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In a piezoelectric material, an applied uniform strain can induce an electric polarization �or vice versa�.
Crystallographic considerations restrict this technologically important property to noncentrosymmetric sys-
tems. It has been shown both mathematically and physically that a nonuniform strain can potentially break the
inversion symmetry and induce polarization in nonpiezoelectric materials. The coupling between strain gradi-
ents and polarization, and conversely between strain and polarization gradients, is investigated in this work.
While the conventional piezoelectric property is nonzero only for certain select materials, the nonlocal cou-
pling of strain and electric field gradients is �in principle� nonzero for all dielectrics, albeit manifesting
noticeably only at the nanoscale, around interfaces or in general in the vicinity of high field gradients. Based
on a field theoretic framework accounting for this phenomena, we �i� develop the fundamental solutions
�Green’s functions� for the governing equations, and �ii� motivated by eventual applications for quantum dots,
solve the general embedded mismatched inclusion problem with explicit results for the spherical and cylindri-
cal shape. Expectedly, our results for the aforementioned problems are size dependent and indicate generation
of high electric fields reaching values of approximately hundreds of kV/m in selected sizes and locations—
even in isotropic centrosymmetric nonpiezoelectric materials.
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I. INTRODUCTION AND BACKGROUND

In the traditional continuum field theory of piezoelectric
materials, an electric polarization is generated in response to
uniform strain �or vice versa�. Within the assumptions of
linearity, a third-rank piezoelectric tensor p relates the polar-
ization vector P to the second-rank strain tensor e,1

Pi = pijkejk. �1�

Crystallographic considerations restrict this technologi-
cally important property to noncentrosymmetric crystal sys-
tems and, indeed, the latter is a necessary condition for a
material to exhibit piezoelectricity �e.g., GaN and ZnO are
piezoelectric but Si and NaCl are not�. Figure 1 provides an
illustration of piezoelectricity based on the crystal structure
of ZnO.

Tensor transformation properties require that under
inversion-center symmetry, all odd-order tensors vanish.
Thus, most common dielectrics are not piezoelectric. Physi-
cally, however, it is easy to visualize how a nonuniform
strain could potentially break the inversion symmetry and
induce polarization. This is tantamount to extending relation
�1� to include strain gradients

�2�

In some circles; this particular electromechanical coupling
is known as the “flexoelectric effect” �e.g., Tagantsev2� and
the components of the tensor � are the so-called flexoelectric
coefficients. While the piezoelectric property is nonzero only
for certain select materials, the strain gradient-polarization
coupling �i.e., flexoelectric coefficients� are in principle non-
zero for all dielectrics including the isotropic continuum.

This implies that under a nonuniform strain, all dielectrics
are capable of producing a polarization. One may extend
similar arguments to link polarization gradients to the strain
tensor through a converse effect, i.e., reverse flexoelectricity.
The latter, for example, has been the focus of work of
Mindlin3 who introduced an extended nonlocal theory of pi-
ezoelectricity by incorporating coupling of polarization gra-
dients to strain. Figure 2 illustrates how NaCl �which is non-
piezoelectric� will yield zero net dipole moment �and hence
no polarization� under application of uniform strain but will
exhibit an apparent piezoelectric effect when subjected to
strain gradients, e.g., bending or inhomogeneous stretching.

FIG. 1. Illustration of “classical” piezoelectricity. The left figure
shows the tetrahedrally coordinated cation-anion unit of a ZnO
crystal. The center of negative charge of the oxygen �O� anions
coincides with the center of positive charge which is located at the
zinc �Zn� ion. Thus, there is no net dipole polarization in the ab-
sence of external pressure. Upon application of external pressure,
the centers of positive and negative charge suffer relative displace-
ment with respect to each other, thereby inducing a dipole moment.
Such dipole moments are induced throughout the crystal lattice,
thereby giving rise to net polarization.
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What is the magnitude of this effect? Both common sense
and �soon to be discussed� experimental evidence indicate
that this effect is very small unless large strain or electric
field gradients are present. Consider a structure with certain
mechanical boundary conditions; the mechanical strain can
be considered to be roughly the same if the system is shrunk
self-similarly from mm’s to nm’s.4 However, the strain gra-
dient will increase by six orders of magnitude. For example,
in the case of a NaCl plate, at 10 nm thickness, the electro-
mechanical coupling factor5 �Vibration response under ap-
plied alternating voltage. Obviously since NaCl is nonpiezo-
electric, one would expect the electromechanical factor to be
zero unless the flexoelectric effects �or its converse� are ac-
counted for.� reaches 80% of the value of quartz or alterna-
tively 12% of the piezoelectric transducer �PZT�. As will be
discussed in due course, the size dependency of electric
fields in embedded strain-mismatched inclusions �such as
quantum dots� is somewhat richer and more complex. Close
to interfaces and surfaces, electric fields in the neighborhood
of 105 V/m may be expected �e.g., see our results in Sec. V
and the one-dimensional examples in Mindlin3 and
Nowacki6�.

While not quite widely known in the crystalline solids
community, this phenomenon has been experimentally ob-
served in a variety of contexts: bending of crystal plates
�e.g., Bursian and Trunov7� and measurements on thin films.8

It has also been used to explain the anomalous capacitance
measurements of thin dielectric films,9 may be employed to
explain the weak piezoelectric behavior of carbon
nanotubes,10 and provides an explanation for the size-
dependent piezoelectric behavior of boron nitride
nanotubes.11 An interesting experimental manifestation of the
flexoelectric effect is in dislocated diatomic crystals. Overall
macroscopic electromechanical effects of otherwise nonpi-
ezoelectric crystals have been attributed to polarization in the
vicinities of dislocations.12–15 The aforementioned works are
related to crystalline materials. As an aside, we note here that
a large literature also exists in the liquid crystal and biologi-
cal membrane context which, however, is not of interest in
the present work. It is noteworthy, though, that the term
“flexoelectricity” for crystalline materials was coined in-
spired by similar phenomenon in liquid crystals.16–18

A crude analysis to measure the magnitude of the flexo-
electric coefficients was first provided by Kogan19 who esti-
mated the coefficients to be of the order of e /a, where e is
the electronic charge and a is lattice parameter. Multiplica-
tion by relative permittivity for normal dielectrics was
suggested,19 which now appears to have been confirmed
experimentally.20 Marvan and Havranek21 studied the flexo-
electric effect via a simple linear chain model of ions and
arrived at a similar estimate. Of course, the flexoelectric ef-
fect also exists in classically piezoelectric materials and may
provide large corrections to electric field or strain calcula-
tions for problems involving small length scales �e.g.,
Nowacki6�. Experimental measurements of the flexoelectric
effect on ceramics such as lead magnesium niobate, barium
strontium titanate, and lead zirconate titanate20,22,23 show that
the magnitude of their flexoelectric coefficients is of the or-
der of 10−6 C/m, which is much larger than the generally
accepted lower bound of e /a ��10−9 C/m�.

