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We present a theoretical study of the electronic structure of a Cd1−yMnyTe quantum dot with Rashba
spin-orbit coupling in the presence of a magnetic field. The multiband k ·p theory is used to describe electrons
in Rashba spin-orbit coupling regimes and an external magnetic field, taking into account the sp–d exchange
interaction between the carriers and the magnetic ions. We calculated the radius, the thickness, and the
magnetic field dependence of Rashba splitting for electrons. We find that the energy levels of electrons for
different Mn concentrations exhibit quite different behavior as a function of magnetic field.
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I. INTRODUCTION

Spin-dependent phenomena have recently attracted con-
siderable and continuous attention as they are the key con-
cept in modern spintronics. A spin field-effect transistor pro-
posed by Datta and Das1 is based on the fact that spin
precession can be controlled by an external field due to the
spin-orbit interaction. In a crystal with bulk inversion asym-
metry �BIA� the energy bands are spin split for a given di-
rection of the wave vector k. In semiconductor heterostruc-
tures the spin splitting may also occur2 as a result of the
structural inversion asymmetry �SIA�, as was discussed in an
early paper by Rashba.3 Novel spin properties arise from the
interplay between Rashba spin splitting and further confine-
ment of two-dimensional electrons in quantum wires4–7 or
dots.8–11 In Refs. 12–14 a solution was found to the problem
of the Rashba spin-orbit coupling in semiconductor quantum
dots, and the energy spectrum, wave functions, and spin-flip
relaxation times were calculated using perturbation theory.
Additionally, the spin splitting of the subbands can be en-
hanced by introducing magnetic ions �Mn� in the quantum
well, quantum wire, and quantum dot structures, e.g.,
Cd1−yMnyTe diluted magnetic semiconductor �DMS� struc-
tures.

DMS provides us with an interesting possibility for tailor-
ing the spin splitting and the spin polarization due to the
strong sp–d exchange interaction between the carriers and
the local magnetic ions.15,16 The spin splitting in the DMS
system can be tuned by changing the external magnetic field.
DMSs are among the best candidates to combine semicon-
ductor electronics with magnetism. In DMS the Lande g fac-
tor is a function of the applied magnetic field, the tempera-
ture, and the molar fraction y.17 For instance, for low field
values g�H→0�=−0.5 in CdTe and g�H→0�= +100 in
Cd0.98Mn0.02Te at helium temperatures. Recently, the incor-
poration of Mn ions into the crystal matrix of different II-VI
semiconductors lead to the successful fabrication of DMS
quantum dots and magnetic DMS hybrid structures.18–23

Low-dimensional DMS structures have been the subject of a
few studies.24–27 The electron and hole states in DMS quan-
tum dots have been investigated in Ref. 25. The optical prop-
erties of DMS quantum dots were studied within the frame-
work of the effective-mass theory.26 The band structure of

the semimagnetic Hg1−yMnyTe quantum well has been cal-
culated in Ref. 28.

In this paper we present a theoretical study of the elec-
tronic structure of a DMS cylindrical quantum dot with
Rashba spin-orbit coupling in weak and quantizing magnetic
fields. The calculation is done using the multiband k ·p
theory and taking into account the sp–d interaction between
the carriers and the magnetic ions. Numerical results are pre-
sented for Cd1−yMnyTe quantum dots. The results were com-
pared with a nonmagnetic semiconductor �NMR� CdTe �Mn
free case y=0� quantum dot. The paper is organized as fol-
lows. In Sec. II the theoretical model and formalism are pre-
sented. In Sec. II A we consider the model for nonquantizing
as well as for zero external magnetic fields. In Sec. II B the
electron levels in the quantizing magnetic field are consid-
ered. In Sec. III we present the numerical results along with
the discussion. A brief conclusion is given in Sec. IV.

II. MODEL AND FORMALISM

We consider the Kane type DMS Cd1−yMnyTe quantum
dot with the z axis along the growth direction. We describe
the confinement of electrons in quantum dots by a separable
potential V�r��=V�z�+V�x ,y�, where V�x ,y� is the confine-
ment potential in the xy plane and V�z� is the potential in the
z direction. The confining potential in the xy plane is as-
sumed to be symmetric, V�x ,y�=V���. Here we will mainly
consider a hard-wall confining potential in the xy plane,
V���=� for ��r0 and V���=0 for ��r0, r0 being the radius
of the quantum dot. The perpendicular confinement V�z� is
assumed strong enough that only the lowest z-subband is
occupied. Here V�z� is assumed to be asymmetric. We con-
sider an eight-band k ·p model of the band structure at k=0
�� point�. The �6 subband is separated by the energy gap �g
from the fourfold degenerate �8 subband ��g=���6�
−���8��, which is, in turn, split off by the spin-orbit interac-
tion � from the �7 subband ��=���8�−���7��. The spin-
orbit interaction for the �6 conduction band is given by
Rashba term29,30

