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In tightly confined one-dimensional �1D� systems, the effective Coulomb interaction is greatly enhanced and
optical transitions generally lead to the formation of strongly bound excitons. When more than one exciton is
present, the Coulomb interaction also leads to rapid exciton-exciton annihilation through an Auger recombi-
nation process. This effect, which may be significant even at low exciton densities, can be described by a rate
law governing two-body interactions. The Auger recombination rate for excitons in a strongly confined 1D
system is analyzed. The rate increases sharply with exciton binding energy, but varies only weakly with
temperature. An explicit expression for the Auger recombination rate in terms of the exciton binding energy,
optical matrix element and reduced carrier mass is derived for a two-band model in which the Coulomb
interaction is approximated by a point-contact potential. Results for the prototypical 1D system of single-
walled carbon nanotubes are obtained and compared with experiment.
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I. INTRODUCTION

Strongly quantum-confined one-dimensional �1D� materi-
als exhibit many distinctive electrical and optical properties.
In these systems, a single quantized transverse electron and
hole subband dominates. One important driving force for
these diverse physical phenomena is the dramatically en-
hanced Coulomb interaction arising both from the spatial
confinement of the carriers and from the reduced charge-
screening effects that are present in these 1D systems. The
enhanced Coulomb interaction in 1D semiconductors leads
to the formation of tightly bound exciton states when
electron-hole pairs are excited, as well as to an increased role
for interactions involving multiple charge carriers. Auger re-
combination, also known in this context as exciton-exciton
annihilation, involves such multiple-carrier interactions. In
this process electron-hole pairs undergo nonradiative recom-
bination, with the released energy transferred directly to
other charge carriers.

Auger recombination is known to be significant for bulk
and two-dimensional semiconductors at high carrier
densities.1–4 In view of the enhanced electron-electron
interactions,5–9 one would expect Auger processes to assume
still greater prominence in 1D structures, just as it dominates
the multicarrier dynamics in zero-dimensional �0D� semicon-
ductor nanoparticles.10 Rapid Auger recombination of exci-
tons has indeed been observed in the prototypical 1D struc-
ture of single-wall carbon nanotubes �SWNTs�.11–13 This
interaction is sufficiently strong that it dominates nanotube
carrier dynamics when multiple excitations are present in
SWNTs,11–13 and a recombination rate orders of magnitude
higher than that characteristic of bulk materials has been
measured.11 Similar effects have also been reported for semi-
conductor nanorods.14 The strength of the Auger recombina-
tion process appears to be an intrinsic feature of tightly con-
fined 1D materials. In view of the fundamental interest in
understanding this multicarrier process and its implications
for a range of applications of 1D materials, there is a strong

motivation to develop a theoretical understanding of what
controls the behavior and rate of this process.

The present work aims to fill this need by examining the
Auger process for strongly confined 1D systems. The
strongly confined isolated 1D structure under consideration
here is different from previously investigated weakly con-
fined structures such as epitaxially grown semiconductor
quantum wires.15–17 These wires typically have widths of
tens to hundreds of nanometers and are embedded in high-
dielectric constant material. In such systems, multiple sub-
bands �especially for the holes in the valence bands� contrib-
ute. Furthermore, the enhancement of Coulomb interaction is
slight, and exciton binding energies remain below or compa-
rable to thermal energy at room temperature. Consequently,
electron-hole pairs can be described simply as free carriers,
and the Auger process in these materials is similar to that of
bulk media. In particular, the Auger recombination process
exhibits an activated behavior as a function of the carrier
temperature, unless phonon assisted processes play an impor-
tant role.15 The existence of an energy barrier is a direct
result of the need to conserve both energy and momentum in
the Auger process, together with the free electron and hole
dispersion relations. This behavior is different for strongly
1D materials with large exciton binding energies. Because
the exciton states already contain components corresponding
to electron and hole wave functions with large momenta,
there is no energy barrier for the Auger recombination pro-
cess. Consequently, the Auger rate exhibits little temperature
dependence and can be large even at relatively low tempera-
tures.

