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We present a viewpoint of the transport process in quantum cascade laser structures in which spatial
transport of charge through the structure is a property of coherent quantum mechanical wave functions. In
contrast, scattering processes redistribute particles in energy and momentum but do not directly cause spatial
motion of charge.
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I. INTRODUCTION

Unipolar quantum cascade �QC� laser devices1 are intra-
band semiconductor devices in which the transport processes
and optical �intersubband� transitions which give rise to the
lasing operation occur only in the conduction band of the
semiconductor structure. This marks a departure from previ-
ous interband semiconductor lasers. Since the first realization
of a QC laser, there has been a proliferation of QC laser
designs.2 QC laser structures are composed of a complicated
sequence of semiconductor layers with different material
compositions and thicknesses. This sequence is repeated tens
or hundreds of times giving rise to a periodic structure in the
device. Considering the complicated layer composition of
these devices, the nature of the charge transport process
through these structures is not immediately apparent.

The original concept by Kazarinov and Suris3 was based
on coherent tunneling between neighboring wells. It was
soon realized, however, that scattering plays a crucial role in
establishing the nonequilibrium carrier distribution, in par-
ticular for the depopulation of the lower laser level. Thus
almost all simulations of transport4–7 in QC structures as-
sume a semiclassical model, in which the transport occurs
through scattering transitions between energy eigenstates
�Wannier–Stark hopping8�. In such an approach only diago-
nal elements of the density matrix �populations or distribu-
tion functions� in the Wannier-Stark basis are used, and off-
diagonal elements are neglected �hence, the term
semiclassical�. Reference 5 briefly considered a more fully
quantum mechanical extension to this semiclassical approach
by also including off-diagonal elements �coherences� of the
density matrix in the calculation. This study concluded that
quantum mechanical coherences were of limited importance
to the transport properties. However, coherent effects were
observed experimentally for the electron transfer from the
injector to the upper laser level in QC structures.9,10 The
importance of coherent effects has also recently been
stressed by Ref. 11, where a simplified calculation scheme is
proposed.

The concept that scattering transitions propel the current
through heterostructure systems conflicts with the standard
description of transport in bulk structures, where complex
Bloch functions carry the current, while scattering redistrib-
utes the carriers in momentum space but does not change

their spatial positions.12 We will show that a similar descrip-
tion also holds in quantum cascade lasers where the current
is carried by quantum mechanical wave packets, and the
scattering only acts locally redistributing carriers in energy
or momentum.

II. THE MODEL

The quantum mechanical transport theory we use here is
based on nonequilibrium Green’s functions which allow for a
consistent combination of scattering and coherent evolution.
Quantum mechanical coherences are represented by off-
diagonal elements of the G��E� correlation function, which
is related to the density matrix ��k,�k=�dEG��,k

� �E� /2�i.
The theory is formulated with basis states ��k�r ,z�
= �eik·r /�A�	��z�. Here 	��z� is the envelope function in the
growth direction z. The wave vector k and the spatial coor-
dinate r are two-dimensional vectors in the plane of each
semiconductor layer �with normalization area A�, taking
fully into account the three-dimensional nature of the
structure.

We divide the total Hamiltonian as Ĥ= Ĥo+ Ĥscatt. The free

Hamiltonian Ĥo contains the kinetic energy and applied volt-
age, together with the electron-electron interaction in a mean

field approximation. It is diagonal in k, while Ĥscatt describes
scattering interactions k→k�. Here we explicitly take into
account acoustic phonon and longitudinal optical phonon,

impurity, and interface roughness scattering processes. Ĥscatt
is treated perturbatively using self-energies in the self-
consistent Born approximation. For example, for impurity
scattering, the self-energy has the form


���,k
�,imp�E� = �

���,q

�V��
imp�q�V����

imp �− q��G���,k−q
� �E� , �1�

where Vimp represents the impurity scattering potential.14 In
the following, we consider both the complete form of Eq. �1�
with nondiagonal self-energies �ND�, as well as approxima-
tions summarized in Table I. In each case, the system of
equations for the Green’s functions and self-energies is
solved self-consistently, which is an extensive numerical
task.16 This results in the determination of the full correlation
function G��,k

� �E�, which describes the nonequilibrium state
of the device.
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Current densities are defined as J=Jo+Jscatt with

Jo =
ie��Ĥo, ẑ	�

V�
=

2e

�V �
��,k


 dE

2�
�Ĥo, ẑ	��G��,k

� �E� �2�

and Jscatt= ie��Ĥscatt , ẑ	� /V�. e�0 is the electron charge and
V is the sample volume. In Ref. 13 it was shown that Jscatt
provides the hopping current due to scattering transitions be-
tween the states if one restricts to diagonal Green’s functions
and self-energies, i.e., neglects coherences between the
states. Thus this part was referred to as scattering current,
reflecting the �mis�conception that current flow occurs by a
combination of both coherent evolution �Jo� and relocation
by scattering transitions. In the following we will show that
Jscatt vanishes if coherences are properly taken into account,
while the entire current is carried by Jo.