From a theoretical standpoint, two distinct bodies of
works appear to have emerged that, while quite related, have
apparently been developed independently. The pioneering
work within the mechanics of materials community is due to
Mindlin.3 Lattice level “shell” type models of crystalline di-
electrics clearly indicate that the long wavelength limit of the
lattice dynamical results do not lead to the classical piezo-
electric theory. The latter, from an atomistic point of view, is
simply the long wavelength representation of the core-core
interactions while core-shell and shell-shell interactions are
neglected.24–26 “Inspired” by this discrepancy, Mindlin3 in-
troduced a continuum field theory that incorporates coupling
of polarization gradients to strain �or, in our language, the
reverse flexoelectric effect�. It is found that such a theory
does indeed correctly represent, within a continuum field-
theoretic formalism, the core-shell and shell-shell interac-
tions �see also the study of Askar et al.27�. We point out that
Mindlin’s theory does not incorporate the direct flexoelectric
effect or the strain gradient-polarization coupling discussed
earlier. Several works subsequently appeared that expanded
on Mindlin’s original theory. For example, Mindlin himself
showed that his formulation could be used to explain the
anomalous capacitance behavior of thin films.9 Askar et al.28

considered elastic and dielectric states of cylindrical and
spherical cavities as well as cracks. In a later paper, using
lattice dynamical methods, the same authors also evaluated

FIG. 2. �a� Undeformed NaCl unit cell. The sodium ion is posi-
tively charged while the four neighboring chlorine ions are nega-
tively charged. As can be seen, the centers of gravity of the negative
charge and the positive charge coincide leading to �expectedly� zero
net dipole moment. �b� Uniform strain. Application of a uniform
strain displaces all ions by the same distance and hence the centers
of gravity of the negative and positive charges coincide again,
thereby resulting in zero net polarization—implying that NaCl is
nonpiezoelectric. The final positions of the ions are shown in dark
while the initial positions are shown in pale. �c� NaCl unit cell
under nonuniform stretching. Application of a nonuniform strain,
however, results in relative displacement of the centers of the nega-
tive charge and positive charge with respect to each other. This
results in a dipole moment �represented by the thick red arrow� in
the direction opposite to the strain gradient for the considered cell.
�d� and �e� polarization due to bending.
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the material constants of Mindlin’s theory for KCl and
NaCl.29 The Green’s functions for Mindlin’s restricted theory
were derived by Nowacki and Glockner.30 Two remarkable
features emerge from Mindlin’s theory. It was found capable
to take into account surface energy �without increasing the
order of the governing differential equations� and predicted a
piezoelectric coupling even in isotropic continua.

In parallel, essentially the same subject has been dis-
cussed from arguably a different perspective in the con-
densed matter physics literature. Inspired by the experimen-
tal observations already discussed earlier, a
phenomenological description of the flexoelectric effect was
proposed.19 Based on microscopic considerations, several
concepts related to flexoelectricity and classical piezoelec-
tricity were clarified.2 Later, Tagantsev critically reviewed
the literature and further expounded on the phenomenologi-
cal description of flexoelectricity.31 The relation of crystal
structure to flexoelectricity was discussed17 and a simple
lattice-spring type model that provides formulae for compu-
tation of the flexoelectric coefficients has been proposed.21

Further, the reader may refer to Maugin’s book32 where the
classification of various types of electromechanical cou-
plings has been comprehensively documented in addition to
several instructive examples. Yet another electromechanical
coupling effect which deserves mention is the phenomena of
electrostriction.32 Like flexoelectricity, this phenomenon is
also universal to all dielectrics �including centrosymmetric
ones�; however, this is where the similarity ends. In electros-
triction, the strain depends on the square of the electric field.
Thus, an applied electric field can produce a deformation due
to this nonlinear coupling. A converse effect does not exist
and, because of the square dependence, reversal in an elec-
trical field direction does not cause a reversal in deformation.
Typical electrostriction coefficients indicate that very high
fields are required to manifest this effect. In contrast, flexo-
electricity is more similar to piezoelectricity �i.e., it is a two-
way coupling�, shows strain reversal with polarization rever-
sal, and is exhibited even at small strain levels �provided of
course that the gradients are large enough as for instance in
nanostructures�.

In the present work, we tackle the following problems:
�i� Derivation of the Green’s functions for the governing

equations of an isotropic centrosymmetric continuum me-
dium that incorporates the flexoelectric effect, its converse,
and the purely elastic nonlocal strain gradient effects.

�ii� Predicated on the developed Green’s function, the
elastic and electric fields solution to the strain-mismatched
embedded inclusion problem with explicit results for the
spherical and cylindrical shape.

The motivation for developing Green’s function hardly
needs any emphasis. The determination of the latter provides
an elegant framework for a variety of problems including the
ones included the present work, e.g., the embedded inclusion
problem and that of defects. The inclusion problem is itself
of fair amount of interest. The classical linear elastic solution
of strain mismatched inclusion due to Eshelby33 has a distin-
guished place in the history of materials science, mechanics,
and solid-state physics. Eshelby’s solution of the embedded
inclusion has been fruitfully used in diverse areas and prob-
lems of physical sciences, e.g., localized thermal heating,

phase transformations, overall or effective properties of com-
posites, quantum dots, and microstructural evolution, to
name just a few. In particular, quantum dots are essentially
nanoinclusions subjected to lattice mismatch transformation
strains that, due to the flexoelectric effect, may be subjected
to high electric fields. The latter, in turn, can significantly
impact the optoelectronic properties of quantum dots through
the so-called Stark effect.34 Within the classical piezoelectric
theory also, the electromechanical coupling in embedded in-
clusions and quantum dots has attracted fair attention �see,
for example, Pan,35,36 Li and Dunn,37 and the review article
by Maranganti and Sharma38�.

The outline of our paper is as follows. In Sec. II, the
general formulation for a flexoelectric medium is given in a
systematic manner. The governing equations are derived
based on a physically consistent Lagrangian. The fundamen-
tal solutions of the governing equations are derived in Sec.
III while the general inclusion problem is formulated in Sec.
IV. We focus on the inclusion solution to the spherical and
cylindrical shape in Sec. V, where closed form expressions
are given. We finally conclude with a summary and our ma-
jor conclusions in Sec. VI.

II. GENERAL FORMULATION

Although different in some respects, our presentation of
the formulation and the governing equations parallel those of
Sahin and Dost.39 The difference when compared with Mind-
lin’s framework lies in our inclusion of the flexoelectric cou-
pling as well as purely elastic nonlocal terms. Within the
assumption of an extended linear theory for centrosymmetric
dielectrics incorporating terms involving first gradients of the
deformation gradient and the polarization, the most general
expression for the internal energy density function �, can be
written as

� =
1

2
aklPkPl +

1

2
bijklPi,jPk,l +

1

2
cijkleijekl + dijklPi,jekl

+ f ijklPiuj,kl +
1

2
gijklmui,jkul,mn. �3�

Here, u and P are the displacement and the polarization
vectors respectively, while the comma denotes differentiation
with respect to the spatial variables.

Additionally, eij are the components of the strain tensor e
defined as usual,

eij =
1

2
�ui,j + uj,i� , �4�

where a, b, c, d, f, and g are material property tensors. In
particular, a and c are the familiar second-order reciprocal
dielectric susceptibility and fourth-order elastic constant ten-
sors, respectively. The remaining tensors correspond to
higher order electroelastic couplings which do not occur in
the classical continuum description of an isotropic elastic
dielectric. d, which was introduced by Mindlin3 in his theory
of polarization gradient, links gradients of polarization to
strains while the components of f are the flexoelectric coef-
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ficients. It should be noted that while the tensors f and �
�from Eq. �2�� can both be addressed as “flexoelectric coef-
ficients,” the former represents the coupling between the
electric field and the gradient of strain while the latter links
the polarization to the gradient of the strain. The tensor g
represents purely nonlocal elastic effects and corresponds to
the so-called strain gradient elasticity theories. Note that all
the tensors corresponding to the material properties are of
even order since the restriction to centrosymmetry �i.e., clas-
sically nonpiezoelectric materials� requires that odd tensors
vanish.