We consider neutral systems that have been excited with
N excitons. The Auger recombination process of tightly
bound excitons in 1D structures can be described by an ex-
citon annihilation rate of �Auger= �A /L� ·N · �N−1�, where A
is the Auger constant, and L the length of the nanostructure.
To determine the rate constant A in terms of the underlying
Coulomb interaction, we make use of a simplified point-
contact model of the carrier-carrier interaction. Assuming
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single parabolic bands for the electron and hole, we are able
to derive explicit expressions for the Auger recombination
rate A. Further, within the context of the model, the strength
of the carrier-carrier interaction can be calibrated from the
exciton binding energy, a quantity frequently amenable to
experimental measurement. In this way, we characterize the
interplay between exciton binding and Auger recombination
for strongly 1D materials. As a specific example, we apply
the analysis to Auger recombination in SWNTs. For SWNTs
of 1-nm diameter, the experimental exciton binding of
�300 meV �Ref. 18� implies a room-temperature Auger con-
stant of A�0.6 ps−1 �m. This remarkably rapid rate com-
pares well with the value obtained recently from direct ex-
perimental measurements of the ultrafast dynamics of
photoexcited SWNTs.11

II. MODEL OF THE 1D SYSTEM
AND ITS CARRIER INTERACTIONS

We first describe the relevant electronic states in our
model. We consider the Auger recombination of excitons in
an idealized one-dimensional system. We assume that the
electrons and holes can be described by a two-band model
with an allowed optical transition. Higher subbands are as-
sumed to be separated by an energy larger than the exciton
binding energy allowing them to be neglected. Each band
�electron and hole� is further assumed to be parabolic and is
treated using an envelope function approximation �effective
mass approximation�. The single-particle excitations of the
system are carriers in the conduction and valence bands. We
write a free electron of momentum �ke as �ke�=eiker�uc,ke

�,
where �u� is the periodic part of the Bloch wave function.
Correspondingly, we denote a hole of momentum �kh as �kh�,
which represents a missing valence electron in state
e−ikhr�uv,−kh

�. We assume parabolic dispersion relations of

�c,ke
=Eg+

�2ke
2

2me
and �v,kh

=−
�2kh

2

2mh
for the conduction and valence

bands, respectively. Here Eg is the energy of the �direct� band
gap, and me and mh are, respectively, electron and hole ef-
fective masses.

Within the effective mass approximation, we can intro-
duce the Coulomb interaction for an electron-hole pair
through a Hamilton,

H = He + Hh + Ve-h = −
�2�R

2

2mex
−

�2�r
2

2�
+ V�r� . �1�

The right-hand side of the equation is expressed in terms of
the relative electron-hole position r=re−rh and the electron-
hole center-of-mass position R= �mere+mhrh� / �me+mh�. The
corresponding expressions for the electron and hole kinetic
energies �for the bands described above� involve the exciton
mass mex=me+mh and the reduced mass �=memh / �me

+mh�. Provided that the characteristic length scale for the
bound exciton is greater than the physical diameter of the 1D
system and encompasses ten or more atomic spacings, the
envelope function approximation should be reasonable. In
the example discussed below, this will be the case. In our
model, the electron-hole interaction term V�r� is treated as a
point-contact interaction, V�r�=−U��r�, with �an attractive�

strength parameter U. This both regularizes the Coulomb in-
teraction for 1D and simplifies the analysis. For the relatively
strong exciton binding under discussion here, this model cap-
tures the main effects. For clarity, we neglect electron spin in
our initial discussion, but consider its effect below after hav-
ing derived the pertinent relations.

Electron-hole pairs in the presence of the contact interac-
tion can form excitons. The electron and hole in the exciton
have relative momenta �q�

mhke−mekh

�me+mh� that extend up to a

value on the order of ����U /�, determined by the strength
of the Coulomb interaction. The spatial extent of the
exciton wave function is consequently on the order of
1 /�=�2 / ��U�. The exciton binding energy is Eb= �2�2

2� , and
the total energy for an exciton of momentum �K is given
by EK=Eg−Eb+ �2K2

2mex
. The envelope function for the exciton

in the internal coordinate is ��r�=�� /2 exp�−��r��. For the
Auger calculation, the corresponding wave functions for the
exciton states can be written explicitly in terms of electron-
hole pair states �ke ;kh�= �ke��kh� as

�K� = �
ke,kh

�ke,kh

K �ke;kh� = �
ke,kh

�K,ke+kh
� 1

�L

2�2

�2 + q2 �ke;kh� .