Basis states. The basis functions 	��z� can be chosen in
different ways. In theory, the choice of basis states should
not affect the physical results. In practice, this choice can
influence the physical description in several ways: �i� Ap-
proximations are always necessary to perform the theoretical
calculation or to facilitate the numerical computation, and
the interplay between the chosen basis and the approxima-
tions may improve or reduce the validity of the approxima-
tions and hence affect the physical result. �ii� Different
choices of basis states can reveal different physical aspects
of the problem. For instance, as we show in this paper, work-
ing with position eigenstates casts light on spatial aspects of
the problem.

In our earlier work,13 spatially localized Wannier states
were used as an orthonormal set of 	��z�, which can be
constructed for the infinitely extended QC structure in a
straightforward manner and generate a well-defined periodic
Hamiltonian. A second type of states is the Wannier-Stark

states, which are the eigenstates of Ĥo. They can be easily

obtained by diagonalizing Ĥo in the basis of Wannier states.
�This procedure avoids the common use of an artificial spa-
tial confinement.� A third type of states constitutes the posi-
tion eigenstate basis, using the eigenfunctions of the position
operator ẑ. Again we start with the Wannier basis, diagonal-

ize ẑ, and transform Ĥo into the new basis. In all bases we
evaluate the scattering matrix elements directly for the re-
spective basis functions.

Structures. The data presented below was obtained using
two typical examples: �A� a midinfrared QC laser17 and �B� a
THz QC laser.18 In the calculation we restrict the number of
basis functions to 9 �5� per period for structures A �B�.

III. VANISHING OF Jscatt

In Ref. 13, we neglected the off-diagonal elements of the
self-energies, i.e., only terms with �=�� and �=�� �diago-
nal self-energy �DG� in Table I	 were included in Eq. �1�. In
this restricted theory, we found Jo and Jscatt to be similar in
magnitude. In contrast, using the more rigorous and com-
plete formulation of the theory reported here, where all self-
energy terms are included �nondiagonal self-energies�, we
find that Jscatt�0. This result is basis invariant if the com-
plete nondiagonal self-energies are used, as we checked this
explicitly �numerically� for all three types of basis sets.
Hence the total current density is given by Jo.

The same result has recently been analytically demon-
strated by Lake and Pandey:19 In the position eigenstate ba-
sis, where the matrix z�� is diagonal, the expression �16� for
Jscatt of Ref. 13 becomes

Jscatt =
2e

�V�
k

 dE

2�
�
��

z���G��,k
� 
��,k

adv + G��,k
ret 
��,k

�

− 
��,k
� G��,k

adv − 
��,k
ret G��,k

� � .

Now the term in brackets corresponds to the right-hand side
of the continuity equation as given in Eq. �57� of Ref. 20,
which has to vanish. See also Sec. 2.4 of Ref. 21.

A second line of argument runs as follows: For micro-
scopic scattering potentials which only depend on r̂ �but not

on momentum p̂�, the commutator �Ĥscatt , ẑ	 vanishes and
hence Jscatt=0 by its definition. Thus Jscatt=0 holds for a
wider class of scattering processes, including electron-
electron scattering, than studied numerically here. These ana-
lytic arguments demonstrate that the previous observation of
a finite Jscatt in Ref. 13 is an unphysical result caused by the
DG approximation in the self-energies for a nonlocal basis of
Wannier functions.

IV. SPATIALLY LOCAL SCATTERING IN Jo

Although Jscatt vanishes this does not imply that scattering
processes are absent from the transport process. These pro-
cesses do not appear explicitly in Eq. �2� but they act implic-
itly in determining G��E�, and hence in driving the current
Jo. We now investigate the role played by scattering pro-
cesses in determining Jo. In particular, we seek to establish if
each scattering event results in a spatial displacement of
charge, or if a scattering process acts locally resulting in
energy redistribution but with no accompanying spatial
transport.

This issue can be conveniently addressed within the basis
of position eigenstates. In contrast to the Wannier wave func-

TABLE I. Scattering potential matrix elements included in dif-
ferent self-energy models. �•� and �—� indicate scattering potential
matrix elements included �excluded� from the self-energy. The scat-
tering potential V may represent impurity, interface roughness, or
phonon scattering. The angle brackets represent an averaging over
the impurity distribution for impurity scattering, the distribution of
thickness fluctuations for interface roughness scattering, and pho-
non modes for phonon scattering. DG indicates diagonal self-
energies, while ND represents nondiagonal self-energies. NDL re-
stricts the scattering matrix elements to local terms V�� for ND.