The internal energy density of Eq. �3� is invariant under
the Euclidean group SO�3��T�3� i.e., the semi-direct prod-
uct of the rigid rotation group SO�3� and the rigid translation
group T�3�. Invariance under rigid translations ensures that
the internal energy density can only depend upon the first
and higher order derivatives of the displacement, � � �
� ¯u and not on the displacement u itself. Invariance re-
strictions under rigid rotations only permit the symmetric
part of the displacement gradient �given by the strain tensor
of Eq. �4��, to contribute to the internal energy density ex-
pression. However, starting from the second derivative, all
higher derivatives of the displacement vector, i.e., � � �
� ¯u, transform properly under SO�3��T�3�. The invari-
ance restrictions do not manifest themselves in relation to the
polarization vector P and the internal energy density is al-
lowed to depend on polarization as well as all its higher-
order derivatives.

The symmetries of the material constants introduced in
Eq. �3� have been investigated. The symmetry properties of
the elastic moduli tensor c are of course well known.1 For b
and d, refer to Mindlin9 while Kogan19 may be consulted for
the flexoelectric tensor f. The reductions are listed below, as
follows:

aij = a�ij ,

cijkl = �c11 − c12 − 2c44��ijkl + c12�kl + c44��ik� jl + �il� jk� ,

bijkl = �b11 − b12 − 2b44��ijkl + b12�kl + b44��ik� jl + �il� jk�

+ b77��ik� jl − �il� jk� ,

dijkl = �d11 − d12 − 2d44��ijkl + d12�kl + d44��ik� jl + �il� jk� ,

f ijkl = �f11 − f12 − 2f44��ijkl + f12�kl + f44��ik� jl + �il� jk� .

�5�

Under conditions of isotropy, the following constraint holds

�11 − �12 − 2�44 = 0 where � = b,c,d, f . �6�

Thus for isotropic space, Eqs. �6� simplify further to

aij = a�ij, cijkl = c12�kl + c44��ik� jl + �il� jk� ,

bijkl = b12�kl + b44��ik� jl + �il� jk� + b77��ik� jl − �il� jk� ,

dijkl = d12�kl + d44��ik� jl + �il� jk� ,

f ijkl = f12�kl + f44��ik� jl + �il� jk� . �7�

The nonlocal elasticity tensor g is associated with pure
elastic strain gradient terms. Several treatments exist in the
literature to include pure strain gradient effects in the internal
energy, e.g., Kleinert.40 The contributions of purely elastic
strain gradient terms to the internal energy as �K can be
expressed as

�K =
1

2
c11l�

2�i�lul�i� juj +
1

2
c44l

2��l
2ui�l

2ui − �i�lul�i� juj� ,

�8�

l� and l are two new material constants having the dimen-
sions of length. While l� provides a higher order correction
to the dilation field, l characterizes resistances to gradients of
rotation �see also, Zhang and Sharma41,42�. Comparison of
Eqs. �8� and the last term on the right-hand side of Eq. �3�
make evident the following reduction for the tensor gijklmn:

gijklmn = c11l�
2�ij�kn�lm + c44l

2��il� jk�mn − �ij�kn�lm� . �9�

Standard variational analysis may now be employed to
obtain a system of equilibrium equations, boundary condi-
tions, and constitutive relations for an isotropic material oc-
cupying domain � and bounded by a surface S. We omit
these details as such deductions are now routine in mechan-
ics. The major variables, i.e., the electromechanical
“stresses” are defined through the following relations:

tij �
��

�eij
, tijm �

��

�ui,jm
,

Eij �
��

�Pi,j
, Ei �

��

�Pi
. �10�

Notice that the definition of tij is the same as that of the
stress tensor in classical elasticity; Ei is the effective local
electric force. The terms tijm and Eij can be thought of as
higher order stress �moment stress� and higher order local
electric force respectively. We now proceed to list the bal-
ance laws, boundary conditions, and the constitutive rela-
tions.

�i� The balance laws:

�tij − tjim,m�,j + Fi = 0, �11a�

Eij,j + Ei − �,i + Ei
0 = 0, �11b�

− �0�,ii + Pi,i = 0 in � , �11c�

�,ii = 0 in �*. �11d�

In Eqs. �11a�–�11d�, F and E0 are the external body force
and electric field respectively while � is the potential of the
Maxwell self-field EMS, i.e.,

Ei
MS = − �,i �12�

In the absence of the higher order stress tijm which in-
cludes higher order gradients of the displacement vector
�such as ui,jm�, Eq. �11a� reduces to the standard force bal-
ance equation of classical elasticity,

tij,j + Fi = 0. �13�
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Since the term tij − tijm,m occurs in a force balance relation
as evident in Eq. �11a�, we may interpret it as a “physical
stress,” �phys,

�ij
phys = tij − tijm,m. �14�

Unlike the stress tensor in classical elasticity, the physical
stress �phys of Eq. �14� is not symmetric. In particular, the
lack of symmetry manifests due to the term tijm,m, which
incorporates rotational effects.

�ii� The boundary conditions: For all x�S, the following
conditions hold:

ni�ij
phys = tj , �15a�

niEij = 0, �15b�

ni���0�,i� + Pi� = 0, �15c�

where n and t are the exterior normal unit vector and the
surface traction vector respectively; �0 is the dielectric con-
stant, and the symbol � � denotes the jump across the surface
S.

�iii� The constitutive relations:

tij = �c12�ij�ps + 2c44�ip� js�eps

+ �d12�ij�ps + d44��is� jp + � js�ip��Pp,s, �16a�

tijm,m = ��c12 + 2c44�l�2�2�ij�ps�up,s + �f12�pi� js + f44��ps� ji

+ �is� jp��Pp,s + c44l
2�2��is� jp − � js�ip�up,s, �16b�

Eij = �d12�ij�ps + d44��is� jp + � js�ip��up,s + �b12�ij�ps + �b44

+ b77��is� jp + �b44 − b77�� js�ip�Pp,s, �16c�

Ei = − 	aPi + �f12�ij�ps + f44��is� jp + � js�ip��uj,ps
 .

�16d�

Notice that the last term in the expression for tijm �Eq.
�16b�� is antisymmetric in the indices i and j, while the rest
of the terms are symmetric. Thus a combination of symmet-
ric and antisymmetric terms occur in the expression for the
physical stress, �phys, which leaves it devoid of the familiar
symmetry properties one associates with the classical stress
tensor.

