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We investigate the ballistic spin transport in a multimode quantum wire with strong Rashba spin-orbit
coupling and an oscillating potential. A spin-resolved Floquet scattering matrix and Floquet spin density matrix
formalism is employed to study the transport properties, such as conductance and spin polarizations, of the
device. Due to the strong Rashba coupling-induced drastic change of the dispersion relation, there are quasi-
bound states formed beneath the bottom of each transverse mode. Interference between electrons through
propagating modes and via the quasibound states will give a complex structure in the transport properties. By
using an oscillating potential, the incident electrons can be trapped by or escape from the quasibound states via
photon emission or absorption. As a result, asymmetric Fano line shapes can be found in our numerical results
due to this photon-assisted interference. The properties of the mesoscopic device to retain the spin coherence
of the injected spin states are also analyzed. When only one propagating mode is permitted, the spin coherence
is well retained at static transport. However, when an oscillating potential is turned on, we found that the spin
coherence, even when only one propagating mode is permitted, will be reduced. This is due to the existence of
infinite Floquet states when the ac field is turned on. This mechanism of losing spin coherence should be taken
into account in the design and operation of the mesoscopic spintronics devices with an ac field.
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I. INTRODUCTION

Recently, much interest has been devoted to the manipu-
lation of the electron spin degree of freedom for applications
in spintronics.1,2 The electric tunable Rashba spin-orbit cou-
pling in two-dimensional electron gas �2DEG� due to the
lack of structural inversion symmetry has inspired various
proposals for nonmagnetic spintronics devices, such as spin
cells, spin modulators, and spin detectors. One prominent
paradigmatic spintronics device is the spin field-effect tran-
sistor proposed by Datta and Das.3 In the Datta-Das transis-
tor, a spin-polarized current is injected from a ferromagnetic
contact and the electron spin will be coherently modulated
by changing the strength of Rashba spin-orbit coupling via
an electric gate. Therefore, two fundamental challenges in
the Datta-Das transistor are effective spin injection and co-
herent spin manipulation. In the original proposal of Datta
and Das, a perfect spin modulation was expected in a clean
single-mode quantum wire with tunable Rashba spin-orbit
coupling. However, it is not easy for nanotechniques on the
cutting edge to have a quantum wire narrow enough to ac-
commodate only one transverse mode. For example, to
achieve single-mode operation, the quantum wire should
have a width of the order 10 nm. Therefore, the multimode
effects must be taken into account. The intermode mixing
has been proven to play an important role in modulating the
spin precession in the Datta-Das transistor.4 When the
Rashba coupling strength is strong and the influence of the
interaction between different transverse modes is taken into
account, it has been found that the modulation of spin-
dependent conductance will deviate from the sinusoidal
curve as expected in a single-mode model. On the other
hand, when electrons are passing through a multimode quan-
tum wire, the spin states in a different mode will be en-

tangled. Therefore, the multimode transport will lead to the
decay of the spin coherence of the injected current.5 A reex-
amination of the multimode transport through the Datta-Das
transistor has recently been undertaken via the scattering ma-
trix method6 or the Green function technique.4

Meanwhile, an active topic on the time-dependent meso-
scopic transport has attracted much attention. A lot of inter-
esting time-dependent phenomena have been theoretically
investigated and experimentally identified for the spinless
transport. We mention only microwave-induced zero
resistance,7–9 photon-assisted transport,10–12 and absolute
negative conductance.13,14 It is thus intriguing to explore the
spin-dependent phenomena due to the interplay of the spin-
orbit interaction and an oscillating electric field. Several
proposals for the spintronics have been put forward by
modulating the shape of the quantum dot,15 the spatial
potential,16,17 or the strength of the Rashba coupling18 via a
time-dependent gate. More recently, it was found that an ap-
plication of the terahertz electric field can induce the spin
polarization in 2DEG.19 However, the influence of the mul-
timode on the time-dependent transport has not yet been
fully investigated in previous studies. The motivation of the
present paper is thus to study the spin-dependent time-
modulated multimode transport.

In this paper, we present a multimode Floquet scattering
matrix formalism to exactly study the spin-dependent time-
modulated multimode transport in a quasi-one-dimensional
quantum wire with Rashba spin-orbit coupling. For time-
modulated single-mode transport, the Floquet scattering ma-
trix formalism has already been developed to study the spin-
less dynamics properties of mesoscopic systems.20,21

Recently, a static multimode scattering matrix method has
been developed to study spin-dependent transport, including
the influence of the interactions in different transverse
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modes.6 In what follows, we generalize the static multimode
scattering matrix formalism to the time-dependent situation
with the help of Floquet theory. After obtaining the Floquet
scattering matrix, the coherence and modulation of spin po-
larization can be readily characterized by the Floquet spin
density matrix formalism. In our model, we only consider a
quantum wire with the Rashba effect at zero temperature. A
generalization of the present formalism to the case of spin-
dependent transport through a mesoscopic device with com-
plex structure and not only the Rashba but also the Dressel-
haus effect at nonzero temperature is straightforward.

