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Screening in semiconductor nanocrystals: Ab initio results and Thomas-Fermi theory
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A first-principles calculation of the impurity screening in Si and Ge nanocrystals is presented. We show that
isocoric screening gives results in agreement with both the linear response and the point-charge approxima-
tions. Based on the present ab initio results, and by comparison with previous calculations, we propose a
physical real-space interpretation of the several contributions to the screening. Combining the Thomas-Fermi
theory and simple electrostatics, we show that it is possible to construct a model screening function that has the
merit of being of simple physical interpretation. The main point upon which the model is based is that, up to
distances of the order of a bond length from the perturbation, the charge response does not depend on the
nanocrystal size. We show in a very clear way that the link between the screening at the nanoscale and in the
bulk is given by the surface polarization. A detailed discussion is devoted to the importance of local field
effects in the screening. Our first-principles calculations and the Thomas-Fermi theory clearly show that in Si
and Ge nanocrystals, local field effects are dominated by surface polarization, which causes a reduction of the
screening in going from the bulk down to the nanoscale. Finally, the model screening function is compared

with recent state-of-the-art ab initio calculations and tested with impurity activation energies.
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I. INTRODUCTION

Screening in semiconductor nanocrystals is a fundamental
issue, the importance of which is mostly due to the large
amount of technological applications inherent in the world of
nanostructures. While screening in bulk semiconductors is a
well known and widely investigated subject,'~ the phenom-
enon of screening in nanostructures is still not fully under-
stood. The presence of many papers recently published on
this subject shows that there is a strong interest in this
field.%1? In particular, it has been shown that the response of
a nanostructure to an external field is bulklike well inside the
structure.”? This is an interesting feature due to the local
nature of bonding in semiconductors. On the other hand,
such a behavior is quite different from the trend shown, in
both experimental results and theoretical calculations, by the
nanocrystal macroscopic dielectric constant,'>'> which is
shown to increase quite slowly upon going from small nano-
crystals to the bulk. The connection between the microscopic
local, bulklike response and the macroscopic dielectric prop-
erties can be understood only through the study of the sur-
face polarization contribution, which strongly influences the
nanocrystal properties.

Preliminary results on this subject have been presented in
Ref. 16. In the present paper, we investigate the nature of the
screening in semiconductor nanocrystals by performing a de-
tailed microscopic analysis. In the first part of the paper, a
first-principles study of shallow impurity screening in nano-
crystals is described. The charge density induced by donors
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and acceptors in Si and Ge nanocrystals is discussed, point-
ing to the connections to both the point-charge case and the
bulk limit. It is shown that, just like in bulk semiconductors,?
the response to isocoric impurities in nanocrystals is similar
to that of a point charge. A description of the local field
effects on the induced charge is given showing that the
present real-space analysis gives a way to distinguish be-
tween surface and bond polarization contributions. In par-
ticular, a very interesting comparison with the work of Ref. 4
allows us to give a physical interpretation of the various
contributions to the screening.

In the second part of the paper, a model for the screening
is proposed. The well known electrostatic model, based on
the image charge method,'? is not valid in the neighborhood
of the impurity, in that wrong boundary conditions are given
for the induced potential. We propose a generalization to
semiconductor nanocrystals of the Thomas-Fermi model as
originally proposed in Ref. 3 for bulk semiconductors. In
order to better appreciate the merits and the shortcomings of
the Thomas-Fermi theory, an alternative derivation of the
model from the Hohenberg and Kohn theorem!'” is described.
In the present model, both the correct limit in the neighbor-
hood of the impurity and the surface polarization contribu-
tions are taken into account from the beginning as boundary
conditions of the Poisson equation. Our results fit well the
screening diagonal contribution* for bulk silicon, and excel-
lent agreement with a recent first-principles calculation of
the screening function!© is obtained. Moreover, the model
gives a fair prediction of the impurity binding energies.
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FIG. 1. (Color online) Spherically averaged density i;,4(r)/Z
[panel (a)] and integrated density Q;,q(r)/Z [panel (b)] induced in
Si3sH; by different doping species: S*? (dashed, pink line) and P*
(solid, black line) donor doping, Al™ (circles, red) and Mg~ (stars,
blue) acceptor doping.