H6c
SO =

1

2
Rc��n � k� · 	� , �1�
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where k is the momentum operator, Rc is the coupling
strength for conduction band, n is the unit vector in the
growth direction, and 	= �	x ,	y ,	z� denotes the Pauli spin
matrices.

The Rashba model �1� can be derived by purely group-
theoretical means. The electron states in the lowest conduc-
tion band are S like �orbital angular momentum l=0�. With
spin-orbit �SO� interaction the total angular momentum is
j=1/2. Both k and n are polar vectors and �n�k� is an axial
vector. Likewise, the spin matrices 	x ,	y ,	z form an axial
vector 	. The dot product �1� of �n�k� and 	 therefore
transforms according to the identity representation �1, in
accordance with the theory of invariants of Bir and Pikus.31

In the �6 conduction band the scalar triple product �1� is
the only term that is compatible with the symmetry of the
band.

Here, we will neglect the bulk inversion asymmetry
�Dresselhaus effect� and consider only the structure inversion
asymmetry, as the latter can dominate in quantum dots ob-
tained in a heterostructure8,9 of interest in this paper.

In CdTe-based structures, the strong coupling between the
s-like conduction and p-like valence band causes mixing of
the electronic states and induces nonparabolicity in the con-
duction bands. These effects were taken into account by
Kane in the framework of the k ·p theory.32 In order to con-
sider the coupling between the �7, �8, and �6 subbands we
choose usual eight-band Bloch basis set33

U1�r� = iS
1, U2�r� = iS
2,

U3�r� = −
1
�2

�X + iY�
1,

U4�r� = −
1
�6

��X + iY�
2 − 2Z
1� ,

U5�r� =
1
�6

��X − iY�
1 + 2Z
2� ,

U6�r� =
1
�2

�X − iY�
2,

U7�r� = −
1
�3

��X + iY�
2 + Z
1� ,

U8�r� =
1
�3

��X − iY�
1 − Z
2� , �2�

where


1 = �1

0
� and 
2 = �0

1
�

are spin functions corresponding, respectively, to up and
down. For the chosen basis set, the Kane Hamiltonian ne-
glecting quadratic terms takes the following form:

Hkp =

è
ç
ç
ç
æ − � 0 −

Pk+

�2
�2

3
Pkz

Pk−

�6
0 −

Pkz

�3

Pk−

�3

0 − � 0 −
Pk+

�6
�2

3
Pkz

Pk−

�2
−

Pk+

�3
−

Pkz

�3

−
Pk−

�2
0 − � − �g 0 0 0 0 0

�2

3
Pkz −

Pk−

�6
0 − � − �g 0 0 0 0

Pk+

�6
�2

3
Pkz 0 0 − � − �g 0 0 0

0
Pk+

�2
0 0 0 − � − �g 0 0

−
Pkz

�3
−

Pk−

�3
0 0 0 0 − � − � − �g 0

Pk+

�3
−

Pkz

�3
0 0 0 0 0 − � − � − �g ø

÷
÷
÷
ö

, �3�

HASHIMZADE, BABAYEV, AND MEHDIYEV PHYSICAL REVIEW B 73, 245321 �2006�

245321-2



where P=−i �

m0
�S	pz	Z
 is the Kane momentum matrix ele-

ment and k±=kx± iky, k=−i�. The energy origin has been
chosen at the conduction-band minima.

In the presence of a magnetic field, the sp–d exchange
interaction of the S and p band electrons with the 3d5 elec-
trons of Mn2+ in the Cd1−yMnyTe layer influences the band
structure of the quantum dot. Such an interaction can be
taken into account by adding an appropriate exchange term
Hex to the Hamiltonian in accordance with Refs. 16 and 17,