The paper is organized as follows. In Sec. II, we present
details on the spin-resolved multimode Floquet scattering
matrix formalism and the Floquet spin density matrix. In
Sec. III, the formalism presented in Sec. II is employed to
investigate the spin transport properties in a quantum wire.
Numerical results on the spin-resolved conductance and spin
polarizations are presented and discussed, with or without an
ac field. Finally, the main results of this work are concluded
and summarized in Sec. IV.

II. MODEL AND FORMALISM

We consider the spin transport in a clean quasi-one-
dimensional wire as depicted in Fig. 1. This quantum wire
can be formed by applying a confining potential of the split-
gate technique to a 2DEG in an asymmetric narrow-gap
semiconductor quantum well. Due to the inversion asymme-
try of the potential that confines the 2DEG, the spin degen-
eracy of the 2DEG is lifted by the Rashba spin-orbit cou-
pling effect, which entangles the electron spin with its
momentum. This quantum wire is lying in the x-y plane. We
assume electrons can transport ballistically in the y direction.
The width of the quantum wire is W. It consists of a central
part of length L with a spatial variable Rashba spin-orbit
coupling, which can be tuned by an external gates. This cen-
tral part is connected to two semi-infinite leads, where the
spin-orbit coupling is absent. In the following, we use a
single-electron model where the electron-electron interac-
tions are neglected. In addition, the temperature is assumed
to be zero. The electron-phonon interactions can be ne-

glected too. The effective mass Hamiltonian of the static sys-
tem can therefore be written as

H0 =
p2

2m* + U�r� + V�x� +
1

2�
���r��� � p� + �� � p���r��z,

�1�

where � represents the Rashba spin-orbit coupling strength,
� denotes the Pauli matrix vector, m* is the effective mass,
and V�x� is the confining potential. U�r� describes a general
potential profile in the conductor. Since the spatial variation
Rashba spin-orbit coupling contains the momentum operator,
Eq. �1� has to be symmetrized to guarantee the Hermitian of
the Hamiltonian.

We are interested in the case in which the device is modu-
lated by a time-periodic potential. Solution of the
Schrödinger equation will then be complicated by introduc-
ing a time-dependent field. Because the total Hamiltonian is
time-dependent, the system has no stationary eigenstates.
However, the symmetry of the Hamiltonian under discrete
time translations, t→ t+T, where T is the period of the per-
turbation, enables the use of the Floquet theorem. In the
following, we generalize the scattering matrix formalism in
Ref. 6 to investigate the spin transport in an ac driven device
with the help of the Floquet theorem11,22 and Floquet spin
density matrix formalism.5

As a first step, we divide the central part with Rashba
spin-orbit coupling into N transverse stripes along the y di-
rection, in line with Refs. 23 and 24. The width of each stripe
is narrow enough so that we can take the Rashba term and
the potential U as y-independent. Since the potentials in
stripe j vary just in the transverse x direction, the solution of
the Schrödinger equation in the stripe can be decomposed
into the transverse part and the longitudinal part. Obviously,
the longitudinal part is merely in the traveling �propagating
or decaying� wave form. A set of complete and orthogonal
eigenfunctions and their corresponding eigenenergies in the
transverse x direction can be established from a one-
dimensional Schrödinger equation in each stripe. We denote
these transverse eigenfunctions in stripe j as �n,�

j �x�. They
are determined by

�−
�2

2m*

d2

dy2 + Uj�x� + Vj�x���n,�
j �x� = En

j �n,�
j �x� , �2�

where n is the eigenstate index and �= ↑ ,↓ stands for spin
up or spin down in the z direction. Since the confining po-
tential is spin-independent, these transverse eigenstates are
spin degenerate. Uj�x� and Vj�x� are the potentials chosen to
be the y coordinate at the center of the jth stripe.