II. AB INITIO RESULTS

We have performed ab initio calculations using different
kinds of impurities in Si and Ge nanocrystals. The study has
been based on a plane-wave density-functional theory (DFT)
framework. The calculations have been done with the
QUANTUM-ESPRESSO package,'® using the generalized gradi-
ent approximation with ultrasoft pseudopotentials.'® A
vacuum space of at least 6 A has been left within the super-
cell, in order to avoid spurious interactions between a nano-
crystal and its replicas. The convergence with respect to the
plane-wave basis-set cutoff has been treated with care, and
Makov-Payne corrections?” have been added for the compu-
tation of the charged nanocrystal total energies. The nano-
crystals have a nearly spherical shape, they are centered on a
Si (Ge) atom, and the surface dangling bonds are saturated
with hydrogen atoms. The undoped structures have been re-
laxed, and the optimized geometries used for the doped
structures. In this way we study the screening due to the
electronic response to an external perturbation, where fixed
ionic positions are considered. The resulting screening does
not take into account the contribution due to the ionic dis-
placement. This latter is negligible when covalent semicon-
ductors are considered.

The electron density induced by a donor species X* in the
nanocrystal Si;H,, is given by

Nina = n[(Si_ XH,,)] - n[SiH,], (1)
where Z is the impurity net charge (atomic units are used
throughout this work). A similar expression holds for accep-
tors and for Ge nanocrystals. We have focused our study on

the spherical average of nj,4, and on its integrated density
defined as

Qind(r)zf Mipa(X)dx, (2)
0

where 71;,4(r) =47 n,,4(r).
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In Fig. 1, the results for donor and acceptor isocoric dop-
ants in SissHj¢ are reported. The spherically averaged in-
duced densities 75,4(r)/Z [Fig. 1(a)] and the integrated den-
sities Q;,4(r)/Z [Fig. 1(b)] are shown for the donors P*, S*?
and acceptors Al~, Mg~2. It is worth noticing that the densi-
ties induced by P* and S*? (solid and dashed line, respec-
tively) are almost indistinguishable. This suggests that, at
least for donor isocoric impurities, the screening is within a
linear-response regime. This was already argued some years
ago for the bulk,? and our analysis shows that this is valid for
nanocrystals too. From Fig. 1 it is seen that, in the case of the
acceptors Al~ and Mg~ (circles and stars), apart from a nar-
row region of space near the impurity (inside the pseudopo-
tential core, the acceptor curves show a nonlinear peak that is
absent in the donor case), the overall structure is similar to
the donor case. However, while in the region of space after
the second main peak from the impurity the curve is very
similar to the donor case, the first main peak is lower and
pushed away from the impurity site (r=0). This discrepancy
between donor and acceptor doping is in agreement with
some results recently published'! and is related to nonlinear-
ity effects. The problem of nonlinear screening in bulk semi-
conductors has been studied with care in the past within a
Thomas-Fermi formalism. In Refs. 21-24, it was shown that
there is an asymmetry in the response when positive or nega-
tive charged impurities are considered. While for donor
screening (Z=+1, +2) nonlinear effects are negligible, in the
case of acceptor screening the response is quite far from
linearity. As we shall see in the next section, the screening in
semiconductors is mostly confined within a screening sphere
around the impurity. The deviation of the radius of such a
sphere (screening radius) from the linear case furnishes a
realistic check of the linearity of the response. From the
Thomas-Fermi theory, an increase of the screening radius of
about 0.39 and 0.68 a.u. (with respect to the linear case) was
observed for Z=-1 and -2, against a decrease of only 0.16
and 0.26 a.u. found for Z=1 and 2, respectively.”>?* These
results show the same trend as in Fig. 1, confirming our first
hypothesis of a good linearity of the response in the donor
case.