�2�

In calculating the rate of the Auger process, we consider
an initial state comprised of two excitons with center of mass
momenta �K and �P described by the wave function

�i� = �K��P� = 	 �
ke�,kh�

�ke�,kh�
K �ke�;kh��


		 �
ke�,kh�

�ke�,kh�
P �ke�;kh��
 , �3�

where the ground-state exciton wave function �ke,kh

K is as
defined in Eq. �2�. The final state consists of an ionized elec-
tron of momentum �ke and an ionized hole of momentum
�kh, described by �f �= �ke ,kh�. In our discussion, we neglect
the influence of the Coulomb interaction on the final states.
This approximation is justified by the fact that the final state
of the electron or hole will have excess energy comparable to
the band gap, so that the Coulomb potential leads to a rela-
tively small correction.

III. CALCULATION OF THE AUGER RECOMBINATION
RATE OF EXCITONS

Following the general approach previously introduced in
Ref. 19 for Auger recombination of tightly bound excitons in
three dimensions, we calculate the exciton Auger recombina-
tion rate for our 1D problem by perturbation theory using the
initial and final states described above. The possible under-
lying scattering processes are summarized in Fig. 1 with ex-
plicit reference to the electron transitions in the valence as
well as conduction band. In process A, the Coulomb interac-
tion between the electrons in the excitons results in an inter-
band scattering event where one of the holes in the valence
band is filled and the other electron is excited higher into the
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conduction band. The process A� involves Coulomb scatter-
ing between one of the excited electrons in the conduction
band with one of the electrons in the filled states of the
valence band such that both holes in the valence band are
filled, but an excited hole is left behind deeper in the valence
band. The B �B�� process is just the electron �hole� exchange
counterpart of the A �A�� process. The calculation follows the
procedure introduced for excitons in bulk materials in Ref.
19. The different allowed processes are described by topo-
logically distinct Feynman diagrams shown in Fig. 2. This
allows a crisp distinction between the initial exciton states
that are left out of Fig. 1. The first class of diagrams, A and
A�, can be seen to represent electron-hole annihilation within
one exciton, while the second class, B and B�, describes an
electron �hole� recombining with the hole �electron� of the

other exciton involved in the Auger process. In addition, we
must retain the diagrams in which the initial exciton states
are exchanged. For this initial discussion, the spin degree of
freedom is ignored.

It is straightforward to show that the Feynman diagrams
generate matrix elements

MA + MA� = �
ke�,kh�

�ke�,kh�
K · VK�uv,−kh�

�uc,ke�
� · �ke+kh,K+P

	 ��ke−K,kh

P �uc,ke
�uc,ke−K�

− �ke,kh−K
P �uv,−kh

�uv,−kh+K�
 ,

MB + MB� = − �
ke�,kh�

�ke+kh,K+P

	 †Vke−ke�
�ke�,kh�

K
�ke−K,kh

P · �uv,−kh�
�uc,ke−K�

	�uc,ke
�uc,ke�

� − Vkh−kh�
�ke�,kh�

P

	�ke,kh−P
K · �uv,−kh+P�uc,ke�

��uv,−kh
�uv,−kh�

�‡ ,

�4�

where Vq is the Fourier transform of the electron-electron
interaction and represents the potential for a momentum
transfer of q. We have neglected the umklapp processes in
our derivation, which can be shown to be small following the
argument of Ref. 19 for the bulk calculation. The relative
sign between the A and B diagrams follows from their ex-
change relationship. The relative sign between the primed
and unprimed diagrams can be thought of intuitively as the
difference between effective electron-electron and electron-
hole interactions. These expressions are generally applicable
to exciton-exciton interactions, independent of dimensional-
ity.

The overlap integrals can be evaluated using k · p pertur-
bation theory.20 According to this analysis, the periodic part
of the conduction and valence band for our model can be
expressed as

�uc,k� = �uc,k0
� +

�

m0

�uv,k0
��k − k0� · p�uc,k0

�

�c,k0
− �v,k0

�uv,k0
� , �5�

�uv,k� = �uv,k0
� +

�

m0

�uc,k0
��k − k0� · p�uv,k0

�

�v,k0
− �c,k0

�uc,k0
� , �6�

where �c,k0
and �v,k0

are the energies of the conduction
and valence band at wave vector k0 and m0 is the free-
electron mass. It is apparent from the above equations that
for two electron states with relatively small momentum dif-
ference �k−k� 
 G0, where G0 is the reciprocal-lattice vec-
tor�, the overlap integral �uc,ke

�uc,ke�
��1. The overlap inte-

gral between the conduction band and valence band assumes
the form

FIG. 1. �Color online� Illustration of scattering processes lead-
ing to Auger recombination for two electron-hole pairs. The dotted
line describes a pair of electrons that scatter by their Coulomb in-
teraction. The arrows indicate the final state of the electrons after
scattering in the Auger process. Processes A and B correspond to
scattering of two electrons in the conduction band, while processes
A� and B� involve scattering of an electron in the conduction band
with an electron in the valence band.