Hex = �
Ri

J�r − Ri�Si	 , �4�

where Ŝi and 	 are spin operators of the ith magnetic ion
�say, Mn2+ in Cd1−yMnyTe� and band electrons, J�r−Ri� is
the electron-ion exchange integral, and vectors r and Ri de-
fine the coordinates of the band electron and of the Mn2+

ions. In Eq. �4� the sum is taken over all Mn2+ ions. Since the

electron wave function is extended, the spin operator Ŝi can
be replaced by the thermal average over all states of Mn
moments �Sz
 for a magnetic field in z direction �mean field

approximation�. Furthermore, within the virtual crystal ap-
proximation, J�r−Ri� can be replaced by yJ�r−R�, where y
is the mole fraction of Mn, and the sum is now taken over all
cation sites.16 The exchange term �4� then becomes

Hex = y	z�Sz
�
R

J�r − R� . �5�

The thermodynamic average �Sz
 of the z-component of a
localized Mn spin in the approximation of noninteracting
magnetic moments is determined by the empirical
expression16,17

�Sz
 = − S0B5/2� SgMn�BH

kB�T + T0�� , �6�

where B5/2�� is the Brillouin function, S=5/2 corresponds
to the spins of the localized 3d5 electrons of the Mn2+ ions,
gMn is the g-factor of Mn, and kB is the Boltzmann constant.
The effective spin S0 and the effective temperature T+T0
account for the existence of clusters and antiferromagnetic
interaction between Mn ions. The Hex matrix in terms of the
above Bloch functions has the form

Hex =�
3Ar 0 0 0 0 0 0 0

0 − 3Ar 0 0 0 0 0 0

0 0 3A 0 0 0 0 0

0 0 0 A 0 0 − 2�2A 0

0 0 0 0 − A 0 0 2�2A

0 0 0 0 0 − 3A 0 0

0 0 0 − 2�2A 0 0 − A 0

0 0 0 0 2�2A 0 0 A

 , �7�

where

A =
1

6
N0�y�Sz
 , �8�

� = �X	J	X
 = �Y	J	Y
 = �Z	J	Z
 , �9�

� = �S	J	S
 , �10�

and

r =
�

�
. �11�

Here, N0 is the number of the unit cells per unit volume; and
� and � are constants which describe the exchange interac-
tion according to the s–d and p–d exchange integrals, re-
spectively. Usually, the absolute value of N0� is considerably
greater than N0�.

A. Electron energy levels in nonquantizing magnetic field

In this section we consider energy levels of DMS QD in
nonquantizing magnetic field, where the influence of a mag-
netic field on electron levels is taken into account only
through the contribution of the exchange interaction and
Zeeman term. We present the total Hamiltonian as

H = Hkp + Hex + HR + Hz
* + V�r��I , �12�

where I is an 8�8 unit matrix. Hz
* and HR are the Zeeman

and Rashba terms, respectively. These terms are 8�8 matri-
ces and have the following nonzero elements

�Hz
*�11 = sH

* /2, �Hz
*�22 = − sH

* /2, �13�

�HR�12 = −
iRck−

2
, �HR�21 =

iRck+

2
, �14�

where
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sH
* = g*�BH , �15�

g* is the electron effective g-factor in CdTe, and �B is the
Bohr magneton.

We want to apply the Hamiltonian H to the two equations
for the �6 conduction band. The wave function �, which is a
vector of eight envelope functions �1�r� , . . . ,�8�r� is an
eigenfunction of Eq. �12�. Therefore we should exclude all
valence band envelopes, i.e., �3�r� , . . . ,�8�r� from Eq. �12�.
After averaging in the z direction, for the lowest subband we
obtain the following set of two equations for the envelopes
�1�r� and �2�r�:

�H11 + sH
* /2 − � − iRk−

iRk+ H22 − sH
* /2 − �

���1�r�
�2�r�

� = 0, �16�

where R=2Rc and

H11 = 3Ar +
P2

2L−k+k− +
�F+ + 2L+�P2

6�D−M+ − 2T2�
k−k+

+
�2F+ + L+�P2�kz

2

3�D+M− − 2T2�

, �17�

H22 = − 3Ar +
P2

2L+k−k+ +
�F− + 2L−�P2

6�D+M− − 2T2�
k+k−

+
�2F− + L−�P2�kz

2

3�D−M+ − 2T2�

. �18�

In Eq. �16� some terms are proportional to the operator kz,
and after averaging in the z direction these terms are zero
because �kz
=0 for a single subband; also, �kz

2
�� �
d

�2, where
d is the confinement length in the z direction.11,42

Here, the following notations are used:

D± = � + �g + � ± A , �19�

F± = � + �g + � ± 3A , �20�

L± = � + �g ± 3A , �21�

M± = � + �g ± A , �22�

T = 2A . �23�

We consider a DMS quantum dot modeled as a quantum
cylinder with the radius r0 and the thickness d. Because of
the symmetry of the problem it is convenient to use cylindri-
cal coordinates, �� ,��.