In order to show that the features discussed above for both
the induced and integrated density are not peculiar to silicon,
we have also studied the case of Ge nanocrystals. In Fig. 2,
our results for the induced (panel a) and integrated (panel b)
electron densities are shown for P* and As* in Ge;sHjq
(dashed and solid line, respectively) and As* in Ge o H g
(circles). For comparison, in Fig. 2(b) we also report (stars) a
previous ab initio result obtained using a truly point-charge
impurity for computing the linear-response screening in bulk
Ge.* It is evident that the screening near the impurity is much
more pronounced for the nonisocoric P* impurity than for
the isocoric As*. The different core of the dopant atom with
respect to the host atom gives rise, in the first case, to the so
called central cell corrections, which give a nonlinear contri-
bution. On the other hand, the response to (isocoric) As*
impurity does not induce central cell corrections. It should be
pointed out that these corrections have a finite range, being
especially pronounced in the region of space before the sec-
ond main peak in the Q;,4(r)/Z curve. Instead, the electron
charge localized on the surface is quite independent of the
chemical shift.
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FIG. 2. (Color online) Spherically averaged density i,4(r)/Z
[panel (a)] and integrated density Q;,4(r)/Z [panel (b)], induced in
GessHzg and Gejg H yg nanocrystals. The results shown are for P*
(dashed, blue line) and As* (solid, black line) in GessHzq, As*
(circles, green) in Gejg;H 4. In panel (b), we also report the linear
response to a point-charge impurity in bulk Ge from Ref. 4 (stars,
red).

Based on Fig. 2, an interesting analysis of the size depen-
dence of the screening can be deduced as well. Indeed, from
a comparison between our results for GessHs and Geg1Hyg,
we argue that, upon increasing the nanocrystal size, the in-
duced charge close to the impurity rapidly converges to its
bulk value. This can be better inferred from panel (b), show-
ing results at small r very close to those calculated in Ref. 4
for bulk Ge.

From the results illustrated so far, we can reasonably con-
clude that (i) the isocoric doping is well approximated by a
point-charge screening, (ii) the screening is in the range of
the linear-response regime, and (iii) the induced density rap-
idly converges to the bulk in the region of space close to the
impurity.

Further considerations can be driven from panel (b) of
Fig. 2. In Ref. 4, it was shown for bulk Ge that the induced
charge density [stars in Fig. 2(b)] receives contributions from
both diagonal and off-diagonal terms of the dielectric matrix
in reciprocal space. The diagonal contribution to the inte-
grated density consists in a monotonic increase of Q;,4(r)/Z,
followed by constant value. Instead, the off-diagonal contri-
bution, related to the so called local field effects, gives a
wavy structure to the integrated induced density. This undu-
lating behavior has been discussed by several authors for
bulk systems, and arises from the polarization of the
bonds.*>2> Both the diagonal and off-diagonal contributions
are retrieved for the nanocrystals, as is clearly seen in Fig. 2,
but an additional effect due to the polarization of the surface
emerges. It consists of an electron density accumulation
around the nanocrystal surface due to the dielectric nature of
the structure, as is well known from classical electrostatics.
The surface polarization is retrieved from the present ab ini-
tio formulation and can be seen as a very special kind of
local field effect causing the annihilation of Q;,4(r)/Z in cor-
respondence with the nanocrystal boundary [Figs. 1(a) and
2(a)]. We conclude that in a nanocrystal, local field effects
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FIG. 3. (Color online) Spherical averaged induced density
7ina(r) [panel (a)] and integrated induced density Q;,q(r) [panel (b)],
calculated for P* impurities in Si nanocrystals with increasing size:
SizsHse (solid, black line), Sig7H7¢ (dashed, red line), Sijs7H;qq
(circles, blue), and SijqH 43 (stars, green). The full arrows point to
the nanocrystal radius (see text for definition).

(i.e., not diagonal contributions) show up as both the bond
and the surface polarization. Nonetheless, while the bond
polarization, which is a bulk effect, gives a negligible con-
tribution to the screening and the optical properties, the sur-
face polarization is extremely important. Indeed, it is closely
related to the depolarization effects that have been shown to
strongly modify the optical properties of low-dimensional
structures.?6-28

The size dependence of the screening can be inferred
from Fig. 3, where the spherical average of the induced den-
sity [panel (a)] and the integrated density [panel (b)] are
shown for a set of P*-doped silicon nanocrystals with in-
creasing radii. It comes out that up to a distance of a few a.u.
from the impurity, both the induced and the integrated den-
sities are almost independent of the nanocrystal size. In order
to be more quantitative, it is necessary to define the nano-
crystal radius. We do not follow the standard route, that is,
the radius of sphere whose volume equals the product of the
volume per atom in the bulk times the number of, say, silicon
atoms. Indeed, the shortcoming of this definition is that the
hydrogens passivating the surface are left out. Moreover, in a
screening problem the fundamental objects are the electrons,
including those participating in the bonds near the surface.
On the basis of these arguments, we define the nanocrystal
radius through the equation ny4mR*/3=N, where n is the
bulk valence electron density and N=4/+m is the total num-
ber of valence electrons in Si;H,,. The nanocrystal radii cal-
culated in this way are shown in Fig. 3 as arrows. They have
slightly higher values than the conventional radii. For in-
stance, in the case of SijsHsg, we retrieve 11.3 a.u. against
the conventional value of 10.4 a.u. But, as it is seen from
Fig. 3(a), with the present definition all the radii lie almost
exactly in the middle of the surface charge density. As a final
observation, we stress that despite the undulation in both the
induced and integrated densities, the total induced charge
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around the impurity is almost independent of the nanocrystal
radius. Although, at this level, this concept may not appear to
be well-defined, we shall see in the next section how it al-
lows the construction of a Thomas-Fermi model for the
screening.