Next, we introduce a time-dependent field to modulate the
spintronics device. We assume only the central part is modu-
lated by a monochromatic field with frequency �. The
Hamiltonian for the ac part is Hac=Vac�r�cos��t�, where Vac

is the intensity of the oscillating potential. The total Hamil-
tonian then reads H=H0+Hac. Since H is periodic in time,
according to the Floquet theorem, solution of this time-
periodic Schrödinger equation can be converted into a time-
independent eigenvalue problem in a composed Hilbert
space R � T, where R is the space of functions in real space

FIG. 1. Schematic plot of the model device. Strong Rashba spin-
orbit coupling exists in the central region of length L and width W.
This device is connected to the left and right semi-infinite ideal
leads. The central part is divided into N stripes in the y direction for
the sake of numerical simulation.
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and T is the space of periodic functions with period of the
external ac field. We choose a suitable Floquet state in the
composed Hilbert space in stripe j as

�n,m,�
j = e−im�t�n,�

j �r� . �3�

The wave function for an electron with energy E can be
expanded in the complete basis of the Floquet eigenstates
given above. It should take the form

	 j = e−iEteiky�
n,m

cn,m,�
j �n,m,�

j , �4�

where k is the wave number in the y direction and cn,m,�
j is

the expanding coefficients for the given longitudinal eigen-
wave number k. Since each Floquet state can be occupied by
only one electron due to the Pauli principle, the wave func-
tion 	 j must be normalized as

��	 j		 j

 =
1

T
�

0

T

dt�
r
dr		 j	2 = 1. �5�

Here, we have used the notation ��¯

= 1
T�0

Tdt�¯
 and T
=2
 /� is the period time.

For a given energy E, we insert the wave function Eq. �4�
into the time-dependent Schrödinger equation defined by the
total Hamiltonian at stripe j,

i �
�

�t
	 j = H	 j . �6�

To find all the eigenwave numbers k and the corresponding
coefficients, we use the technique developed in previous
studies.6,23,25 By introducing auxiliary coefficients dn,m,�

j

=kcn,m,�
j and notations C j = �¯cn,m,�

j
¯ �T, D j =kC j, and �

=�2 /2m*, where �¯�T stands for the vector transpose, Eq.
�6� can lead to the following secular equation:


 0 1

S T �
C
D � = k
C

D � . �7�

Details of the derivation of this equations can be found in the
Appendix.

For a given energy E, the above secular equation gives a
set of eigenwave numbers, k�

j . Their corresponding eigenvec-
tors contain the expanding coefficients, cn,m,�

�,j . These coeffi-
cient vectors must be normalized according to Eq. �5�. The
transport properties of the device are determined by these
wave numbers and their corresponding velocity. Due to the
presence of the Rashba spin-orbit coupling, there is a shift in
the dispersion relation. The sign of the velocity will not be
identified with that of the corresponding eigenwave numbers.
A proper determination of the sign of the velocities is one of
the key points in constructing the Floquet scattering matrix
formalism. The velocity along the y direction of each eigen-
wave number has to be determined from the equation of
motion by the Hamiltonian. The velocity operator in the sys-
tem is given by

v̂y =
i

�
�H,y� =

py

m* +
��r�

�
�x. �8�

The expectation value of the velocity operator for a given k�
j

is given by

v�
j = �

n,m,�

n�,m�,��

�cn,m,�
�,j �*

���n,�
j ��k�

m* +
��r�

�
�x��n�,��

j �cn�,m�,��
�,j 
m,m�. �9�

For the purpose of constructing the scattering matrix, the set
of solutions of Eq. �7� can be divided into two subsets. The
first subset comprises right-going waves: the right-
propagating or right-decaying modes. The corresponding ei-
genvalues are denoted by kI�

j . The second subset comprises
left-going waves: the left-propagating or left-decaying
modes. The corresponding eigenvalues are denoted by kII�

j .
The mode property for a given wave number k�

j is deter-
mined by the value of the wave number k�

j and its corre-
sponding velocity value v�

j . For propagating modes, the
eigenwave numbers k� are real numbers. If the correspond-
ing velocity is greater than zero, it is the right-propagating
mode. Otherwise, it is the left-propagating mode. For eva-
nescent modes, the corresponding eigenwave numbers are
complex. The imaginary part of the eigenwave number will
be positive for the right-decaying mode or negative for the
left-decaying mode, respectively. It can be shown that the
propagating states and evanescent modes always come in
pairs, i.e., for every right-propagating or evanescent mode
there is a left-propagating or evanescent mode. The classifi-
cation of the wave modes is briefly summarized in Table I.

Now we can write down the eigenmodes in stripe j in
terms of the Floquet eigenstates as

	�
j = �

n,m,�
cn,m,�

�,j eik�
j �y−yj

0�e−im�t�n,�, �10�

where yj
0 is the reference coordinate along the y direction for

the jth stripe. The wave function in stripe j can then be
expressed as a linear combination of the obtained eigen-
modes,

� j = e−iEt/�
�
I�

aI�

j 	I�

j + �
II�

aII�

j 	II�

j � . �11�

The set of unknown coefficients �aI�

j � and �aII�

j � in stripe j
can be obtained by connecting two adjacent stripes via
proper boundary conditions. The continuity requirements on

TABLE I. Classification of the eigenmodes according to the
value of wave number k and the corresponding velocity v.

