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Based on exact diagonalization and density matrix renormalization group method, we show that an aniso-
tropic triangular lattice Heisenberg spin model has three distinct quantum phases. In particular, a spin-liquid
phase is present in the weak interchain coupling regime, which is characterized by an anisotropic spin structure
factor with an exponential-decay spin correlator along the weaker coupling direction, consistent with the
Cs2CuCl4 compounds. In the obtained phase diagram, the spin-liquid phase is found to persist up to a relatively
large critical anisotropic coupling ratio J� /J=0.78, which is stabilized by strong quantum fluctuations, with a
parity symmetry distinct from two magnetic ordered states in the stronger coupling regime.
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Two-dimensional �2D� frustrated spin systems have at-
tracted intensive studies as they may exhibit unconventional
magnetic properties.1–4 The isotropic spin-1 /2 Heisenberg
antiferromagnet �HAFM� on a triangular lattice was a candi-
date for the realization of a disordered spin-liquid phase,1 but
it turns out to exhibit a three-sublattice antiferromagnetic-
long-range-order �AFLRO� as established by analytic5–8

and numerical5,9,10 studies. Among various spin models, a
spin-liquid phase has been established for more geometri-
cally frustrated systems on the Kagome lattice,11,12 dimer
models,13 and models involving four spin exchange terms.14

The Heisenberg models on the square lattice with third-
nearest-neighbor couplings may also have a spin-liquid
ground state as revealed by recent numerical studies based
on density matrix renormalization group �DMRG�
calculations.15

From the experimental point of view, the HAFM on an
anisotropic triangular lattice is particularly interesting as it is
directly relevant to the quantum magnet in the Cs2CuCl4
compounds,16–18 which may be described by a minimal
model at half-filling �Ref. 19�:

H = J�
�i,j�

Si · S j + J� �
��i,j��

Si · S j . �1�

Here Si are spin-1 /2 operators, and J, J��0 are the nearest-
neighbor couplings along the chain �J� and the other two
axes �J�� between different chains on a triangular lattice.

Based on the variational Monte Carlo �VMC� method, a
resonating valence bond �RVB� wave function was previ-
ously proposed19 to describe the low-lying anisotropic spin
excitation observed experimentally16–18 in these systems,
which suggests a gapless spin-liquid state. The model has
also been studied by different analytic approaches such as
spin wave theory �SWT�,6 large-S expansion,8 as well as the
series expansion.20,21 These works have predicted magnetic
ordered states at J��0.3J±0.03J side, while the magnetic
order vanishes on the smaller J� side suggesting a disordered
phase. The recent series expansion study by Zheng et al.21

has further indicated that quantum renormalizations strongly
enhance the one dimensionality of the spectra, which implies

that a more accurate description of quantum effects is
needed. Thus exact calculations with taking into account all
the quantum fluctuations are highly desirable in order to fur-
ther establish of existence of the spin-liquid phase, properly
determine the quantum phase diagram as well as the nature
of quantum phase transitions.

In this paper, we present a systematic numerical study of
the magnetic phase diagram of the HAFM model in the spa-
tially anisotropic triangular lattice at zero temperature by us-
ing exact diagonalization �ED� and DMRG methods. The
main results are shown in Fig. 1, where three quantum
phases are found with very distinctive magnetic structure
factors. At small J� /J, the ground state is a disordered spin-
liquid state, which smoothly connects to one-dimensional
�1D� decoupled spin chains in the limit of J�→0. The long
range three-sublattice spiral Néel ordered phase occurs at an
intermediate J� /J�1, and then a collinear Néel ordered
phase appears beyond a larger J� /J. In particular, we find
that the regime of the spin-liquid phase extends over to a
critical value, Jc1� /J=0.78±0.05, which is significantly larger
than the one for magnetic disorder phase determined by pre-