III. THE THOMAS-FERMI MODEL

As we have seen in the previous section, the density in-
duced by a point-charge impurity in semiconductor nano-
crystals consists of several contributions. The first contribu-
tion is due to the reciprocal-space diagonal part of the
dielectric matrix, the second contribution comes from the
Si-Si bond polarization, and the third is from the nanocrystal
surface polarization. In this section, we illustrate a Thomas-
Fermi model, which reproduces with great accuracy both the
diagonal and surface polarization contributions.

A. Classical electrostatics

As a starting step, we briefly describe a simple electro-
static model that can be used as a first approximation in
studying point-charge screening in semiconductor nanocrys-
tals. The basic assumption is that, as a response to a point-
charge potential v.(r)=-Z/r, an electron polarization
charge —Q is induced around the impurity. On the other
hand, since the total induced charge must integrate to zero, a
compensating charge Q, assumed as uniformly distributed on
the nanocrystal surface, must be introduced. The resulting
potential energy is therefore due to a total charge Z—-Q lo-
calized around the impurity, and to a charge Q distributed on
the surface. From electrostatics, the potential energy for an
electron is

v (r) = 3)

where R is the nanocrystal radius, as defined in the previous
section.

This electrostatic model is supported by the DFT results
described in the previous section. Indeed, Fig. 3(a) shows
that the induced electron density has two main contributions
concentrated around the impurity and across the surface. A
basic hypothesis for the model is that the total charge Q is
independent of the nanocrystal size. This is supported by the
fact that, as shown in Fig. 3, the induced density near the
impurity rapidly converges to the bulk value. As is shown
below, the use of the bulk value for Q is a good approxima-
tion for nanocrystals.

However, this simple model is not accurate in the descrip-
tion of the screened potential close to the impurity site. In-
deed, one can easily see that unphysical potential values are
predicted in the limit »— 0. In order to correct the model, we
follow Ref. 3, in which a Thomas-Fermi description for bulk
semiconductors is given. The basic point is the concept of
incomplete screening occurring in a semiconductor. This
means that the charge is induced only inside a screening
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sphere of radius R,. Outside the screening sphere, the system
behaves as a classical dielectric medium having a static di-
electric constant &,. In a semiconductor, the total induced
charge Q is a finite fraction of the whole external charge Z
introduced with the impurity. It is well known that the ratio
Q/Z closely depends on the static dielectric constant through
the relation?

gt @

The larger the static dielectric constant is, the closer to unit is
the ratio Q/Z. The induced potential and the spatial dielectric
function are obtained solving the Thomas-Fermi equations
with appropriate boundary conditions, where the screening
radius is derived self-consistently.?

The Thomas-Fermi theory establishes the linear relation
between the induced electron density #n;,4 and the screened
potential vy, =V +Vjnq inside the screening sphere,

qZ
nind(r) == E[Uscr(r) - 5/-‘/]7 (5)

where Su (the chemical potential) is a constant to be deter-
mined with the boundary conditions and ¢ is a multiplicative
constant related to the nanocrystal average valence electron
density.? Outside the screening sphere, the induced charge is
zero and the screened potential matches the classical expres-
sion v, given in Eq. (3). The continuity of the induced den-
sity, which inside the screening sphere is given by Eq. (5), at
r=R, implies [nj,4(r)=0 if r=R,] that

S =v.(Ry). (6)

B. Derivation of the Thomas-Fermi theory

Before going to the application of the Thomas-Fermi
theory to a nanocrystal, it is of some interest to rederive Eq.
(5) within the DFT framework. From the Hohenberg and
Kohn theorem, it is known that the total energy of an elec-
tron system, written as a functional of the electron density,
can be decomposed into several contributions,