I II

k� : real v��0;
right-propagating mode

v��0;
left-propagating mode

k� : complex Im�k���0;
right-decaying mode

Im�k���0;
left-decaying mode
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the electron wave function and flux at the interface between
stripe j and stripe j+1 are written as

	� j
y=yj+1
0 = 	� j+1
y=yj+1

0 , �12�

v̂y
j 	� j
y=yj+1

0 = v̂y
j+1	� j+1
y=yj+1

0 . �13�

These equations lead to a set of linear equations containing
the unknown coefficients in two adjacent stripes. A transfer
matrix can then be constructed to connect coefficients in the
stripe j and that in the stripe �j+1�,


AI
j

AII
j � = M�j, j + 1�
AI

j+1

AII
j+1 � , �14�

where AI
j and AII

j are coefficient vectors containing �aI�

j � and
�aII�

j �, respectively. It can be shown that the transfer matrix
M�j , j+1� can be written as

M�j, j + 1� = 
�I
j 0

0 �II
j �−1
PI

j PII
j

QI
j QII

j �−1
PI
j+1 PII

j+1

QI
j+1 QII

j+1 � ,

where

��I
j�I�I�

= eikI�

j lj
,

��II
j �II�,II�

= eikII�

j lj
,

�PI
j�n,m,�;I�

= cn,m,�
I�,j ,

�PII
j �n,m,�;II�

= cn,m,�
II�,j ,

�QI
j�n,m,�;I�

= �
n�

��kI�

j

m* cn�,m,�
I�,j 
nn� +

�nn�

�
cn�,m,−�

I�,j � ,

�QII
j �n,m,�;II�

= �
n�

��kII�

j

m* cn�,m,�
II�,j 
nn� +

�nn�

�
cn�,m,−�

II�,j � .

�15�

The total transfer matrix connecting the expansion coeffi-
cients of the electron wave functions in the left and right
leads can be found from matrix multiplication of the indi-
vidual matrices connecting adjacent stripes as

M�L,R� = M�L,1� � �
j=1

N−1

M�j, j + 1� � M�N,R� , �16�

where M�L ,1� and M�N ,R� are the two transfer matrices that
couple the wave function in the conductor and that in the two
leads. All the transport properties can be derived from the
information of the transfer matrix. However, it is well know
that the transfer-matrix method suffers numerical instability
due to the exponential terms in the formalism. This short-
coming can be overcame by converting the transfer matrix to
the corresponding scattering matrix23,26 which connects the
outgoing waves from the conductor with the incoming waves
as


AI
R

AII
L � = S�L,R�
AI

L

AII
R � = 
S11�L,R� S12�L,R�

S21�L,R� S22�L,R�
�
AI

L

AII
R � .

�17�

We refer to Refs. 23 and 26 for a detailed description on the
procedure of converting the transfer matrix into the desired
scattering matrix.

We are interested in the spin transport properties at zero
temperature. A transmission matrix T can be established with
the help of the scattering matrix S11�L ,R� which connects the
incoming right-propagating waves in the left lead and the
outgoing right-propagating modes in the right lead. The ma-
trix element tn,m,�;n�,m�,�� in T is the transmission amplitude
and can be given by

tn,m,�;n�,m�,�� = �� kn,m,�

kn�,m�,��
S11�L,R�n,m,�;n�,m�,��, E � max�En − m � �,En� − m� � ��

0 otherwise.

�18�

The condition E�max�En−m�� ,En�−m���� guarantees
that both the incoming and outgoing modes are propagating
modes. The wave numbers in the propagating modes are
real and determined by the relation kn,m,�

=�2m*�E−En+m��� /�. Elements of the transmission ma-
trix that describe the injection or collection of electrons in
the evanescent modes are set zero. Since the terms in S11

describe only the transmitted wave amplitude, the factor
� kn,m,�

kn�,m�,��
has to be used to satisfy the prerequisite of the cur-

rent conservation and make the Floquet scattering matrix

unitary, where �n ,m ,�� and �n� ,m� ,��� are indices in the
perfect right lead and left lead, respectively. The matrix ele-
ment tn,m,�;n�,m�,�� has a straightforward physical meaning. It
describes the probability of an electron appearing at the
	n ,m ,�
 mode in the right lead after it was injected to the
	n� ,m� ,��
 mode from the left lead.