FIG. 2. �Color online� Feynman diagrams for the Auger recom-
bination process. The solid lines with forward- �backward-� going
arrows denote electrons �holes�, and the wavy lines represent the
Coulomb interaction. Time progresses from left to right. The initial
state consists of two excitons with momenta of K and P; the final
state consists of a free electron with momentum ke and a hole with
momentum kh. The exchange of momenta K and P leads to the
other four diagrams that are not shown explicitly, but are included
in the calculation.
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�uv,−kh
�uc,ke

� =
�

m0

�uv,−kh
��ke + kh� · p�uc,−kh

�

�c,−kh
− �v,−kh

�
��ke + kh�

m0

�p�vc

Eg
. �7�

Here we assume that �c,−kh
−�v,−kh

�Eg and that
�uv,−kh

�p�uc,−kh
���uv,0�p�uc,0���p�vc. These approximations

are valid for ke, kh
 G0, corresponding to charge carriers
near the band edge and consistent with the approximate
evaluation of the final rate below.

Specializing to the case of 1D systems and using the
point-interaction potential V�r�=U ·��r� expressed in mo-
mentum space as Vq=U /L, we obtain

MA + MA� �
U

L
· ��L ·

�K

m0Eg
�p�vc�ke+kh,K+P

	��ke−K,kh

P − �ke,kh−K
P 
 , �8�

MB + MB� � − 2
U

L
· ��L ·

�ke

m0Eg
�p�vc�ke+kh,0 · �ke,kh

0 . �9�

Comparing the matrix elements of processes A, A� with B,
B�, we note that the ratio of the former to the latter differs by
a factor including K /ke. Because the initial momentum K is
determined by thermal energy, which is much smaller than
other energy scales, the processes A ,A�, make a compara-
tively small contribution to Auger recombination of tightly
bound excitons in 1D systems. The weakness of processes A
and A� can be understood intuitively as a consequence of the
fact that the Coulomb potential from the electron and hole of
the second excitons largely cancel each other out when act-
ing on the first exciton. This is not the case when the anni-
hilated electron and hole are in different excitons. We have
thus for the overall matrix element

M = MA + MA� + MB + MB� + �K ↔ P�

� MB + MB� + �K ↔ P�

= − 4
U

L
· ��L ·

�ke

m0Eg
�p�vc�ke+kh,0 · �ke,kh

0 . �10�

We can now calculate the decay rate �K,P for the Auger
recombination of two excitons with momenta K and P using
Fermi’s golden rule,

�K,P =
2�

�
�
ke,kh

�M�2�1 − nc,ke
��1 − nv,kh

� · ��EK + EP − �c,ke

− �v,kh
� �

32

ke0L
·

��2

�
	 �ke0

m0Eg
�p�vc
2	 2�2

�2 + ke0
2 
2

.

�11�

To obtain the second expression, the population factors
�1−nc,ke

� and �1−nv,kh
� for available scattering states for an

electron in the conduction band and a hole in the valence
band are taken as 1, since thermal populations at these states
are negligible. We also recognize that the energy scale of the
band gap is typically much larger than that of thermal exci-

tations. Conservation of energy and momentum then leads to
a final electron wave vector ke0=�2��Eg−2Eb� /�. Note that
at this level of approximation, the Auger rate does not de-
pend on the values of the exciton momenta K and P and
consequently the Auger rate has no dependence on tempera-
ture for a thermalized ensemble of excitons.

We can eliminate � in favor of the exciton binding energy
Eb. For convenience, we further simplify the expression by
expanding in terms of Eb/2Eg to obtain

�K,P � 512 · �vc
1

ke0L
· 	 �

m0

	Eb

Eg

3

. �12�

Here we have introduced a phenomenological rate para-
meter related to the interband transition strength,
�vc��p�vc

2 /�m0. For allowed transitions in typical materi-
als, ��vc will have a value in the order of 1 eV.