E[n]=T{n]+J[n]+ E[n]+ V[n], ()

where T is the noninteracting kinetic energy, V is the total
one-particle potential energy

Vin]= f dr n(r)u(r), (8)
J is the classical Coulomb energy
1 !
Jn]== f dr dr,n(Ln(rl)’ 9)
2 Ir—r’|

and E,. is the exchange-correlation energy density func-
tional.'”? From the variational principle, with the constraint
that the integrated density gives the total number of electrons
N, we have the stationary condition for the ground-state den-

sity n4(r),
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The variable u has been shown to be the system chemical
potential.!”?%30 In order to study the screening, we write
down the Hohenberg and Kohn equations, for both the un-
perturbed (labeled with 0) and the perturbed (labeled with 1)
systems

5;3[”] +0o(r) + valng(r)] +vilng(r)]= po, (11)

n(r) |,

?y[n] +U1(r) +UH[nl(r)]-'-UXC[nl(r)]:'ul' (12)
n(r)

ny

Here, v is the one-electron potential, vy is the Hartree poten-
tial

n(r’)

v’ —r

vyln(r)]= J dr’ , (13)

and v, is the exchange-correlation potential. By subtracting
Eq. (11) from Eq. (12), and assuming linear response, we
obtain an expression relating the induced density n;,q=n;
—n, with the screened impurity potential v,. This potential
is defined as the sum of the external perturbation v, =v;
-0y, the induced electrostatic potential vy=vy[ on], and the
induced exchange-correlation potential

Ming(r). (14)

]

Oy
ov,..= | d
Oxe f " on(r)

The final result is

f & 8T [n]
"1 snm)sn()

Before showing how and under what conditions Eq. (5) can
be derived from Eq. (15), it is worth mentioning that this
derivation is equivalent to the standard linear-response
theory, in which the perturbation theory is applied to the
self-consistent Kohn-Sham equations.?!

Equation (15) is an integral equation in which the exact
form of the kernel is unknown. The Thomas-Fermi approxi-
mation consists in approximating the kinetic functional to the
free-electron gas case. Therefore, we have3?

nind(r/)} + Uscr(r) = 5[““ (15)

& 10
ﬁ;ﬂ) = argn(r) e -r"),  (16)
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so that the integral condition Eq. (15) reduces to the follow-
ing algebraic expression:

2
i) = 2 o1 0], (17)
v
where
— i 1/3 i
)= | <) (1)

and a=3%*7*3/10. In the standard Thomas-Fermi model
ny(r) is approximated as the constant spatial averaged va-
lence electron density, which is the number of valence elec-
trons in a unit cell divided by the unit cell volume. However,
anticipating the results for Si and Ge to be discussed below,
we have found that this approximation is not so important.
What turns out to be crucial is the choice in Eq. (15) for the
second functional derivative of the kinetic energy. Indeed,
writing it as a function of only the difference r—r’ corre-
sponds to neglecting the local field effects, in that the re-
sponse is independent of the coordinates in which an external
point-charge impurity is located. This is equivalent, in a bulk
system, to only considering the diagonal component of the
reciprocal space dielectric matrix. This argument is about the
kinetic functional, and does not regard the surface polariza-
tion effects, which are taken into account in the model
through the use of suitable boundary conditions for the Pois-
son equation. We know that local field effects enter the
theory through the kinetic functional derivative, as well as
through the boundary conditions of the Poisson equation.
The Thomas-Fermi theory neglects the first, but retains the
second of such effects. In the bulk, only the first effect oc-
curs, due to the polarization of bonds, and a link with the
diagonal screening of the analysis of Ref. 4 can be traced.
The Thomas-Fermi theory gives results in fair agreement
with the linear-response results, when the off-diagonal ele-
ments of the dielectric matrix are neglected.

In order to give a first indication on the validity of the
Thomas-Fermi approximation in nanostructures, we compare
the chemical potential Su calculated from DFT with the
Thomas-Fermi prediction. Within DFT, the chemical poten-
tial of a given structure is calculated as

~ (I+A)

5 (19)

/L =
where I=E5—Eg and A=Eg—Ej are, respectively, the struc-
ture ionization potential and the electron affinity (Eg is the
total energy).”” We have calculated the chemical potential
variation Su for SizsHsg, for the isocoric P* impurity, obtain-
ing Su=-2.79 eV from Eq. (19) and Su=-2.62 eV from the
Thomas-Fermi Eq. (6) (for the determination of the param-
eters, see below). Considering all the approximations in-
volved, the agreement of less than 0.2 eV can be considered
very good.