Substituting the constitutive relations �16a�–�16d� into the
balance laws �11a�–�11d� yields the Navier-like equations for
dielectrics in our extended theory that incorporates the flexo-
electric effect, its converse, and the purely nonlocal elastic
terms:

c44�
2u + �c12 + c44� � � · u − �c12 + 2c44�l�2�2 � � · u

− c44l
2��2�2u − �2 � � · u� + �d44 − f12��2P + �d12

+ d44 − 2f44� � � · P + F = 0, �17a�

�d44 − f12��2u + �d12 + d44 − 2f44� � � · u + �b44 + b77��2P

+ �b12 + b44 − b77� � � · P − aP − �� + E0 = 0, �17b�

− �0�
2� + � · P = 0. �17c�

III. DERIVATION OF THE FUNDAMENTAL SOLUTIONS
(GREEN’S FUNCTIONS)

Equations �17a�–�17c� may be rewritten in an alternative
form,

Cijuj + DijPj + Fi = 0, �18a�

Dijuj + BijPj − �,i + Ei
0 = 0, �18b�

− �0�,ii + Pi,i = 0. �18c�

Here we have defined the following tensor operators:

Cji = Cjpis�p�s = �c12� jp�is + c44��ps�ij + � js�ip� − �c12

+ 2c44�l�2� jp�is�
2 + c44l

2��ps�ij − � js�ip���p�s,

�19a�

Dji = Djpis�p�s = ��d12 + d44 − 2f44�� jp�is + �d44

− f12��ps�ij��p�s, �19b�

Bji = Bjpis�p�s − a�ij = �b12� jp�is + �b44 + b77��ps�ij + �b44

− b77�� js�ip��p�s − a�ij . �19c�

We can define two sets of Green’s functions
	 fGin , f	in , f�n
 and 	EGin , E	in , E�n
 corresponding to Eqs.
�18a�–�18c� as follows:

Cji
fGin�x − x�� + Dji

f	in�x − x�� + � jn�3�x − x�� = 0,

�20a�

Dji
fGin�x − x�� + Bji

f	in�x − x�� − � j
f�n�x − x�� = 0,

�20b�

− �0�
2 f�n�x − x�� + �i

f	in�x − x�� = 0, �20c�

Cji
EGin�x − x�� + Dji

E	in�x − x�� = 0, �20d�

Dji
EGin�x − x�� + Bji

E	in�x − x�� − � j
E�n�x − x�� + � jn�3�x

− x�� = 0, �20e�

− �0�
2E�n�x − x�� + �i

E	in�x − x�� = 0. �20f�

As evident, the first three equations ��20a�–�20c�� are the
Navier-like equations for the displacement, polarization, and
the potential fields corresponding to a unit point force �de-
noted by a delta function�. Similarly, Eqs. �20d�–�20f� are the
governing equations for the displacement, polarization, and
the potential fields corresponding to a unit point electrical
field.

Field equations �17a�–�17c� are coupled with respect to
the displacement and polarization fields. The Helmholtz de-
composition is frequently found to be useful to uncouple
such a linked system of differential equations �wherein a
vector field is expressed as the sum of the gradient of a scalar
and the curl of a vector �called the solenoidal part��. Accord-
ingly, we decompose the displacement, polarization, body
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force, and the applied electric field vectors as follows:

u = �
 + � � H � · H = 0, �21a�

P = �� + � � K � · K = 0, �21b�

F = 
��� + � � L� � · L = 0, �21c�

E0 = J��� + � � M� � · M = 0. �21d�

Substituting the decomposition in Eqs. �21a�–�21d� into
Eqs. �17a�–�17c�, and after some algebraic manipulations,
the following system of uncoupled equations is obtained:

�− b11c11l�
2�2�2 + �b11c11 − �d11 − f11�2 + c11l�

2�a + �0
−1���2

− �a + �0
−1�c11��4
 = − 
�b11�

2 − �a + �0
−1���2�

+ Jd11�
4� , �22a�

�− b11c11l�
2�2�2 + �b11c11 − �d11 − f11�2 + c11l�

2�a + �0
−1���2

− �a + �0
−1�c11��2� = 
d11�

2� − Jc11�1 − l�2�2��2� ,

�22b�

�− �b44 + b77�c44l
2�2�2 + ��b44 + b77�c44 − �d44 − f12�2

+ c44l
2a��2 − ac44��4H = − 
��b44 + b77��2 − a��2L

+ Jd44�
4M , �22c�

�− �b44 + b77�c44l
2�2�2 + ��b44 + b77�c44 − �d44 − f12�2

+ c44l
2a��2 − ac44��2K = 
d44�

2L − Jc44�1

− l2�2��2M . �22d�

The Green’s functions are derived individually for the scalar
and solenoidal parts of the displacement and polarization
fields and then combined appropriately to obtain the final
results. Consider now a point force F applied parallel to the
x axis; then

F = ��r��1i. �23�

The scalar part � and the solenoidal part L of the point
force F, corresponding to Eq. �23� can be identified as

� = −
1

4�

�1�r−1� , �24a�

L =
1

4�

�0,�3�r−1�,− �2�r−1�� . �24b�

In order to determine the Green’s function corresponding
to the scalar part of the displacement 
 �see Eq. �21a��,
which we denote as fGin

�1�, we substitute Eq. �24a� into Eq.
�22a�. The external electric field is set to zero since presently
we are interested in the Green’s functions corresponding to a
point force. After carrying out the substitution, the resulting
equation can be readily solved in Fourier space for 
�q� and
inverted back into real space to yield fGin

�1� as

fGij
�1��x − x�� =

1

4�
�i� j�A�1�

R
−

B�1�R

2
+

C�1�

R
e−R/l1

+
D�1�

R
e−R/l2� , �25�

where R= 
x−x�
.
In the above equation l1 and l2 are new length scale pa-

rameters which are defined implicitly via the roots of the
equation below,

q4 +
b11c11 − �d11 − f11�2 + c11l�

2�a + �0
−1�

b11c11l�
2 q2 +

�a + �0
−1�

b11l�
2

= �q2 +
1

l1
2��q2 +

1

l2
2� . �26�

These roots must in general be evaluated numerically. The
coefficients A�1�, B�1�, C�1� and D�1� can be verified to be

B�1� = −
1

c11
, A�1� =

l�2

c11
−

�d11 − f11�2

c11
2 �a + �0

−1�

C�1� = −
1

c11l�
2

l1
4l2

2

l2
2 − l1

2 −
�a + �0

−1�
b11c11l�

2

l1
6l2

2

l1
2 − l2

2 , D�1� =

−
1

c11l�
2

l2
4l1

2

l1
2 − l2

2 −
�a + �0

−1�
b11c11l�

2

l2
6l1

2

l2
2 − l1

2 . �27�

By employing a procedure rather similar to the one used to
obtain fGin

�1�, the second part of the displacement Green’s
function, fGij

�2�, corresponding to the solenoidal part of the
displacement field ��H can be obtained as

fGij
2 =

1

4�
�ikl�ljm�k�m�1

2
E�1�R + F�1�I3 + G�1�I4� . �28�

In Eq. �28�, the symbol Ia is defined as follows:

Ia = la
2e−R/la − 1

R
�29�

The following relation defines the length scales l3 and l4 in a
manner similar to Eq. �26�:

��2�2 −
�b44 + b77�c44 − �d44 − f12�2 + c44l

2a

�b44 + b77�c44l
2 �2

+
a

�b44 + b77�l2��4H = ��2 −
1

l3
2���2 −

1

l4
2��4H .