In the analysis so far, we have neglected electron spin, as
well as the multiband nature of real materials. The spin state
of the excitons in the sample will depend on the experimen-
tal conditions. In the circumstances of Ref. 11, a simple and
likely scenario for the initial state is that both excitons are
singlets, but there is no correlation between them. In this
case, the estimated Auger rate will be halved—half of the
time the electron in one exciton will have the wrong spin
relative to the hole in the other exciton and the electron-hole
annihilation in processes B and B� will be forbidden. The
multiband nature of carbon nanotube makes possible a new
process where electrons and holes are being excited to sec-
ond bands. Estimation of this rate is beyond the scope of the
present work.

For N excitations in a 1D structure of length L, the overall
Auger recombination rate can be found by considering the
rate of binary collisions. It assumes the form

�Auger =
A

L
· N�N − 1� � A · L · n2, �13�

where A is the Auger constant and n the line density of
excitons in the limit of large exciton population. Using Eq.
�12�, applicable to N=2, and inserting another factor of 1 /2
arising from spin considerations for singlet excitons, we ob-
tain the expression for the Auger constant

A = 128
�vc

ke0
· 	 �

m0

	Eb

Eg

3

. �14�

This final expression highlights the intimate relationship
between the strength of the exciton binding energy and the
rate of the Auger recombination process. Physically, one ex-
pects this behavior. Strong excitonic binding supplies the
quantum mechanical coupling to the relatively high momenta
of the final electron and hole states required in the recombi-
nation process. As in the earlier expression, within the ap-
proximations of this analysis, the Auger rate does not depen-
dent on the temperature of the excitons.

IV. DISCUSSION AND APPLICATION OF ANALYSIS TO
CARBON NANOTUBES

As a specific example, we apply our result to an attractive
physical realization of a strongly confined 1D system, single-
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walled carbon nanotubes �SWNTs�. The electronic states in
SWNTs have quantized angular momentum, with each quan-
tum number corresponding to a different van Hove subband.
For nanotubes of 1-nm diameter, all the subbands are well
separated and the coupling between the subbands due to the
Coulomb interaction is believed to be small.6 As such, we
can consider electrons and holes of only the lowest conduc-
tion and valence band and treat the Coulomb potential as
effectively one-dimensional. It has also been shown that
even for nanotubes of diameter less than 0.8 nm, the excitons
have a characteristic spatial extent of �1.2 nm,8,18 almost 10
times the lattice constant and comparable to that of bulk
ZnSe and ZnTe.21 The envelope function approach for the
excitons and the two-band effective mass model for the
single-particle states thus are reasonable.

The exciton binding energy is known experimentally18

to be Eb= �2�2

2� �300 meV, while the band-gap energy is
Eg�1.3 eV. The effective electron and hole masses are
me�mh�0.1m0 and the momentum matrix element �p�vc

�0.8��1/Å� can be estimated within the tight-binding
model.22 With these parameters, we obtain a predicted Auger
constant of A=0.6 ps−1 �m. This corresponds to an Auger
recombination lifetime of 1.7 ps for two excitons in 1-�m
long nanotube.

Considering the significant simplifications in the model,
the predicted two-exciton Auger recombination lifetime
is in good agreement with the measured11 value of 3 ps for
1-�m long nanotube. This agreement underscores the impor-
tance of enhanced electron-hole interaction and excitonic ef-
fects in 1D structures such as nanotubes, a feature intrinsic to

our model. In comparison, the calculated rate based on un-
correlated electron-hole pair as initial states is orders of mag-
nitudes lower.

In summary, we have calculated the Auger recombination
rate for excitons in neutral, strongly confined 1D nanostruc-
tures. We found that the Auger recombination rate rapidly
increases with binding energy of the exciton, a general result
for strongly confined 1D nanostructures. Furthermore, there
is no energy barrier for this Auger process and, hence, no
strong dependence on temperature, in marked contrast to the
behavior for free charge carriers. In the experimentally inter-
esting case of SWNTs, the nonradiative Auger recombination
channel can be expected to dominate the carrier dynamics
once multiple excitations are present. This situation is rel-
evant for many possible photonic applications. For instance,
the Auger process will limit the sustainable carrier densities
in SWNTs, rendering population inversion difficult to
achieve. On the other hand, the extremely rapid Auger relax-
ation suggests SWNTs application in ultrafast optics, such as
a saturable absorber for femtosecond lasers.23
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