FIG. 1. �Color online� The static structure factor for N=6�6
site at different coupling strengths: �a� J� /J=0.6; �b� J� /J=1; �c�
J� /J=1.3. �d� and �e� are the phase diagrams obtained from the ED
in the present work and the linear SWT �Ref. 6�, respectively.
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vious theoretical approaches.6,8,20 Such a phase boundary has
been reliably identified by a vanishing first excitation energy,
coinciding with the change of the ground state symmetry. By
further performing a DMRG calculation22–24 with periodic
boundary condition �PBC�,25 we are able to establish an ex-
ponential decay of the equal-time spin correlation function
between different chains, a hallmark for the 2D spin-liquid
phase.26

Specifically, we consider a finite size system on the torus
with length vectors L1=N1a1 and L2=N2a2 connecting iden-
tical sites �i.e., a PBC system�. Here a1 and a2 �a1= �1,0�,
a2= �1/2 ,�3/2� in real space	 are two primitive vectors of
the triangular lattice. The coupling strength along a1 is J and
along both a2 and a3=a2−a1 is J�. The total number of sites
is N=N1�N2. The ground state is determined by a Lanczos
diagonalization of the Hamiltonian using all symmetries9,27

for system sizes up to N=36 �corresponding to a Hilbert
space of a dimension NH=630 928 37�. On the other hand,
the DMRG method23,24 allows us to extend the exact calcu-
lation to larger systems up to N=8�18 sites �i.e., 8-legs�.25

We first present the structure factor �SF� of the statistic
spin correlation S�Q�=�ije

iQ·�Ri−Rj��Sj
zSi

z� /N in Fig. 1 for a
system of 6�6 sites at J�=0.6J, J�=J, and J�=1.3J, respec-
tively. For the smallest J� �shown in Fig. 1�a�	, S�Q� is
peaked along the lines nx= ±3, corresponding to magnetic
wave vectors Qx= ±�, while it only shows a slight depen-
dence on ny �the components of n used here are related to the
wave vectors Q by Qx=2�nx /N1 and Qy =4��nx /2N1

+ny /N2� /�3	. This is a typical feature of weakly coupled
spin chains with strong antiferromagnetic spin correlations
within each chain, whereas the correlations between the
chains are short ranged �see also Fig. 3 below�. As J� is
increased towards the isotropic point J�=J �shown in Fig.
1�b�	, S�Q� is qualitatively changed with the peaks moving
to n= ± �4,−2�, corresponding to wave vectors Q
= ± �4� /3 ,0� which represents the three-sublattice �spiral�
Néel state, in agreement with the AFLRO ground state for
the isotropic triangular lattice.8,10,27 In the region of 0.78
�J��1.15, besides the major peaks at n= ± �4,−2�, there
are also minor peaks at n= �0, ±3� as well, which may indi-
cate the incommensurate spin correlation in this region.
When J� is further increased to J� /J=1.3 �shown in Fig.
1�c�	, the peaks of S�Q� move to n= �0, ±3� or Q
= �0, ±2� /�3�, which are exactly the ordering vectors for a
long-range collinear Néel order along both a2 and a3 axes.

Thus we have seen that when the anisotropy parameter
J� /J varies from 0 to 2, the ground states exhibit three dis-
tinct phases with the SF structures dramatically different
from each other. The corresponding phase diagram is given
in Fig. 1�d�, where two critical points Jc1� /J=0.78±0.05 and
Jc2� /J=1.15±0.1 separate the spin disordered phase from the
left side �the small J� regime�, the spiral Néel ordered phase
in the middle, and the collinear Néel ordered phase on the
right side �the large J� regime�, respectively.