�30�

The coefficients E�1�, F�1�, and G�1� in Eq. �28� are
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014110-6



E�1� =
1

c44
, F�1� =

−
1

l3
2 +

a

�b44 + b77�

l2c44� 1

l3
2�� 1

l3
2 −

1

l4
2� , G�1�

=

1

l4
2 −

a

�b44 + b77�

l2c44� 1

l4
2�� 1

l3
2 −

1

l4
2� . �31�

Combining the Green’s functions of Eqs. �25� and �28�,
the net displacement Green’s function fGij becomes

fGij =
1

4�
�i� j�A�1�

R
−

B�1�R

2
+

C�1�

R
e−R/l1 +

D�1�

R
e−R/l2�

+
1

4�
�ikl�ljm�k�m�1

2
E�1�R + F�1�I3 + G�1�I4� . �32�

This can be further simplified to

fGij =
1

4�
�i� j�A�1�

R
−

B�1�R

2
+

C�1�

R
e−R/l1 +

D�1�

R
e−R/l2�

+
1

4�
��ij�

2�1

2
E�1�R + F�1�I3 + G�1�I4� − �i� j�1

2
E�1�R

+ F�1�I3 + G�1�I4�� . �33�

It is interesting to link our results with those of Kleinert.40

We have seen that the inclusion of polarization-strain gradi-
ent, strain-polarization gradient, and polarization gradient-
polarization gradient couplings in our internal energy expres-
sion introduced four new length scales l1, l2, l3 and l4.
However, we originally had two length scales l� and l corre-
sponding to the purely elastic strain gradient effect. So, in
order to remove any contribution resulting from the polariza-
tion or its gradients from the energy expression one has to
substitute l1= l2= l� and l3= l4= l. With these substitutions, if
one proceeds to evaluate the Green’s function of Eq. �33�,
Kleinert’s strain gradient Green’s function for isotropic
elasticity40 is easily recovered. Since the coefficients C�1� and
D�1� now correspond to the same length scale l�, they can be
added together. Similarly, F�1� and G�1�, which correspond to
l, can be added together. The following relations can be eas-
ily derived using Eqs. �26� and �30�:

A�1� =
l�2

c11
, �34a�

B�1� = −
1

c11
, �34b�

C�1� + D�1� = −
l�2

c11
, �34c�

E�1� =
1

c44
, �34d�

F�1� + G�1� = −
1

c44
. �34e�

Substituting these relations into Eq. �33�, we obtain

fGij =
1

4��
� 1

R
�1 − e−R/l���ij −

1

4��
�i� j�R

2
+

l2

R
�1 − e−R/l��

+
1

4��2� + ��
�i� j�R

2
+

l�2

R
�1 − e−R/l��� . �35�

Equation �35� is precisely the Green’s function obtained
by Kleinert40 for strain gradient isotropic elasticity. A similar
reduction on the dielectric variables allows us to make con-
tact with the Green’s function developed30 for Mindlin’s
theory.

We suppress some details here as the displacement
Green’s function analysis given earlier may be essentially
repeated to obtain from Eqs. �22b� and �22d�, the Green’s
function f	ij for the induced polarization P due to a concen-
trated unit force at the origin:

f	ij =
1

4�
�i� j�A�2�

R
+

C�2�

R
e−R/l1 +

D�2�

R
e−R/l2�

+
1

4�
�ij�

2�F�2�I3 + G�2�I4� −
1

4�
�i� j�F�2�I3 + G�2�I4� .

�36�

The coefficients A�2�, C�2�, D�2�, F�2�, and G�2� are given as
follows:

A�2� =
d11 − f11

c11b11l�
2 l1

2l2
2, �37a�

C�2� =
d11 − f11

c11b11l�
2

l1
4l2

2

l2
2 − l1

2 , �37b�

D�2� =
d11 − f11

c11b11l�
2

l2
4l1

2

l1
2 − l2

2 , �37c�

F�2� =
d44 − f12

c44�b44 + b77�
l3
2l4

2

l2�l4
2 − l3

2�
= − G�2�. �37d�

From Eqs. �20c� and �36�, the Green’s function for the
Maxwell potential f�n can be written as

f�n =
1

4��0
�n�A�2�

R
+

C�2�

R
e−R/l1 +

D�2�

R
e−R/l2� . �38�

Again, the methodology to obtain the Green’s functions
	EGin , E	in , E�n
 corresponding to a point electric field is
very similar to that adopted for a point force; hence, for the
sake of brevity, we simply list here the following final re-
sults:
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4� · fGij = �i� j�A�1�

R
−

B�1�R

2
+

C�1�

R
e−R/l1 +

D�1�

R
e−R/l2�

+ �ij�
2�1

2
E�1�R + F�1�I3 + G�1�I4� − �i� j�1

2
E�1�R

+ F�1�I3 + G�1�I4� , �39a�

4� · f	ij = 4� · EGij = �i� j�A�2�

R
+

C�2�

R
e−R/l1 +

D�2�

R
e−R/l2�

+ �ij�
2�F�2�I3 + G�2�I4� − �i� j�F�2�I3 + G�2�I4� ,

�39b�

4��0 · f�n = �n�A�2�

R
+

C�2�

R
e−R/l1 +

D�2�

R
e−R/l2� , �39c�

4� · E	ij = �i� j�A�3�

R
+

C�3�

R
e−R/l1 +

D�3�

R
e−R/l2� + �ij�

2�F�3�I3

+ G�3�I4� − �i� j�F�3�I3 + G�3�I4� , �39d�

4��0 · E�n = �n�A�3�

R
+

C�3�

R
e−R/l1 +

D�3�

R
e−R/l2� . �39e�

The coefficients A�3�, C�3�, D�3�, F�3�, and G�3� introduced
in the Eqs. �39d� and �39e� are

A�3� = −
l1
2l2

2

b11l�
2 , �40a�

C�3� = −
1

b11l�
2

l1
4l2

2

l2
2 − l1

2 +
l2
2l1

2

b11�l2
2 − l1

2�
, �40b�

D�3� = −
1

b11l�
2

l2
4l1

2

l1
2 − l2

2 +
l2
2l1

2

b11�l1
2 − l2

2�
, �40c�

F�3� =
1

�b44 + b77�
�1/l2� − �1/l3

2�
�1/l3

2� − �1/l4
2�

= − G�3�. �40d�

f	ij is equal to EGij, which is no surprise. By employing
an analogue of the classical Betti’s reciprocal theorem for
elastic dielectrics, this equality can be rigorously proved.43

Further, we note that the positive definiteness requirement
of the energy density functional9 forces the material length
scale constants l1, l2, l3, and l4 introduced in our theory to
obey the following constraining relations:

l1
2 + l2

2 � l�2, l3
2 + l4

2 � l2. �41�

IV. THE GENERAL EMBEDDED INCLUSION
PROBLEM

Consider an arbitrary shaped inclusion with a prescribed
stress-free transformation strain �* in its domain ���, located
in an infinite isotropic medium �D�. In various physical prob-

lems, the transformation strain can represent thermal mis-
match, lattice mismatch, phase transformation, and other in-
elastic transformations. Following Eshelby’s33 well-known
formalism, the constitutive laws of Eqs. �16a�–�16d� assume
the following form in the absence of external body force and
electric field:

tij = �c12�ij�ps + 2c44�ip� js���ps − �ps
* � + �d12�ij�ps + d44��is� jp

+ � js�ip��Pp,s, �42a�

tijm,m = ��c12 + 2c44�l�2�2�ij�ps + c44l
2�2��is� jp − � js�ip���up,s

− �ps
* � + �f12�pi� js + f44��ps� ji + �is� jp��Pp,s, �42b�

Eij = �d12�ij�ps + d44��is� jp + � js�ip���up,s − �ps
* � + �b12�ij�ps

+ �b44 + b77��is� jp + �b44 − b77�� js�ip�Pp,s, �42c�

Ei = − 	aPi + �f12�ij�ps + f44��is� jp + � js�ip���uj,ps − � jp,s
* �
 .