From the transmission matrix, we can calculate the �spin-
resolved� conductance of the mesoscopic device. Let us con-
sider electrons with spin state � that are incident from the
left with a fixed Fermi energy E. Only the elements
AI

L�n ,0 ,��=1 are nonzero, where n is the index of permitted
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propagating modes and satisfies E�En. When the electrons
are transported through the device, electrons can be scattered
into different propagating Floquet states in the right lead in-
volving multiphoton emission or absorption. The spin-
resolved partial conductance can be found from the
Landauer-Büttiker formula as

G�,�� =
e2

h
�

n,m;n�

	tn,m,�;n�,0,��	
2. �19�

G�,�� describes transmitted electron flux at the � state in the
right lead when only spin �� electrons at Fermi energy E are
injected from the left lead.

In determining the spin-resolved partial conductance in
Eq. �19�, only the amplitude of the transmission matrix ele-
ment is needed. However, the output electron states are rel-
evant not only to the amplitude but also to the phase of the
transmission matrix elements. Suppose partially polarized
currents are injected from the left lead. The spins are in the
mixed quantum states

�̂i = n↑	↑
�↑ 	 + n↓	↓
�↓ 	 . �20�

For the fully �-spin-polarized injection, one has n�=1 and
n�̄=0. On the other hand, for the unpolarized injection, one
has n↓=n↑= 1

2 . For the transmitted electron flux, the spin
density matrix5 can be written, in terms of the transmission
matrix, as

�̂o =
1

n↑	t�↑;��↑	
2 + n↓	t�↑;��↓	

2 + n↑	t�↓;��↑	
2 + n↓	t�↓;��↓	

2 � �
���

n↑	t�↑;��↑	

2 + n↓	t�↑;��↓	
2 n↑t�↑;��↑t�↓;��↑

* + n↓t�↑;��↓t�↓;��↓
*

n↑t�↑;��↑
* t�↓;��↑ + n↓t�↑;��↓

* t�↓;��↓ n↑	t�↓;��↑	
2 + n↓	t�↓;��↓	

2� ,

�21�

where we have used the notation �= �n ,m� and ��= �n� ,0�
for simplicity. The incident electrons are in the zero-photon
Floquet states. Therefore, we have set m�=0 in ��. To inves-
tigate the spin transport, we need all the information on spin
polarization in different directions. The spin density matrix
formalism enables us to have a direct algorithm to obtain the
explicit formulas for this information. With the help of the
spin density matrix, the output flux spin polarization can be
easily obtained from

P� = Tr����̂o� , �22�

where �=x ,y ,z and �� are the Pauli matrices. The coherence
of the spin states can be evaluated from the magnitude of the
spin-polarized vector,

P = �Px
2 + Py

2 + Pz
2. �23�

P=1 for fully spin polarized current while P�1 for partially
polarized current. The decay of the spin coherence can be
characterized by measuring the reduction of P.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we apply the formalism presented above to
investigate the spin transport with the influence of an ac
field. Numerical results on the conductance and the spin po-
larization are presented to explore the time-modulated effects
on the spin transport in the multimode quantum wire. In our
numerical calculation, material parameters are chosen to be
consistent with the InGaAs-InAlAs based narrow-gap het-
erostructures. The electron effective mass m*=0.042m0,
where m0 is the free-electron mass. The Rashba coupling
strength in the central region is �=4�10−11 eV m.27,28 The
geometry parameters of the conductor are width W

=100 nm and length L=250 nm. The potential in the con-
ductor U is assumed to be zero for simplicity. We choose a
hard-wall confinement potential in the transverse direction as

V�x� = � 0, 	x	 � W/2

� , 	x	 � W/2
. �24�

The transverse eigenfunctions are then given by

�n,��x� = ��
2

W
sin�n


W

x +

W

2
�� , 	x	 �

W

2

0, 	x	 �
W

2
,�

n = 1,2, . . . .

The corresponding eigenenergies are simply given by

En =
�2

2m*
n


W
�2

.

For the parameters chosen above, the first transverse mode
energy is approximately given by E1=0.89 meV. We will use
E1 as an energy unit in the following discussions. The nth
transverse mode energy is n2E1. In the calculation, one has to
truncate the infinite number of Floquet states used in the
above formalism. In the actual numerical results, the number
of the transverse modes and the minimum number of photon
sidebands that need to be included are determined on the
convergence of the desired transport quantities. For a higher
Fermi energy or a higher ac field strength, the numerical
calculations will be more CPU consuming since a larger
number of the transverse modes and Floquet states should be
included.
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A. Quasibound states induced transmission resonance