As the Hamiltonian of Eq. �16� commutes with the z pro-

jection of the total momentum operator Ĵz=Lz+ 1
2	z and the

system is cylindrically symmetric the wave functions can be
represented as

��1��,��
�2��,��

� = � eim�f���
ei�m+1��g���

� , �24�

where m=0; ±1, ±2,¼ is the quantum number related to the
projection of the angular momentum on the z direction. Sub-
stitution of Eqs. �24� into Eqs. �16� yields the following sys-

tem of second-order ordinary differential equations:

��2 d2

d�2 + �
d

d�
− �2r1

0 + �2�1
0 − m2� f���

+ R1
0�2� d

d�
+

m + 1

�
�g��� = 0,

��2 d2

d�2 + �
d

d�
+ �2r2

0 + �2�2
0 − �m + 1�2�g���

− R2
0�2� d

d�
−

m

�
� f��� = 0. �25�

In Eqs. �25� we have introduced following parameters:

r1
0 =

�3Ar + sH
* /2�

P2� 1

2L− +
F+ + 2L+

6�D−M+ − 2T2��
, �26�

r2
0 =

�3Ar + sH
* /2�

P2� 1

2L+ +
F− + 2L−

6�D+M− − 2T2��
, �27�

�1
0 =

�

P2� 1

2L− +
F+ + 2L+

6�D−M+ − 2T2��

−

�2F+ + L+��kz
2


3�D+M− − 2T2�

� 1

2L− +
F+ + 2L+

6�D−M+ − 2T2��
, �28�

�2
0 =

�

P2� 1

2L+ +
F− + 2L−

6�D+M− − 2T2��

−

�2F− + L−��kz
2


3�D−M+ − 2T2�

� 1

2L+ +
F− + 2L−

6�D+M− − 2T2��
, �29�

R1
0 =

�

P� 1

2L− +
F+ + 2L+

6�D−M+ − 2T2��
, �30�

R2
0 =

�

P� 1

2L+ +
F− + 2L−

6�D+M− − 2T2��
, �31�

� =
R

P
. �32�

Upon substitution of x=
�, f�x�=d1Jm�x� and g�x�
=d2Jm+1�x�, where Jl�� is a Bessel function, and using the
properties of Bessel functions, we obtain
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x2 d2

dx2Jm�x� + x
d

dx
Jm�x� + ��1

0 − r1
0


2 +
R1

0




d2

d1
�x2Jm�x�

− m2Jm�x� = 0,

x2 d2

dx2Jm+1�x� + x
d

dx
Jm+1�x� + ��2

0 + r2
0


2 +
R2

0




d1

d2
�x2Jm+1�x�

− �m + 1�2Jm+1�x� = 0. �33�

This equation can be satisfied only if

�1
0 − r1

0


2 +
R1

0




d2

d1
= 1, �34�

�2
0 + r2

0


2 +
R2

0




d1

d2
= 1. �35�

One can see that for each given value of � we obtain a
biquadratic equation for 
. The solutions of this equation are


± = �1

2
��2

0 + r2
0 + �1

0 − r1
0 + R1

0R2
0� ± „��2

0 + r2
0 + �1

0 − r1
0

+ R1
0R2

0�2 + 4�r1
0�2

0 − r2
0�1

0 + r2
0r1

0 − �1
0�2

0�…1/2�1/2

. �36�

Hence there are two degenerate solutions for 
 that are
combined in the general solution

f��� = Ãd1
+Jm�
+�� + B̃d1

−Jm�
−�� ,

g��� = Ãd2
+Jm+1�
+�� + B̃d2

−Jm+1�
−�� . �37�

In a cylindrical quantum dot with infinite potential barrier
the radial part of the wave function must vanish at the
boundary: f��=r0�=g��=r0�=0. This condition determines
the energy spectrum of electrons in DMS QD in a weak
magnetic field.

d1
+

d2
+

d2
−

d1
−Jm�
+r0�Jm+1�
−r0� − Jm�
−r0�Jm+1�
+r0� = 0,

�38�

where

d1
+

d2
+

d2
−

d1
− =

�
+
2 − �2

0 − r2
0��
−

2 − �1
0 + r1

0�

+
−R1

0R2
0 . �39�

The nth solution of this equation defines the energy of the
nth electron level with the angular momentum projection m
and total angular momentum jz=m+1/2.