�42d�

In Eqs. �42a�–�42d�, � is the total strain compatible with
Eq. �4�. Substituting, Eqs. �42a�–�42d� in the balance laws
for the problem given by Eqs. �11�, we obtain

Cijuj + DijPj = �c12�ij�ps + 2c44�ip� js��ps,j
* − ��c12

+ 2c44�l�2�2�ij�ps + c44l
2�2��is� jp

− � js�ip���ps,j
* , �43a�

Dijuj + BijPj − �,i = ��d12 − f44��ij�ps + �d44 − f44��is� jp + �d44

− f12�� js�ip��ps,j
* . �43b�

Comparing Eqs. �43� with Eqs. �18�, we can immediately
see that the terms on its right-hand side of Eqs. �43a� and
�43b� act like a fictitious body force and electric field respec-
tively. The displacement field ui�x� due to this body force
and electric field can be easily written with the help of the
Green’s functions that we derived in Sec. III.

ui�x� = −� fGij�x − x���c12� jl�mn + 2c44� jm�ln − �c12

+ 2c44�l�2�2�lj�mn − c44l
2�2�� jn�lm

− �ln� jm���mn,l
* �x��dx� −� EGij�x − x����d12

− f44�� jl�mn + �2d44 − f12 − f44�� jm�ln��mn,l
* �x��dx�.

�44�

The polarization field Pi�x� follows in a similar manner.

Pi�x� = −� f	ij�x − x���c12� jl�mn + 2c44� jm�ln − �c12

+ 2c44�l�2�2�lj�mn − c44l
2�2�� jn�lm

− �ln� jm���mn,l
* �x��dx� −� E	ij�x − x����d12
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− f44�� jl�mn + �2d44 − f12 − f44�� jm�ln��mn,l
* �x��dx�.

�45�

Integrating Eqs. �44� and �45� by parts and assuming that
the boundary terms vanish, we have

ui�x� = −� �c12� jl�mn + 2c44� jm�ln − �c12 + 2c44�l�2�2�lj�mn

− c44l
2�2�� jn�lm − �ln� jm���mn

* �x�� fGij,l�x − x��dx�

−� ��d12 − f44�� jl�mn + �2d44 − f12

− f44�� jm�ln��mn
* �x��EGij,l�x − x��dx�, �46a�

Pi�x� = −� �c12� jl�mn + 2c44� jm�ln − �c12 + 2c44�l�2�2�lj�mn

− c44l
2�2�� jn�lm − �ln� jm���mn

* �x�� f	ij,l�x − x��dx�

−� ��d12 − f44�� jl�mn + �2d44 − f12

− f44�� jm�ln��mn
* �x��E	ij,l�x − x��dx�. �46b�

In the spirit of Eshelby’s formalism, given a uniform
transformation strain, the displacement field ui�x� and the
polarization field Pi�x�, can be cast in terms of certain po-
tentials ��x� ,
�x� and Ma�x�:

ui�x� = − �c12�mm
* � jl + 2c44� jl

* � · ��A�1��,ijl −
B�1�

2

,ijl

+ C�1�M ,ijl
1 + D�1�M ,ijl

2 � + �ij�E�1��,l + F�1�M ,l
3

+ G�1�M ,l
4� − �E�1�

2

,ijl − �F�1�l3

2 + G�1�l4
2��,ijl

+ F�1�l3
2M ,ijl

3 + G�1�l4
2M ,ijl

4 �� − ��d12 − f44��mm
* � jl

+ �2d44 − f12 − f44�� jl
* � · ��A�2��,ijl + C�2�M ,ijl

1

+ D�2�M ,ijl
2 � + �ij�F�2�M ,l

3 + G�2�M ,l
4� − �F�2�l3

2M ,ijl
3

+ G�2�l4
2M ,ijl

4 − �F�2�l3
2 + G�2�l4

2��,ijl�� . �47�

Pi�x� = − �c12�mm
* � jl + 2c44� jl

* � · ��A�2��,ijl + C�2�M ,ijl
1

+ D�2�M ,ijl
2 � + �ij�F�2�M ,l

3 + G�2�M ,l
4� − �F�2�l3

2M ,ijl
3

+ G�2�l4
2M ,ijl

4 � + �F�2�l3
2 + G�2�l4

2��,ijl� − ��d12

− f44��mm
* � jl + �2d44 − f12 − f44�� jl

* � · ��A�3��,ijl

+ C�3�M ,ijl
1 + D�3�M ,ijl

2 � + �ij�F�3�M ,l
3 + G�3�M ,l

4�

− F�3�l3
2M ,ijl

3 + G�3�l4
2M ,ijl

4 + �F�3�l3
2 + G�3�l4

2��,ijl� .

�48�

The potentials ��x� and 
�x� are the harmonic and bihar-
monic potentials while Ma�x� is the so-called Yukawa poten-
tial. These potentials are defined below as

��x� =
1

4�
�

�

1

R
dx�, �49a�


�x� =
1

4�
�

�

Rdx�, �49b�

Ma�x� =
1

4�
�

�

e−R/la

R
dx�. �49c�

R is 
x−x�
. The classical part of the displacement field of
Eq. �46a� and �46b� can be identified as

− �c12�mm
* � jl + 2c44� jl

* ��−
B�1�

2

,ijl + �ijE

�1��,l −
E�1�

2

,ijl� .

�50�

On the other hand, the expression for the polarization Eq.
�47� has no classical counterpart since the material is isotro-
pic and hence nonpiezoelectric.

The total strain � can then be written from Eq. �47� and
Eq. �4� as

�ik�x� = − �c12�mm
* � jl + 2c44� jl

* � · ��A�1��,ijlk −
B�1�

2

,ijlk

+ C�1�M ,ijlk
1 + D�1�M ,ijlk

2 �
+

�ij�E�1��,lk + F�1�M ,lk
3 + G�1�M ,lk

4 �
2

+
�kj�E�1��,li + F�1�M ,li

3 + G�1�M ,li
4 �

2
− �E�1�

2

,ijlk

+ F�1�l3
2M ,ijlk

3 + G�1�l4
2M ,ijlk

4 − �F�1�l3
2 + G�1�l4

2��,ijlk��
− ��d12 − f44��mm

* � jl + �2d44 − f12

− f44�� jl
* � · ��A�2��,ijlk + C�2�M ,ijlk

1 + D�2�M ,ijlk
2 �

+
�ij�F�2�M ,lk

3 + G�2�M ,lk
4 �

2
+

�kj�F�2�M ,li
3 + G�2�M ,li

4 �
2

− �F�2�l3
2M ,ijlk

3 + G�2�l4
2M ,ijlk

4 − �F�2�l3
2 + G�2�l4

2��,ijlk�� .