C. Model description and results

The Poisson equation, together with Eq. (5), gives the
Thomas-Fermi equation for an external point charge Z lo-
cated at the nanocrystal center,
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V2= = 4TZ8(x) + ¢*[vg(r) — S (20)

It can be written as

V2Uscr= qz[vscr(r) _A] (21)

with the condition

g(r) = '

Moreover, from the continuity of the electric field on the
screening sphere, a relationship between the product gR, and
Q can be obtained,

sinh(gR,) 1
grR, 1-01Z

(25)

In the following, we shall use Eq. (25) for determining the
variable ¢ for each nanocrystal, once the total density Q and
the screening radius R, are known.

The determination of the Thomas-Fermi parameters Q
and R, is not obvious. We propose to use the bulk Q, and
calculate the screening radius from the ab initio nanocrystal-
induced density. As we shall see below, the R, dependence
on the nanocrystal size is very weak, and, a posteriori, we
can say that the use of a constant value for the screening
radius does not significantly change the results. For deter-
mining Q in the bulk, it is necessary to consider Eq. (24) in
the limit R — . It is easy to see that

ghulk(r )

_ -
{ ! RQ/Z{sinh[q(Rs -]+ rq}} , 0<r<R,

s

= -1
g

(26)

This is the equation first derived in Ref. 3. Since the material
behaves like a dielectric medium beyond the screening ra-
dius, we get e,=1/(1-Q/Z) from the above equation, in
agreement with Eq. (4).

From this equation we have Q=0.91 and 0.93 for Si and
Ge, respectively, corresponding to the bulk static dielectric
constants e,=11.4 and 14.3. The choice for Q in the case of
Ge is motivated by the fact that it is the diagonal contribution
to the integrated density, in the limit r— 0.4 Also, the corre-
sponding g, is very close to the Walter and Cohen pseudo-

] -1
{ ! Q/Z{sinh[Q(Rx -r]+rgh+ 1%%} , 0<rs=gk;

i
-=+
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lim{rvg(r)]=-Z. (22)
0

r—

The leading boundary condition is given by the continuity of
the potential on the screening sphere,

vscr(Rs) = Uc(Rs)- (23)

Solving the Poisson equation, we find that the Thomas-Fermi
expression for the effective spatial dielectric function, de-
fined as the ratio between external and screened potential, is

(24)

potential calculations of dielectric function (they used &
=14 for bulk Ge).?? This allows us to show that the present
model fits well to a standard RPA calculation. Finally, we
want to point out here that the experimental value £,=16 is
not far from the value we use. We have checked that small
differences in the static dielectric constant do not signifi-
cantly change our results.

It remains now to fix the screening radius R,. This can be
done starting from the DFT-induced charge illustrated in the
previous section. One can define R, as the radius correspond-
ing to an integrated induced charge equal to Q. Namely, the
screening radius is given by the solution of the equation

Oina(Ry) = Q. (27)
However, because of the wavy behavior shown by the in-
duced charge, there can be several solutions to Eq. (27).
Among the possible solutions, a choice can be done starting
from physical motivations; in particular, we expect that the
screening radius would take a value close to (actually
slightly greater than) the impurity host bond length. Indeed,
the whole displaced charge has to be included in the model,

TABLE I. Thomas-Fermi parameters calculated for several Si
and Ge nanocrystals and for bulk Si. The nanocrystal radius R, the
screening radius R, and the parameter ¢, as computed from Eq.
(25), are reported. All the quantities are in atomic units.