In the absence of the Zeeman and exchange interaction

term we have
d1

+

d2
+

d2
−

d1
− =1, so that Eq. �38� simplifies to

Jm�
+r0�Jm+1�
−r0� − Jm�
−r0�Jm+1�
+r0� = 0. �40�

Because for Bessel functions Jn�z�= �−1�nJ−n�z�, Eq. �40� is
invariant with respect to change jz→−jz. Therefore the states
with the projections of the total angular momentums jz=−jz
are Kramers doublets.

B. Electron energy levels in quantizing magnetic field

In the presence of a strong magnetic field the electronic
levels split into Landau levels. In the case of DMS QD in a
strong magnetic field both exchange and Landau splitting of
electron states take place.

When we include a quantizing uniform magnetic field H
= �0,0 ,H� along the growth direction z, described by the vec-
tor potential

A = �−
Hy

2
,
Hx

2
,0� , �41�

the operators k± in Eqs. �3� and �14� become cylindrical co-
ordinates and take the form

k± = − ie±i�� d

d�
± i

1

�

d

d�
�

�

2�2� , �42�

where �=� �c
eH is the magnetic length.

If a strong magnetic field is applied along the z direction
the Zeeman term, Hz, in the Hamiltonian �12� has the follow-
ing form in terms of the Bloch functions �2�.

HZ = sH�
1/2 0 0 0 0 0 0 0

0 − 1/2 0 0 0 0 0 0

0 0 1/2 0 0 0 0 0

0 0 0 1/6 0 0 − �2/3 0

0 0 0 0 − 1/6 0 0 �2/3

0 0 0 0 0 − 1/2 0 0

0 0 0 − �2/3 0 0 − 1/6 0

0 0 0 0 �2/3 0 0 1/6

 , �43�
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where

sH = g0�BH , �44�

g0 is the free electron g-factor.
The eight-band Kane model used to describe the electron

energy spectra in most direct gap semiconductors gives the
following dependence of the electron g-factor on its energy
�:40,41

g��� = g0 −
2Ep

3

�

��g + ����g + � + ��
.

Here Ep is the Kane energy parameter, and g0=2 is the
free electron g-factor. The second term describes the nega-
tive contribution of the valence band �with ��0� into the
electron g-factor �the value of g��� is different from g0 only
in the presence of spin -orbit splitting�. In order not to take
twice into account the negative contribution of the valence
bands into the electron g-factor in quantizing magnetic field
we had to set g0=2 in our calculations.

Since the system is cylindrically symmetric the wave
functions in quantizing magnetic field can be represented as

��1��,��
�2��,��

� = � eim�e−x/2x	m	/2Y�x�
ei�m+1��e−x/2x	m+1	/2Z�x�

� , �45�

where

x =
�2

2�2 . �46�

Using Eqs. �42� and �45� one can obtain the following
system of second-order ordinary differential equations:

x
d2Y�x�

dx2 + �1 − x + 	m	�
dY�x�

dx
−

1

2
�r1 − �1 − h1 + 1 + 	m	 + m�

�Y�x� +
�2

2
R1x�	m+1	−	m	+1�/2

��dZ�x�
dx

+
	m + 1	 + m + 1

2x
Z�x�� = 0,

x
d2Z�x�

dx2 + �1 − x + 	m + 1	�
dZ�x�

dx

−
1

2
�2 + m + 	m + 1	 + h2 − �2 − r2�Z�x�

−
�2

2
R2x�	m	−	m+1	+1�/2

��dY�x�
dx

+
	m	 − m − 2x

2x
Y�x�� = 0. �47�

In Eqs. �47� we have introduced dimensionless parameters:

r1 =
�3Ar + sH/2��2

P2� 1

2LH
− +

FH
+ + 2LH

+

6�DH
− MH

+ − 2TH
2 �
� , �48�

r2 =
�3Ar + sH/2��2

P2� 1

2LH
+ +

FH
− + 2LH

−

6�DH
+ MH

− − 2TH
2 �
� , �49�

�1 =
��2

P2� 1

2LH
− +

FH
+ + 2LH

+

6�DH
− MH

+ − 2TH
2 �
�

−

�2FH
+ + LH

+ ��kz
2
�2

3�DH
+ MH

− − 2TH
+ �

� 1

2LH
− +

FH
+ + 2LH

+

6�DH
− MH

+ − 2TH
2 �
� , �50�

�2 =
��2

P2� 1

2LH
+ +

FH
− + 2LH

−

6�DH
+ MH

− − 2TH
2 �
�

−

�2FH
− + LH

− ��kz
2
�2

3�DH
− MH

+ − 2TH
2 �

� 1

2LH
+ +

FH
− + 2LH

−

6�DH
+ MH

− − 2TH
2 �
� , �51�

R1 =
��

P� 1

2LH
− +

FH
+ + 2LH

+

6�DH
− MH

+ − 2TH
2 �
� , �52�

R2 =
��

P� 1

2LH
+ +

FH
− + 2LH

−

6�DH
+ MH

− − 2TH
2 �
� , �53�

and

h1 =
6TH

2 + LH
− �FH

+ + 2LH
+ � − 3DH

− MH
+

6TH
2 − LH

− �FH
+ + 2LH

+ � − 3DH
− MH

+ , �54�

h2 =
6TH

2 + LH
+ �FH

− + 2LH
− � − 3DH

+ MH
−

6TH
2 − LH

+ �FH
− + 2LH

− � − 3DH
+ MH

− , �55�

where

DH
± = D± ±

sH

6
, �56�

FH
± = F± ±

sH

2
, �57�

LH
± = L± ±

sH

2
, �58�

MH
± = M± ±

sH

6
, �59�

TH = T +
sH

3
. �60�
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Let a1 and a2 be determined by the following equations:

x
d2Y�x�

dx2 + �1 + 	m	 − x�
dY�x�

dx
− a1Y�x� = 0, �61�

x
d2Z�x�

dx2 + �1 + 	m + 1	 − x�
dZ�x�

dx
− a2Y�x� = 0. �62�

Upon substitution of Eqs. �61� and �62� into Eqs. �47� we get

a1Y�x� −
1

2
�r1 − �1 − h1 + 1 + 	m	 + m�Y�x�

+ R1

�2

2
�dZ�x�

dx
+

	m + 1	 + m + 1

2x
Z�x��

�x�	m+1	−	m	+1�/2 = 0,

a2Z�x� −
1

2
�2 + m + 	m + 1	 + h2 − �2 − r2�Z�x�

− R2

�2

2
�dY�x�

dx
+

	m	 − m − 2x

2x
Y�x��x�	m	−	m+1	+1�/2 = 0.

�63�

The bounded solutions of Eqs. �63� are

�Y�x�
Z�x�

� = �d1M�a1,b1,x�
d2M�a2,b2,x�

� , �64�

where M�a ,b ,x� is a confluent hypergeometric function. Us-
ing standard properties of confluent hypergeometric
functions34 we have

a1
± = �m − �±, for m � 0

− �±, for m � 0,
� �65�

a2
± = � m − �±, for m � 0

− �± − 1, for m � 0,
� �66�

b1 = � m + 1, for m � 0

	m	 + 1, for m � 0,
� �67�

b2 = �m + 2, for m � 0

	m	 , for m � 0,
� �68�

where the dimensionless energy parameter �± is defined as

�± =
1

8
�− 8 − 2r1 + 2r2 + 2R1R2 + 2�1 + 2�2 + 2h1 − 2h2

± ��− 8 − 2r1 + 2r2 + 2R1R2 + 2�1 + 2�2 + 2h1 − 2h2�2

+ 16�− 3 − 3r1 + r2 + r1r2 + 2R1R2 + 3�1 − r2�1 + �2

+ r1�2 − �1�2 + 3h1 − r2h1 − �2h1 − h2 − r1h2

+ �1h2 + h1h2��1/2� . �69�

As a result, for each given energy value � there exist two
independent solutions for �. Expressing the radial wave
function as a linear combination of these two independent

solutions allows us to satisfy the boundary conditions. These
solutions can be written as

f�x� = Ãd1
+e−x/2xm/2M�m − �+,m + 1,x�

+ B̃d1
−e−x/2xm/2M�m − �−,m + 1,x� ,

g�x� = Ãd2
+e−x/2x�m+1�/2M�m − �+,m + 2,x�

+ B̃d2
−e−x/2x�m+1�/2M�m − �−,m + 2,x� for m � 0

�70�

and

f�x� = Ãd1
+e−x/2x	m	/2M�− �+,1 + 	m	,x�

+ B̃d1
−e−x/2x	m	/2M�− �−,1 + 	m	,x� ,

g�x� = Ãd2
+e−x/2x�	m	−1�/2M�− �+ − 1, 	m	,x�

+ B̃d2
−e−x/2x�	m	−1�/2M�− �− − 1, 	m	,x� for m � 0.