As J� /J crosses the phase boundaries in Fig. 1�d�, not
only the characteristic SF changes, but the low energy spec-
trum also qualitatively changes. In Fig. 2, �E as the energy
difference �per site� between the first excited state E1 and the
ground state E0 is plotted as a function of J� /J for three

different system sizes: N=6�4, 8�4, and 6�6. As J� /J is
increased from the weak side, �E decreases monotonically.
Remarkably, at the critical Jc1� , �E vanishes exactly where
the ground state and the first excited state crosses each other.
As a matter of a fact, the parity symmetry �the reflection
along a symmetric axis of the systems� for the ground state
also undergoes a change, from the odd parity at J��Jc1� to
the even one at J��Jc1� . The vanishing �E at finite N’s and a
discrete symmetry change suggest a first-order phase transi-
tion occurring at Jc1� . Here it is noted that the qualitative
behavior of the SF as a function of J� is independent of the
system sizes in the ED calculation �with N=24–36� and the
phase boundary for the spin liquid phase shown in Fig. 2 do
not change much when N is changed, both suggesting a weak
finite-size effect in our calculation. When J� /J is further in-
creased to around Jc2� =1.15±0.1, �E reaches to an another
minimum with a finite but very small value ��E

�0.0015±0.0005�J	. Together with the observation in a
drastic change in the SF around this point, it indicates that
the system undergoes another phase transition from the spiral
Néel state to the collinear Néel ordered phase. It could be a
continuous transition, and �E is expected to vanish in the
thermodynamic limit N→�.

One of the most interesting features of the phase diagram
determined by the ED in Fig. 1�d� is that the regime of the
spin-liquid phase on the small J� side persists up to Jc1�
�0.78J, which is much larger than �0.3J obtained by the
linear SWT �Ref. 6� shown in Fig. 1�e�. This difference may
be attributed to the importance of quantum fluctuations21 in
the model, which could have been underestimated in the lin-
ear SWT approach. We have carried out a standard SWT
calculation by taking into account the magnon scattering and
the geometrical frustration7,9 up to the second order. Our
result shows that the boundary of the disordered region in-
deed moves up to Jc1� =0.39J from the linear SWT Jc1�
=0.27J. The upper boundary of the spiral ordered state is
around J� /J�1.15, which is close to the one obtained by
series expansion in Ref. 20, while both series expansion and
spin wave theory suggest that spin disordered state may sur-
vive in a region or at a point between spiral state and colinear
state.6 However, we are not able to directly check this con-
jecture due to the limited system size, although the fast
change of SF within a small region 1.15	J� /J	1.2 might
indicate the existence of a disordered state.20

FIG. 2. The excitation energy �E= �E1−E0� /N, for system sizes
6�6 ���, 8�4 ���, and 6�4 ���, in units of J.
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To check the possibility of realizing an incommensurate
spiral ordered state disfavored by PBC in a small system, we
carry out the calculation with a twisted boundary condition
�TBC� Sri+L


=Rz�Q ·L
�Sri
11,27 �
=1,2�, with Q being the

classic magnetic wave vector and Rz being the spin-rotation
operator. It is found that in the region of Jc1� �J��Jc2� , the
ground state energy of E0 with TBC is slightly lower than the
one with PBC �for 24–36 sites systems�. Once J� goes be-
yond this region, PBC always gives smaller ground state
energy. Moreover, in the spiral ordered region �Jc1� ,Jc2� �, the
ground state energy from the ED method is close to that
obtained by the series expansion E0�SE�,20 which may be
numerically accurate if suitable expansion states are chosen.
However, outside this region, E0 from ED is systematically
lower than the energy E0�SE� with spiral order, which indi-
cates that the spiral ordered state may not be stable outside
the region of �Jc1� ,Jc2� �.