R R, q
SiysHag 11.31 5.58 0.836
Sig;Hyg 15.17 5.39 0.866
Sia7H 00 17.82 5.35 0.873
Sijo1H 4z 19.58 5.36 0.871
Sipyik © 5.33 0.875
GeysHyg 11.92 5.90 0.84
Gejo1H g 20.62 5.61 0.882
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FIG. 4. (Color online) Integrated induced density calculated for
bulk Si [panel (a)] and Ge [panel (b)] using both DFT and the
Thomas-Fermi model. In panel (a), Thomas-Fermi (full, black line)
and DFT results for Sijg;H ;45 nanocrystal (circles, green). In panel
(b), Thomas-Fermi (full, black line) and linear-response results of
Ref. 4 (stars, red). The diagonal component of screening is also
shown (dashed, blue line).

and it is likely that, after giving off the wavy contribution,
the induced charge extends to the nearest-neighbor distance.*

In Table I, we report the calculated values for the
Thomas-Fermi parameters, for several Si and Ge nanocrys-
tals. We have also included in this table the values for bulk Si
that have been obtained with a calculation on a supercell
comprising 512 atoms. The important result coming from
Table I is that R, is quite independent of the nanocrystal size
(apart from the case of SizsHjg, very small variations are
seen, being less than 0.1 a.u. going from Sig;H74 to the bulk
Si). We can say that this independence of R, of the system
dimension is a manifestation of the local nature of the re-
sponse as originally suggested in Ref. 9.

It is important to point out that we use a different proce-
dure from that in Ref. 3 in the determination of the param-
eters. In that case, ¢ was calculated starting from the material
Fermi energy, while the screened radius was a derived vari-
able, calculated from Eq. (25). At variance with that proce-
dure, we directly calculate the screening radius from first-
principles results and then use Eq. (25) to get ¢. The values
of R, and g obtained in Ref. 3 were R,=4.28 and ¢=1.10 for
silicon and R;=4.71 and ¢=1.08 for germanium. Although
the present estimations of R, (¢) are bigger (smaller) than
those of Ref. 3, we shall see below that the dielectric func-
tions for both the bulk and nanocrystals are in excellent
agreement with DFT and empirical pseudopotential results.

Before presenting the results for the dielectric functions,
let us look at the integrated densities in bulk silicon and
germanium. The results are shown in Fig. 4, where the solid
line comes from the Thomas-Fermi model using, for silicon,
the calculated bulk parameters and for germanium those cor-
responding to Ge g H 45 (see Table I). In the case of Si
[panel (a)], we compare the model with our nanocrystal DFT
results. For Ge [panel (b)], a comparison is done with the
linear-response calculation of Ref. 4. We note from Fig. 4

PHYSICAL REVIEW B 73, 245430 (2006)
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FIG. 5. Wave-vector-dependent screening dielectric function for
bulk Si [panel (a)] and bulk Ge [panel (b)]. The dashed lines are the
RPA empirical pseudopotential calculation of Ref. 33. The solid line
are the Thomas-Fermi results from Eq. (28).

that the characteristic wavy structure that is typical of the full
response (stars) is absent. More importantly, the agreement
with our Thomas-Fermi calculation is very good. In other
words, the model is perfectly capable of reproducing the re-
sponse without local field effects. This is also true for silicon,
as shown in Fig. 4(a). Here it is clearly seen that the Thomas-
Fermi curve lies in the middle of the DFT curve, as in the
case of germanium. We can therefore reasonably conclude
that the present model gives results consistent with an ab
initio calculation in which local field effects due to the bond
polarization are either neglected or play a minor role.

Within the present model, the wave-vector-dependent
screening dielectric function of a bulk semiconductor takes
the form

q2 + k2
(1 - Q/Z)sin(kR,)/kR, + k>

ek)= 28
s()q2 (28)

In Fig. 5, the results are shown for both bulk Si and Ge. A
comparison with the empirical pseudopotential calculation of
Walter and Cohen®? (dashed line) indicates that the model
parameters listed in Table I give a very good agreement in
the bulk limit.

In order to see how the present model performs in the
case of nanocrystals, a comparison has been done with recent
real-space ab initio calculations. In Fig. 6, the Si;sHsq effec-
tive spatial screening function calculated with the Thomas-
Fermi model and the ab initio results taken from Ref. 10 are
shown. For the Thomas-Fermi model, we have used both the
derived values of R, and ¢ given in Table I (full line) and
those of Ref. 3 (dotted line). It is seen that in this last case
the agreement with the ab initio results of Ref. 10 is not
perfect, particularly for the height and the position of the
main peak. However, considering that there is no need of
doing any calculation for getting the parameters of Ref. 3,
depending on the application at hand, this may surely be a
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r (a.u.)