�71�

In a quantum dot the boundary condition f�x=x0�=g�x=x0�
=0 �where x0=

r0
2

2�2 � gives us the following equations for en-
ergy spectrum of a DMS quantum dot:

�−
1

2
− �− −

1

2
�r1 − �1 − h1��

�−
1

2
− �+ −

1

2
�r1 − �1 − h1��M�m − �+,m + 1,

r0
2

2�2�
�M�m − �−,m + 2,

r0
2

2�2� − M�m − �−,m + 1,
r0

2

2�2�
�M�m − �+,m + 2,

r0
2

2�2� = 0 for m � 0, �72�

�− �+ − 1 −
1

2
�1 + h2 − �2 − r2��

�− �− − 1 −
1

2
�1 + h2 − �2 − r2��M�− �+,1 + 	m	,

r0
2

2�2�
�M�− �− − 1, 	m	,

r0
2

2�2� − M�− �−,1 + 	m	,
r0

2

2�2�
�M�− �+ − 1, 	m	,

r0
2

2�2� = 0 for m � 0. �73�

These equations fully describe the energy spectrum of the
problem.

III. RESULTS AND DISCUSSIONS

In this section we present our numerical results on the
splitting energies of the electrons in a Cd1−yMnyTe DMS
quantum dot. We use the following set of bulk parameters:
me=0.096m0, where m0 is the free electron mass. The spin-
orbit splitting is �=0.953 eV, the Kane matrix element for
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the interaction between S and p bands Ep=2m0P2 /�2, where
Ep=18.8 eV. In Cd1−yMnyTe DMS the semiconductor band
gap depends on the Mn concentration y: �g= ��g0

+1.51y� eV, where �g0=1.586 eV is the gap in the absence
of Mn magnetic ions. Other parameters used in our calcula-
tions, N0�=0.22 eV, N0�=−0.88 eV, are taken from the
literature.15,16

We have analyzed Eqs. �38�–�40�, �72�, and �73� numeri-
cally, labeling the energy eigenstates as ��m ,n�, where n is a
non-negative integer �n=0,1 ,2 , . . . � and denotes the nth ze-
roes of these equations with fixed m. Here, we must notice
that Eq. �38� is valid only when the QD radius r0 is small
compared to the magnetic length �, r0��.

In Fig. 1 we plot the lower energy levels as a function of
dimensionless parameter �=R / P in the absence of the Zee-
man and the exchange interaction terms using Eq. �40�. The
QD radius is r0=200 Å and the thickness of the QD is d
=20 Å. For �=0 the states with the angular momentum l

=0 �fundamental states� are twofold degenerate, but the
states with l�0 are fourfold degenerate. For ��0 the elec-
tron states with j= l+1/2 and j= l−1/2 have different ener-
gies for l�1. Hence all states with l�1 split into two, while
l=0 states remain double-degenerate. In Fig. 1 the electron
states �0, 0� and �−1,0� correspond to the total angular mo-
mentum projection jz=1/2 and jz=−1/2, respectively; �1, 0�
and �−2,0� correspond to jz=3/2 and jz=−3/2, respectively;
�0, 1� and �−1,1� states again correspond to jz=1/2 and jz

=−1/2, respectively; �2, 0� and �−3,0� correspond to jz

=5/2 and jz=−5/2, respectively; �1, 1� and �−2,1� corre-
spond again to jz=3/2 and jz=−3/2, respectively; �0, 2� and
�−1,2� states �second double degenerate state at �=0� again
correspond to jz=1/2 and jz=−1/2, respectively. In the ab-
sence of the exchange interaction term there is an additional
symmetry, jz=−jz, related to the time inversion. So, in the
absence of the Zeeman exchange interaction term the Rashba
term partially lifts the degeneracy of levels.

In Fig. 2 we plot the electron levels as a function of the
dimensionless parameter � for the magnetic field H=1 T and
the temperature T=3 K at a fixed Mn concentration y=0.02.

FIG. 2. Energy of low-lying states as a function of � for A�0 at
H=1 T and T=3 K �calculated by using Eqs. �72� and �73��. Other
parameters are the same as in Fig. 1.

FIG. 3. Dependence of the energy levels on the strength of the
magnetic field H at fixed Rashba parameter R=2.5�10−9 eV cm
for Mn free case y=0. �r0=200 Å, d=20 Å, and T=3 K.�

FIG. 4. The same as Fig. 3 but now for y=0.02.