�51�

The trace of the strain �dilatation�, which is of frequent
physical interest, can be expressed as

tr�� jl� = − �c12�mm
* � jl + 2c44� jl

* � · ��A�1��,jlmm −
B�1�

2

,jlmm

+ C�1�M ,jlmm
1 + D�1�M ,jlmm

2 � + �E�1��,jl + F�1�M ,jl
3

+ G�1�M ,jl
4 � − �E�1�

2

,jlmm + F�1�l3

2M ,jlmm
3
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+ G�1�l4
2M ,jlmm

4 − �F�1�l3
2 + G�1�l4

2��,jlmm�� − ��d12

− f44��mm
* � jl + �2d44 − f12 − f44�� jl

* � . ��A�2��,jlmm

+ C�2�M ,jlmm
1 + D�2�M ,jlmm

2 � + �F�2�M ,jl
3 + G�2�M ,jl

4 �

− �F�2�l3
2M ,jlmm

3 + G�2�l4
2M ,jlmm

4 − �F�2�l3
2

+ G�2�l4
2��,jlmm�� . �52�

V. EXPLICIT RESULTS FOR SPHERICAL AND
CYLINDRICAL INCLUSIONS

Our results in the preceding section are quite general but
lead to rather cumbersome expressions �albeit closed form�
even for the highly symmetrical spherical and cylindrical
shapes. In the present section, we restrict our presentation to
dilatational transformation strains as �relatively speaking�
simple and elegant expressions can be derived for this case.
We hasten to point out though that the derived expressions in
the preceding and present section can be used, with only
minor algebra, to deduce the results for other types of trans-
formation strains such as shear. We do not present those for
the sake of brevity. Indeed, for several problems of techno-
logical interest �i.e., lattice mismatched quantum dots, ther-
mal inclusions�, the mismatch is dilatational in nature.

Consider a spherical inclusion of radius a with a domain
� embedded in an infinite matrix containing a constant dila-
tational transformation strain. Our results in the previous sec-
tion for the strain and the polarization fields were cast in
terms of three potentials, the harmonic potential ��x�, the
biharmonic potential 
�x�, and the Yukawa potential Ma�x�.
For the spherical shape, closed form expressions exist for
these potentials.44–46

The potentials due to the spherical inclusion for points
inside it, i.e., R��, are


�R� = −
1

60
�R4 − 10a2R2 − 5a4� , �53a�

��R� = −
1

6
�R2 − 3a2� , �53b�

Ma�R� = la
2 − la

2�la + a�ea/la
sh�R/la�

R
. �53c�

For points outside the inclusion, i.e., R��, the potentials
become


�R� =
a3

15
�5R +

a2

R
� , �54a�

��R� =
a3

3R
, �54b�

Ma�R� = la
2�a · ch�a/la� − la . sh�a/la��

e−R/la

R
. �54c�

A constant dilatational transformation strain can be ex-
pressed as

�ij
* = �*�ij �55�

Substituting Eq. �55� in Eq. �52�, and with the aid of the
potentials defined in Eqs. �53a�–�53c�, we arrive at the fol-
lowing expression for the trace of strain at a point inside the
inclusion �R���:

tr�� jl� = �3c12 + 2c44��* · �− B�1� + C�1� l1 + a

l1
2 e−a/l1

sh�R/l1�
R

+ D�1� l2 + a

l2
2 e−a/l2

sh�R/l2�
R

� + �3�d12 − f12� + 2�d44

− f44���* · �C�2� l1 + a

l1
2 e−a/l1

sh�R/l1�
R

+ D�2� l2 + a

l2
2 e−a/l2

sh�R/l2�
R

� . �56�

The trace of the strain for points outside the inclusion
�R��� can also be obtained from Eqs. �52� and �54a�–�54c�,

tr�� jl� = �3c12 + 2c44��* · �C�1�a · ch�a/l1� − l1 · sh�a/l1�
l1
2

e−R/l1

R

+ D�1�a . ch�a/l2� − l2 · sh�a/l2�
l2
2

e−R/l2

R
� + �3�d12 − f12�

+ 2�d44

− f44���* · �C�2�a · ch�a/l1� − l1 . sh�a/l1�
l1
2

e−R/l1

R

+ D�2�a · ch�a/l2� − l2 · sh�a/l2�
l2
2

e−R/l2

R
� . �57�

If we neglect both the flexoelectric and purely nonlocal
elastic gradient effects, then the dilatation reduces to the
well-known result in classical elasticity,33

tr�� jl� = �3c12 + 2c44

c12 + 2c44
�* R � �

0 R � �
� �58�

The dilatational strain results from Eqs. �56� and �57�
have been plotted after suitable normalization for various
inclusion sizes as a function of position in Fig. 3. The loca-
tion R=a indicates the boundary of the spherical inclusion.
We note that our results are clearly size dependent. Unlike
the classical solution, which predicts that the dilatation is
constant inside the inclusion and zero outside, our solution is
inhomogeneous within the inclusion and converges asymp-
totically to classical elasticity for large inclusion sizes.

Another point worth mentioning is that the dilatation of
strain solely depends upon the strain gradient length scale l�
and associated length scales of l1 and l2. There is no depen-
dence on l or the associated length scales of l3 and l4. This is
due to the fact that the length scale parameter l �and thereby
l3 and l4� is physically associated with couple stresses or
gradients of the rotation vector. For inclusion sizes beyond
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ten times the purely elastic characteristic length scale, the
flexoelectric solution is fairly close to the classical one ex-
cept at points very close to the interface. We note in passing
that, as expected, the sharp interface of the inclusion-matrix
becomes “diffuse.”

To explicitly display the size dependency of our solution,
we also plot �Fig. 4� the dilatation as a function of size for
two fixed positions. Evidently �and hardly surprisingly�, the
flexoelectric and nonlocal effects are more predominant
close to the interface and are much smaller at the center of
the inclusion.

From Eq. �48�, the polarization Pi for an inclusion can be
written as

Pi�x� = − �3c12 + 2c44��* · �i�A�2��,kk + C�2�M ,kk
1 + D�2�M ,kk

2 �

− �3�d12 − f12� + 2�d44 − f44���* · �i�A�3��,kk

+ C�3�M ,kk
1 + D�3�M ,kk

2 � . �59�

Substituting the potentials from Eqs. �53a�–�53c�, the po-
larization for interior points �
x
=R��� becomes

Pi�x� = �3c12 + 2c44��* · �i�C�2�e
−a/l1�a + l1� . sh�R/l1�

R

+ D�2�e
−a/l2�a + l2� · sh�R/l2�

R
� + �3�d12 − f12� + 2�d44

− f44���* · �i�C�3�e
−a/l1�a + l1� · sh�R/l1�

R

+ D�3�e
−a/l2�a + l2� · sh�R/l2�

R
� . �60�

For exterior points �R���, from Eqs. �54a�–�54c�, the
polarization is

Pi�x� = − �3c12 + 2c44��* · �i�C�2�e
−R/l1

R
�a

1 + D�2�e
−R/l2

R
�a

2�
+ �3�d12 − f12� + 2�d44 − f44���* · �i�C�3�e

−R/l1

R
�a

1

+ D�3�e
−R/l2

R
�a

2� , �61a�

�a
i = a · ch�a/li� − li · sh�a/li� . �61b�

The magnitude of the polarization field P�x� for interior
points may be written �R��� as:

P�x� = �3c12 + 2c44��* · �C�2�e
−a/l1�a + l1��R

1

R2l1

+ D�2�e
−a/l2�a + l2��R

2

R2l2
� + �3�d12 − f12� + 2�d44

− f44���* · �C�3�e
−a/l1�a + l1��R

1

R2l1

+ D�3�e
−a/l2�a + l2��R

2

R2l2
� . �62�

Likewise, for exterior points �R���, the magnitude is:

P�x� = �3c12 + 2c44��* · �C�2�e
−R/l1�R + l1��a

1

R2l1

+ D�2�e
−R/l2�R + l2��a

2

R2l2
� + �3�d12 − f12� + 2�d44

− f44���* · �C�3�e
−a/l1�a + l1��a

1

R2l1

+ D�3�e
−a/l2�a + l2��a

2

R2l2
� . �63�

Figure 5 shows the variation of the magnitude of polar-
ization with position for various inclusion sizes.