FIG. 6. (Color online) Screening function &(r) for SizsHz4. Solid
(black) line: Thomas-Fermi model with the parameters of Table I;
dotted (blue) line: the same but with the parameters of Ref. 3;
dashed (red) line: real-space ab initio calculation of Ref. 10.

first approximation. In any case, it is interesting to see that
although the calculations of Ref. 10 include the exchange
and correlation terms, the agreement between our result (full
line) and the ab initio one (dashed line) is very impressive.
We want to remark once again that the most important part
of the screening is due to electron charges accumulated both
near the surface and close to the impurity.

We also performed a calculation of the donor impurity
binding energy in order to compare the Thomas-Fermi model
and DFT results. Within a DFT framework, the binding en-
ergy can be calculated as the difference Epppr=1;,—A, be-
tween the doped nanocrystal ionization energy and the un-
doped nanocrystal electron affinity.’*33 The binding energy
can also be calculated using the perturbation theory as

be /s (29)

where &(r) is the effective spatial dielectric function and i,
is the first empty state of the undoped nanocrystal. Using the
undoped nanocrystal DFT wave function ¢, and the effective

TABLE II. Impurity activation energies calculated with both the
ab initio method (Eppr) and the Thomas-Fermi model (E,,) for
several silicon nanocrystals. The DFT data are for the donor iso-
coric impurities P*. All the values are in eV.

Eprr E,
SissHag 3.05 2.84
SigHyg 2.27 211
S0 Hya 179 1.60
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dielectric function calculated with the model, we can com-
pute the binding energy and compare it with the DFT results.
In Table II, the binding-energy results are shown. The inter-
esting thing is that there is a systematic difference between
the DFT results and the values estimated from the model.
This size-independent contribution is quite small, about
0.2 eV for Si. It can be due to both the bond polarization
effects and the exchange and correlation contributions, which
are not taken into account in the present model.

IV. CONCLUSIONS

Screening in covalent semiconductor nanocrystals has
been studied using both advanced ab initio methods and a
Thomas-Fermi model. Our DFT calculations have shown
that isocoric donor dopants essentially behave as a point
charge giving an induced charge that agrees well with the
linear-response approximation. Comparing the induced inte-
grated densities with those obtained in Ref. 4, we have been
able to conceptually isolate the features directly related to
local field effects. It is, at least in principle, not easy to
distinguish the several contributions to the screening due to
local fields. However, in the specific cases we have analyzed,
there is an indication of the fact that surface polarization is
the dominant local field effect in semiconductor nanocrys-
tals. This was proven combining the Thomas-Fermi theory
including electrostatics of surface polarization with the result
that the screening function agrees very well with state-of-the-
art ab initio calculations.

It is worth mentioning that local field effects related to
surface polarizations may have dramatic consequences also
in the optical response, particularly for anisotropic structure
such as wires and ellipsoidal dots. Indeed, it has been shown
for both silicon?” and germanium?® wires that the optical
frequency-dependent absorption function is strongly sup-
pressed for light polarized perpendicularly to the wire axis.
This suppression does not come out when local fields are
neglected. From a classical point of view, these local fields
are again dominated by surface polarization, as originally
recognized in interpreting the polarization anisotropy of po-
rous silicon.3® Although the present model cannot be gener-
alized to the case of the response to an external field, it is of
interest to note that in both cases, that is, point-charge
screening and external field, surface polarization plays a fun-
damental role at the nanoscale.

The first-principles calculations presented in this work
have shown that the concept of bulklike response to an ex-
ternal perturbation introduced in Ref. 9 is valid also in a
screening problem. Although the induced electron density
contains some oscillations, we have shown that it is possible
to define a screening radius that is practically independent of
the nanocrystal dimension. The progressive reduction of the
screening action is due to the surface polarization. In this
paper, we have shown how this contribution may be de-
scribed with simple electrostatics. The important point is that
now we have an analytical expression for the effective
screening function whose validity for both the nanoscale and
bulk has been proven.
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A final note should be devoted to a possible generalization
of the model to the case of off-center impurities. This could
be done, at least in principle, by considering the matching of
the Thomas-Fermi solution to the full image potential of an
off-center point charge. However, beyond the technical dif-
ficulties in doing that, one should consider that the method
fails, particularly for very small nanocrystals, when the im-
purity is at a distance from the nanocrystal surface that is less
than or comparable to the screening radius.

PHYSICAL REVIEW B 73, 245430 (2006)
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