
tionlike regime as the first regime of damage development,
but based their conclusions on a graphical comparison of the
force distribution in the network only, and did not give a
more detailed quantitative analysis. When compared with the
burning of fuse networks®® our investigation provides a more
realistic model for the mechanics of fracture, as does the
analysis of spring networks in Ref. 9. The percolationlike
picture advocated in Ref. 6 is microscopically recognized in
the present work, although only in a middle regime between
the initial short-range and final long-range localization. Our
data are not inconsistent with Refs. 8 and 9 either, but those
studies do not analyze microscopic percolationlike behavior
before the maximum stress, and concentrate on the final-
stage scaling of the avalanchelike breakdown. Microscopic
analysis of the localization regime in our model, and of the
systematic damage-pattern variation with varying disorder
exponent, will be the subject of future papers.
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