FIG. 1. Dependence of the energy levels �in �g units� on the
dimensionless parameter � in the absence of the Zeeman and ex-
change interaction term calculated using Eq. �40�. The QD radius is
r0=200 Å and the thickness of the QD is d=20 Å. The Mn concen-
tration is y=0.02.
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Other parameters are the same as those of Fig. 1. With the
Zeeman and the exchange interaction terms included, all
Kramers doublets are also split, so that the degeneracy is
completely removed. Namely, the states with quantum num-
bers ±jz can have different energies.

In Figs. 3–5 we show the electron spectra of low-lying
electron states in the DMS QD as a function of the magnetic
field for different Mn concentrations. Experimentally ob-
served values of Rashba spin-orbit coupling parameter R lie
in the range 1–63 meV nm for a large variety of systems �for
example, InxGa1−xAs/InyAl1−yAs �Refs. 35 and 36�,
InAs/AlSb �Ref. 37�, InAs/GaSb �Ref. 38�, GaAs �Ref. 39�,
and InSb �Ref. 11�. We assume that for a DMS QD the
Rashba parameter R takes the same range of values. Here we
take R=2.5�10−9 eV cm. The QD radius is r0=200 Å and
the thickness of the QD is d=20 Å. The results are shown for
T=3 K. One can see in the figures one finds that the varia-
tion of the energy with the magnetic field is different from
that in a DMS QD with high Mn concentration. For a non-
magnetic semiconductor �NMS� �Mn-free case, y=0� QD
�Fig. 3� the energy levels are nearly linear at low magnetic
fields. We find that in a such a case, because the Rashba

parameter, R, is relatively small, the electronic levels in the
high magnetic field regime are mainly determined by the
Zeeman term. For the DMS QD with high Mn concentration
the dependence of energy levels on the magnetic field
strength is much more complicated �Fig. 5�. At small mag-
netic fields the energy levels are determined by the exchange
interaction term, the Rashba term, and the Zeeman term, for
spin-up and spin-down states. The energy levels exhibit the
behavior of the Brillion function since the sp–d exchange
interaction is the dominant factor at low magnetic fields. At
large magnetic field the exchange term saturates and the en-
ergy levels are determined mainly by the Zeeman term. At
high magnetic fields the energies approach the Landau lev-
els.

In Fig. 6 we plot the low-lying energy levels �in �g0
=1.586 eV units� as a function of Mn concentration. The
value of the magnetic field is fixed at H=1 T. From this
figure we notice that the energy of the levels increases with
increasing Mn concentration. This characteristic behavior
arises from the fact that the sp–d exchange interaction en-
ergy is directly proportional to Mn concentration. Figure 7

FIG. 5. The same as Fig. 3 but now for y=0.2.

FIG. 6. Energy of low-lying levels �in �g0=1.586 eV units� as a
function of Mn concentration at H=1 T, with fixed R=2.5
�10−9 eV cm, r0=200 Å, d=20 Å, and T=3 K.

FIG. 7. The energy difference of splitting levels as a function of
Mn concentration. Other parameters are the same as in Fig. 6.

FIG. 8. The energy difference of splitting levels ��0,0�−��
−1,0� as a function of QD radius for different Mn concentrations at
H=1 T. �d=20 Å, T=3 K, and R=2.5�10−9 eV cm.�
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shows the spin splitting �energy difference� as a function of
Mn concentration. We see that the spin splitting increases
�decreases� with increasing Mn concentration and goes
through a maximum �a minimum� at high Mn concentration.

In Fig. 8 we plot the energy difference ��0,0�−��−1,0�
�in �g0 units� as a function of QD radius for different Mn
concentrations. The splitting energy decreases as the QD ra-
dius increases and increases with increasing Mn concentra-
tion at fixed magnetic field.

IV. CONCLUSIONS

We calculated the electronic structure of a Cd1−yMnyTe
DMS QD with Rashba spin-orbit coupling in non- and quan-

tizing magnetic fields. The calculations are based on the
eight-band k ·p theory, which takes into account the nonpa-
rabolicity of the electron energy levels. The calculations also
provide a description of the limiting case for zero magnetic
field. A nonzero magnetic field breaks the time-inversion
symmetry and removes the corresponding degeneracy. We
investigated the electron levels as a function of dimension-
less parameter �=R / P in zero and nonzero magnetic fields,
as well as the magnetic field dependence of the levels for
different Mn concentrations at a fixed Rashba parameter. In
different magnetic field regimes and Mn concentrations the
energy levels have different dependence on the magnetic
field.
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