We are interested in the features caused by the interplay
of strong Rashba spin-orbit coupling and the external ac field
to the quantum wire. As a first step, for the sake of compari-
son, we apply the formalism presented above to a static
quantum wire with strong Rashba spin-orbit coupling ��=4
�10−11 eV m�. Obviously, when the ac field vanishes, the
Floquet scattering matrix formalism is reduced to results pre-
sented in Ref. 6. Let us consider the situation in which only
the spin-up electrons are injected from the left lead, i.e., n↑
=1 and n↓=0. The strong Rashba spin-orbit coupling can
lead to a drastic change in the dispersion relation of the
transverse modes and therefore the transport properties of the
quantum wire. The presence of strong Rashba spin-orbit cou-
pling in the device will contribute to the system an effective
spin-dependent potential. Therefore, the transverse mode
number and longitudinal wave numbers in the ideal leads are
no longer good ones in the central part. There will be quasi-
bound states formed just beneath the transverse mode
bottom.6,29 Interference between electrons passing through
the device with the Rashba term via propagating modes and
those via the quasibound states can lead to asymmetric reso-
nance dips in the spin-resolved conductance results. On the
other hand, the strong Rashba coupling is expected to have a
fundamental impact on the spin modulation due to the strong
Rashba coupling-induced large mixing between different
transverse modes.

Numerical results on the total conductance and spin po-
larizations in the x, y, and z direction as a function of the
Fermi energy E �in units of the energy of the first transverse
mode E1� are displayed, respectively, in Fig. 2. In Fig. 2�a�,
the conductance results deviate from the perfect steplike con-
ductance quantization in an ideal ballistic wire as predicted
by the Landauer formula. The complex curve of conductance
indicates the nontrivial intermode mixing as discussed in

Ref. 6. One can identify sharp conductance dips at energies
just beneath the bottom of each transverse mode where com-
plicated transverse mode mixing is expected. Particularly,
very fast spin polarization oscillations can be found around
these energy levels as shown in Figs. 2�b�–2�d�. Contrary to
the predictions in the single-mode Datta-Das transistor
model, the calculated spin polarizations Px, Py, and Pz dis-
played in Fig. 2 are all sensitive to the change of the Fermi
energy. Especially, at energies near the transverse mode bot-
tom, the output spin polarizations show drastic oscillations
due to the interference effects as discussed above. This is
different from the expectations at weak Rashba coupling,3

where the outgoing polarization is almost independent of the
Fermi energy.

Since the quasibound states induced asymmetric transmis-
sion resonance dips appears below the onset energy of the
transverse mode and the propagating electrons must have
energies higher than the first transverse mode eigenenergy,
one cannot identify in Fig. 2 the transmission resonance dips
due the quasibound states formed by the first transverse
modes.6 In the following, we show that by applying the ac
field, we can identify the asymmetric transmission resonance
line shapes caused by the formation of quasibound states
near the first transverse mode bottom due to photon assisted
transport.

In Fig. 3, we depict the conductance and the spin polar-
izations in different directions as a function of energy of
incident electrons with the ac frequency of ��=5E1 which is
in the terahertz region. The intensity Vac=1E1. All the other
parameters are the same as those in Fig. 2. Comparing the
conductance result in Fig. 3�a� with that of Fig. 2�a�, one can
find that three transmission resonances formed at energies
around E=5.6E1. These transmission resonances show asym-
metric Fano line shapes,30 where sharp dips are followed by
peaks. These resonances result from the transition and inter-

FIG. 2. Conductance G↑=G↑↑+G↓↑ for up-spin injection and
spin polarizations in the x, y, and z directions at vanishing oscillat-
ing potential as a function of the Fermi energy E �in units of the
energy of the first transverse mode energy�. The Rashba strength is
�=4�10−11 eV m. The width of the quantum wire is W=100 nm.
The length of the central device is L=250 nm. Only spin-up elec-
trons are injected into the device.

FIG. 3. Conductance G↑=G↑↑+G↓↑ for up-spin injection and
spin polarizations in the x, y, and z directions with the influence of
an oscillating potential as a function of the Fermi energy E �in units
of the energy of the first transverse mode energy�. The model pa-
rameters are the same as those given in Fig. 2 except that the os-
cillating frequency ��=5E1 and the intensity of the oscillating field
Vac=1 E1 are used in the calculations.