Figure 5 is a dramatic result. The materials are nonpiezo-
electric and yet, due to the presence of strain gradients, there
exists a finite polarization in and around the inclusion. At
positions far away from the inclusion, the polarization

FIG. 3. Normalized strain dilatation as a function of position �R�
and inclusion size �a� for a spherical inclusion.

FIG. 4. Dilatational strain as a function of size �a� for fixed
position �r� inside a spherical inclusion.
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asymptotically tends to zero as it should. There are some
subtle effects that need to be discussed with regards to the
electric fields in inclusions due to the flexoelectric effect. For
a more visually appealing interpretation, the reader is re-
ferred to Fig. 6 where we contour plot the electric fields at
different positions as a function of size and material property
combinations �i.e., different combination of the characteristic
lengths�. Darker regions indicate low polarization while
lighter shade indicates a higher concentration.

One may intuitively expect that electric fields disappear
for “large” inclusions sizes. This is correct, as borne out by
both Figs. 5 and 6, except at the interface where electric
fields persist regardless of size. However, as the size in-
creases, the electric field becomes increasingly localized in
thinner and thinner layers at the interface. Interestingly, the
electric fields for a given location reach a maximum for

some size that depends on the characteristic length scales.
The plots in the second row of Fig. 6 are for a constant size
and show a rich interplay between the characteristic length
scales. This is consistent with the one-dimensional solutions6

for simple layered structures �in the context of Mindlin’s
restricted reverse flexoelectric theory�. It should, however, be
pointed out that no physical meaning may be attached to the
magnitudes of the electric fields for the plots in the second
row of Fig. 6 since we are comparing normalized values for
different materials �characterized by different values of the
length scale parameters�. To be more concrete, we choose
InAs-GaAs as an example inclusion-matrix system. Both are
important quantum dot materials and subject to a large lattice
mismatch-induced dilatational transformation mismatch
strain �6.7%. For our estimates, we ignore the elastic modu-
lus difference between these two materials.47 Some of the
material properties used for our estimates �including the cal-
culated characteristic length scales� are listed in Ref. 48. We
then find that for an inclusion size of 10 �m, the electric
field at the interface is �750 kV/m which, qualitatively con-
sistent with Figs. 5 and 6, drops to �1.33% closer to the
center �a /10�. The electric fields penetrate well beyond the
interface for smaller sizes and for a size of 5 nm, the drop to
a radial location of a /10 is nearly 11% of the value at the
interface and numerically nearly thrice as that for 10 �m at
the same location.

Consider now an infinitely long cylindrical inclusion oc-
cupying radius a with domain � embedded inside an infinite
isotropic medium with a constant dilatational transformation
strain, �*. For a cylindrical inclusion the Yukawa potential
M�a� is given as43

FIG. 5. Magnitude of polarization as a function of position �R�
and inclusion size �a� for a spherical inclusion.

FIG. 6. Normalized contour
plots of the electric fields around
the spherical inclusion for differ-
ent sizes and characteristic length
scales.

MARANGANTI, SHARMA, AND SHARMA PHYSICAL REVIEW B 74, 014110 �2006�

014110-12



Ma�R� = �laR · �I1�R

la
�K0�R

la
� + K1�R

la
�I0�R

la
��

− laa · K1� a

la
�I0�R

la
� R � �� , �64a�

Ma�R� = �laa · I1�R

la
�K0�R

la
� R � �� . �64b�

Substituting the potentials from Eq. �64a� into Eq. �52�,
the dilatation of strain at a point inside the cylindrical inclu-
sion �R��� can be expressed as

tr�� jl� = �3c12 + 2c44��* · � 1

c11
+ C�1��a . I0�R/l1�K1�a/l1�

l1
3 �

+ D�1��a · I0�R/l2�K1�a/l2�
l2
3 �� + �3�d12 − f12� + 2�d44

− f44���* · �C�2��a . I0�R/l1�K1�a/l1�
l1
3 � + D�2�

��a · I0�R/l2�K1�a/l2�
l2
3 �� . �65�

For a point outside the inclusion �R���, the trace of
strain is

tr�� jl� = �3c12 + 2c44��* · �C�1��a · I1�a/l1�K0�R/l1�
l1
3 � + D�1�

��a · I1�a/l2�K0�R/l2�
l2
3 �� + �3�d12 − f12� + 2�d44

− f44���* · �C�2��a · I1�a/l1�K0�R/l1�
l1
3 � + D�2�

��a · I1�a/l2�K0�R/l2�
l2
3 �� . �66�

The polarization Pi for a point inside the inclusion �R
��� can also be as

Pi�x� = �3c12 + 2c44��* · �i�C�2�a · I0�R/l1�K1�a/l1�
l1

+ D�2�a · I0�R/l2�K1�a/l2�
l2

� + �3�d12 − f12� + 2�d44

− f44���* · �i�C�3�a . I0�R/l1�K1�a/l1�
l1

+ D�3�a · I0�R/l2�K1�a/l2�
l2

� . �67�

For a point outside the inclusion �R���, the polarization
becomes:

Pi�x� = �3c12 + 2c44��* · �i�C�2�a · I1�a/l1�K1�R/l1�
l1

+ D�2�a · I1�a/l2�K0�R/l2�
l2

� + �3�d12 − f12� + 2�d44

− f44���* · �i�C�3�a . I1�a/l1�K0�R/l1�
l1

+ D�3�a · I1�a/l2�K1�R/l2�
l2

� . �68�

The plots of the trace of strain and the magnitude of the
polarization for a cylindrical inclusion are qualitatively very
similar to those for a spherical inclusion and hence have not
been presented.

VI. SUMMARY

In summary, we discuss a theoretical framework that al-
lows us to phenomenologically describe the observation of
size-dependent electromechanical coupling due to strain or
polarization gradients for nonpiezoelectric dielectrics. In
such a “flexoelectric medium,” we have derived the Green’s
functions or fundamental solutions for the governing equa-
tions. Anticipating that purely elastic nonlocal size effects
may also be important at the nanoscale, those too are incor-
porated in our framework.49 Employing the developed
Green’s functions, we present the solutions to Eshelby’s
transforming inclusion problem and provide explicit analyti-
cal expressions for the spherical and cylindrical shape.

We anticipate several applications of the present work,
such as in the study of buried quantum dots. High electric
fields may penetrate well within nanosize inclusions or per-
sist close to interfaces even for micron-sized ones. Thus, the
former may indicate possible applications in band structure
tuning of embedded lattice mismatched quantum dots. Al-
though simple lattice dynamical models may be employed to
evaluate flexoelectric properties,28 a direct calculation using
the Berry phase approach50 is desirable especially for the
technologically important semiconductor quantum dot mate-
rials.
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