To further examine the magnetic characterization of the
spin-liquid phase, we have also performed the DMRG calcu-
lation for larger system sizes. In particular, our DMRG code
works with PBC �Ref. 24�, which can reproduce all the ED
results for N	36 systems and extend the study up to a sys-
tem size of 8�18. The system is setup as four blocks with
replacing the single-site block in standard DMRG by a block
of N1 /2 sites.25 In the insets of Fig. 3, we present the relative

error of the ground state energy �=
E0�m�−E0

E0
as a function of

state number m kept in the main block in the DMRG calcu-
lation for 6�6 system. Here E0 are the ground state energy
from the ED calculation. By keeping up to m=500, we ob-
tain an accuracy lower than �=1.4�10−5 for the PBC sys-
tem. For a longer length system, by extrapolating the E0�m�
to large m limit to obtain an estimate of the ground state
energy to serve as E0 �where no exact results exist�, we
found that the error bar remains around 10−5 for all six-leg
systems and around 10−4 for eight-leg systems as long as we
keep m up to 800 with a discarded density matrix weight
around 10−6. We have also applied the standard DMRG
method23 by keeping m=1500 states �with adding a single
site to each block� and the same ground state energies with a
similar error bar were obtained for both six-leg and eight-leg
systems.

In Fig. 3, we present the spin correlation function C�y�
= �S0

zSya2

z � as a function of the distance between two sites
along the a2 axis �weaker coupling direction�. In Fig. 3�a� for
J�=0.6J, one first notices that the data from the ED on a 6
�6 lattice agrees quite well with the DMRG results for
larger system sizes �N=6�18 and 8�18�. �C�y�� decreases
by about six orders of magnitude as y increases, following an
exponential-decay law which can be well fitted by the dashed
line: �C�y���e−y/0.544 at y�L2 /2. As our system is on a torus
�PBC�, �C�y�� turns back when y exceeds the half of L2. In
Fig. 3�b�, �C�y�� at a weaker J�=0.3J is shown, which exhib-
its similar behavior, except that the exponential-decay corre-
lation length has been reduced from 0.544 to 0.418. On the
other hand, along the chain direction �a1�, we have found
that C�x� follows a power-law behavior at small J�, consis-
tent with the one-dimensional peaks in the SF shown in Fig.
1�a�. The remarkable similarity in the spin correlator be-

tween J�=0.6J and J�=0.3J further supports the ED phase
diagram where spin-liquid phase is extended to a large criti-
cal Jc1� = �0.78±0.05�J. However, we point out that we cannot
exclude the possibility of the system developing an ex-
tremely small magnetic order or breaking lattice symmetry in
the thermodynamic limit, which may not be revealed by
finite-size calculations.

In conclusion, we have performed the ED and DMRG
calculations of the HAFM on an anisotropic triangular lat-
tice. We have demonstrated that the ground states of this
system vary from the disordered spin-liquid state to a spiral
ordered state, and then to a collinear Néel ordered state,
when the anisotropic parameter J� /J is continuously in-
creased. From the characteristic features of the spin structure
factor, the first excitation energy, as well as the exponential
decay behavior of the spin correlator, we establish the exis-
tence and robustness of a spin-liquid phase, beyond a previ-
ous VMC study.19 The characterization of such a spin-liquid
phase demands further theoretical studies.28 Our results pro-
vide a possible explanation of the spin-liquid behavior in the
dynamic structure factor and the quasi-1D spin excitation
spectrum found in the Cs2CuCl4 compounds. Stabilized by

FIG. 3. Absolute value of spin-spin correlation function �C�y��
= ��S0

zSya2

z �� along the a2 direction in six-leg system ��� with N=6
�18 and eight-leg system ��� with N=8�18 at different coupling
strengths: �a� J� /J=0.6; �b� J� /J=0.3. We also present the corre-
sponding �C�y�� from the ED at N=6�6 for comparison. The
dashed lines are the fittings to the corresponding data by exponen-
tial functions. The insets are accuracy of the ground state energy
�= ��E�m�−E0� /E0� �E0 is the exact energy from ED� as a function
of state number m kept in each block in the DMRG calculation for
6�6 system.
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quantum fluctuations, such a spin liquid phase is also ex-
pected to be observed experimentally in systems with much
stronger interchain couplings.
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