B. H. WU AND J. C. CAO PHYSICAL REVIEW B 73, 245412 �2006�

245412-6



ference of electrons among Floquet states.31 When the en-
ergy E of the incident electrons equals the summation of the
quasibound states energy EQB and one or more photons with
the frequency of the external ac field,

EQB + m � � = E, m = ± 1, ± 2, . . . , �25�

where the m�0 and m�0 indicate, respectively, the absorp-
tion and emission of 	m	 photons, the electrons are able to
transit to or escape from the quasibound states via photon-
assisted transport. Electrons with energy around E=5.6E1
can emit one photon and drop to the quasibound states
formed beneath the first transverse mode. In a similar way,
electrons in the quasibound states can also absorb m photons
and jump to a Floquet state. The transmission resonances in
Fig. 3 around 5.5E1 are direct examples of this photon-
assisted Fano interference. This photon-assisted Fano inter-
ference also leaves fingerprints in the spin polarizations re-
sults, as can be seen from Figs. 3�b�–3�d�. Very sharp
asymmetric line shapes in the results of spin polarization
appear at energies where the interference takes place. Our
numerical results show that by tuning the external ac fre-
quency, the positions of transmission Fano resonances will
be shifted in accordance with Eq. �25�. Therefore, Eq. �25�
suggests an effective way to determine the position of the
quasibound states via applying a high-frequency oscillating
potential.

Despite the asymmetric resonance line shapes caused by
trapping electrons to the quasibound states, one must note
that electrons in the quasibound states can also escape via
photon absorption or emission to a propagating channel. This
mechanism will lead to drastic changes of the transport prop-
erty at energy levels of the quasibound states. As an example,
this effect can be seen more clearly by comparing Px in Fig.
2�b� and 3�b�. Very large polarizations in the x directions can
be induced near the bottoms of the second and third trans-
verse modes where quasibound states exist if we turn on the
ac field. Note that the scales of Px in Fig. 2�b� and 3�b� are
different. Since these drastic changes take place at the qua-
sibound state levels, they will not shift with the ac frequency.
This property was also verified in our numerical results,
which are not presented here.

Therefore, there are two types of drastic change to the
transport properties due to an external ac field. For the asym-
metric line shapes caused by trapping electrons to the quasi-
bound states via photon emission or absorption, the positions
of these line shapes are determined by Eq. �25� and therefore
can be tuned by changing the frequency of the ac field. How-
ever, for the second type, the energy positions of the drastic
change caused by pumping electrons out of the quasibound
state will not shift by tuning the ac frequency.

B. Spin coherence in transport through the quantum wire

In spintronics, one key figure of merit is the coherence of
the spin states. A lot of spintronics devices based on the
microscopic spin-orbit couplings are proposed to utilize the
ballistic transport to avoid such detrimental effects as disor-
der and maintain a good spin coherence. To quantify the
degree of coherence of transported spin states in a mesos-

copic device, the magnitude of the spin polarization vector P
has to be evaluated.5 In Figs. 4 and 5, we present the calcu-
lated magnitude of the spin polarization vector as a function
of the Fermi energy without or with the ac field, respectively.
The parameters used in the numerical calculations are the
same as those in Figs. 2 and 3. Only spin-up electrons are
injected from the left lead.

For the situations without ac field, the spin coherence has
been numerically investigated and discussed in Ref. 5. In
Fig. 4, we show the magnitude of the spin polarization vector
as a function of the Fermi energy where the ac field vanishes.
When only the first transverse mode is open, the spin state
maintains its coherence �P=1� after passing through the
quantum wire with strong Rashba coupling. This is due to
the fact that if there is only one propagating mode in the
lead, the outgoing electrons have to stay in the single trans-
verse mode.5 When the energy is high enough to include the
second transverse mode, the spin polarization loss its purity

FIG. 4. Magnitude of the spin polarization vector P at vanishing
oscillating field as a function of the electron Fermi energy E. The
parameters are identical to those given in Fig. 2.

FIG. 5. Magnitude of the spin polarization vector P with the
influence of an oscillating field as a function of the electron Fermi
energy E. The parameters are the same as those given in Fig. 3.
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and P�1. This loss of spin coherence can be ascribed to the
entanglement of the spin states in different transverse modes
due to the Rashba coupling-induced mode mixing effects. In
the multimode transport, incident electrons with the same
velocity can be scattered into different transverse modes and
possess different speed and phase properties at the outgoing
lead, resulting in the loss of spin coherence. This mechanism
of the reduction of spin coherence has been proven to affect
the operation of any multimode mesoscopic device,5 regard-
less of whether the relation between the Rashba term and the
Dresselhaus term or the device region is clear or not. When
we increase the Fermi energy, P does not show a monotonic
decrease. Especially, one can find rapid oscillations of P at
energies around the quasibound state formed at the higher
transverse mode bottom in Fig. 4.

In the above analysis, we note that the mixing between
spin states in different transverse modes will lead to a drop
of the purity of injected spin states. When we have an ac
field, electrons can transport via a set of infinite Floquet
channels. It is now interesting to ask whether these Floquet
channels will lead to the loss of spin coherence in the ab-
sence of intermode mixing. It is important to study the spin
coherence in the presence of an ac field since many spintron-
ics proposals have relied on photon-assisted transport. In Fig.
5, we show that when the ac field is turned on, the magnitude
of the spin polarization will be lowered regardless of the
propagating mode number. This is not surprising since we
have included a set of infinite Floquet states due to the exis-
tence of an ac field even in the case of single mode transport.
When the electrons are injected with energies E lower than
the second transverse modes, they can be scattered to the
propagating modes in the right lead with energies of E
+m�� via m-photon absorption and gain different velocity
and phase properties. The Rashba term will entangle all these
spin states in the Floquet states. Therefore, the spin polariza-
tion will lose its purity even if the electrons are only injected
from the lowest transverse mode. By increasing the intensity
of the ac field, a large reduction of the spin coherence occurs
since a strong ac field inclines electrons to jump to the other
Floquet states via photon absorption. Furthermore, at ener-
gies where the photon-assisted transition to the quasibound
states occurs, the magnitude of the spin polarization vector
shows a very sharp peak. This occurs because electrons at
those energies satisfying Eq. �25� can easily be scattered to
the quasibound states, which are not propagating modes and
make no contribution to the transport. This effectively de-
creases the impact of mixing between different Floquet states
and therefore increases spin purity P. This mechanism of
losing spin purity must be taken into account in the design
and operation of the mesoscopic spintronics devices with an
ac field even if only one mode is included. One has to choose
a proper ac frequency and intensity for spintronics to enable
the photon-assisted transport and, at the time, retain the co-
herence of the incident spin states.

IV. CONCLUSION

In conclusion, we have presented a general spin-resolved
Floquet scattering matrix formalism to investigate the spin

transport properties in quantum wires with strong Rashba
spin-orbit coupling. Due to the strong Rashba coupling-
induced drastic change of the dispersion relation, there are
quasibound states formed beneath the bottom of each trans-
verse mode. Interference between electrons through propa-
gating modes and via the quasibound states will give a com-
plex structure in the transport properties. By using an
oscillating potential, the incident electrons can be trapped by
the quasibound states via photon emission or absorption. As
a result, asymmetric Fano line shapes can be found in our
numerical results due to the photon-assisted interference. The
properties of the mesoscopic device to retain the spin coher-
ence of the injected spin states are also analyzed. When the
oscillating potential is turned on, the spin coherence will be
reduced due to the set of infinite Floquet states, even when
the Fermi energy is lower than the second transverse mode.
This mechanism of losing spin coherence should be taken
into account in the design and operation of the mesoscopic
spintronics devices with an ac field.
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APPENDIX A

In this appendix, we will explain the details in deriving
Eq. �7�. By inserting the wavefunction given in Eq. �4� and
matching the left hand side and the right hand side of the
Schrödinger equation �6�, we can obtain


E + m � � − En
j −

�2k2

2m* �cn,m,�
j

= �
n�,��


k�nn�
j + ��nn�

j +
�

2
�nn�

j �
�
�,−��cn�,m,��

j + �
n�

Unn�
j cn�,m,�

j

+ �
n�

Vac;nn�
j

2
�cn�,m+1,�

j + cn�,m−1,�
j � , �A1�

where we have used the following notations:

�nn�
j = ��n,��� j�x�

�

�x
��n�,�� ,

�nn�
j = ��n,�� �� j�x�

�x
��n�,�

j � ,

�nn�
j = ��n,�	� j�x�	�n�,�
 ,

Unn�
j = ��n,�	Uj�x�	�n�,�
 ,
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Vac;nn�
j = ��n,�	Vac

j �x�	�n�,�
 . �A2�

Equation �A1� defines a set of linear equations that couple
the expanding coefficients of different index �n ,m ,��. On
the right hand side of Eq. �A1�, the first term represents the
intra- or intermode spin state mixing due to the Rashba spin-
orbit coupling. The second term describes the mixing be-
tween different modes due to the spin-independent potential
in the conductor region. The third term on the right hand side
stands for the interaction between different Floquet states
due to the external ac field. It is more useful to write Eq.
�A1� into a matrix form. After some algebra, Eq. �A1� finally
leads to the secular equation as Eq. �7�, whose matrix ele-
ments are given by

Sn,m,�;n�,m�,�� =
1

�
�E + m � � − En�
n,n�
m,m�
�,��

− Unn�
j 
m,m�
�,�� −

1

�
��n,n�

j 
m,m�
�,−��

−
1

�

�

2
�n,n�

j 
m,m�
�,−��

−
1

�

Vac;nn�
j

2

�,���
m,m�+1 + 
m,m�−1� , �A3�

Tn,m,�;n�,m�,�� = −
1

�
�n,n�

j 
m,m�
�,−��. �A4�
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