�V��V��� �V��V��� �V��V��� �V��V�����

DG • • — —

ND • • • •

NDL • — • —
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tions �Fig. 1�a�	, these position eigenfunctions are localized
to within a single well layer in the structure �see Fig. 1�b�	
and the scattering potential matrix elements ���V��� are sig-
nificantly smaller for ��� than for �=�. We therefore com-
pare the effect of excluding or including certain scattering
potential terms in the self-energies �see Table I�.

Figure 2 shows that Jo
NDL and Jo

ND are almost identical for
both samples. This indicates that the potential terms
�V��V��� and �V��V��� constitute the main contribution to
the self-energies in the calculation of Jo

ND, our most rigorous
formulation of the current. These scattering terms involve
only purely local �in space� transitions, as V�� represents a
transition matrix element between states with the same enve-
lope function 	��z�, i.e., localized to the same well. This
implies that the scattering processes act only locally in space.
They do not cause spatial displacement of charge, but act
only to redistribute momentum k and energy.

A key point of our argument was the use of the position
eigenstate basis which enabled us to demonstrate that the
dominant scattering processes in Jo act locally and therefore
do not contribute to the spatial transport of charge by Jo. This
result is not evident if we work in another basis, e.g., Wan-
nier or Wannier-Stark, where the wave functions are far more
delocalized and off-diagonal matrix elements V�� play a sig-
nificant role. Nevertheless, physical mechanisms, such as the
nature of transport, must be basis invariant. Indeed, as long
as the full self-energies are taken into account, the expression
for the currents J0 and Jscatt are invariant under basis trans-
formations. This demonstrates that the same result is recov-
ered even in the case of a delocalized basis, where the inter-

play of all types of matrix elements in Table I reproduces the
locality of scattering transitions. In contrast, the neglect of
certain matrix element combinations �such as the DG ap-
proximation� generates spurious nonlocal scattering transi-
tion in a delocalized basis.

V. TRANSPORT OF JO BY COHERENT WAVE
FUNCTIONS

As we have just seen, the scattering processes which con-
tribute to Jo have a purely local effect which does not spa-
tially displace carriers. Hence, we conclude that the transport
of charge by Jo through the structure must arise as a property
of the quantum mechanical wave function. We can obtain a
more concrete visualization of this transport mechanism by
resolving Jo in energy and space,

Jo�E,z� =
e

�A �
��,k

Re − �

m�z�
	�

*�z�
�	��z�

�z
G��,k

� �E�� . �3�

The lower panel of Fig. 3 shows that the current Jo�E ,z�
flows at different energies in different spatial regions of the
structures. To satisfy the equation of continuity, scattering
interactions enable energy transitions which occur locally as

FIG. 1. �Color online� Wave functions �modulus squared� for
structure B. �a� Wannier and �b� position eigenstates.

FIG. 2. Current-voltage characteristic in position eigenstate ba-
sis with self-energy models ND and NDL. We display J0; Jscatt

�0 in both cases.

FIG. 3. �Color online� Lower panel: Spatially and energetically
resolved current from Eq. �3� for sample B. The wave functions

depict some quasilevels, which are eigenstates of Ĥo at k=0 renor-
malized by the scattering interactions. Upper panels: Probability
density ��nk�z��2 �black line� and current Re�−i�nk

* �nk� �z� /m�z��
�dashed line� for the complex wave functions �nk�z� for k=0. n
corresponds to the largest eigenvalue fn0�E� for the respective val-
ues of E. These energies are chosen as local maxima Emax of fn0�E�
with full width at half maximum �E ��1 meV� and the respective
occupations have been approximated by �� /2�fn0�Emax��E.
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discussed above �an example is depicted by the vertical ar-
row in the figure�. Thus, scattering gives rise to a redistribu-
tion of electrons in energy but does not cause a spatial dis-
placement or spatial transport of charge.22

Figure 4 shows the corresponding result for sample A.
Here the current density is restricted to a narrow energy
range while crossing the thick barrier �around z=−2 nm� be-
tween the injector and the active region, thus providing the
desired selective feeding of the upper laser level. This dem-
onstrates how this representation allows for a detailed insight
into the microscopic operation of the device.

An especially intuitive form of Eq. �3� can be obtained by
transforming into an �energy-dependent� basis of eigenstates
of the Hermitian matrix −i / �2��G��,k

� �E� which has real ei-
genvalues fnk�E�. While fnk�E� exhibits sharp peaks in en-
ergy, the eigenstates �nk�z� exhibit only a weak energy de-
pendence �not shown for brevity�. Then we find

Jo�E,z� =
2e

A �
nk

fnk�E�Re�nk
* �z�

�− i��
m�z�

��nk�z�
�z

� . �4�

Thus, the energy-resolved current is carried by wave func-
tions �nk�z� with occupation densities fnk�E� �the factor 2 is
due to spin�. This is analogous to the Bloch functions and
their occupation in standard bulk transport. The upper panels
of Fig. 3 show that these current carrying states �nk�z� ex-
tend over a range of one period. This length scale gives a
measure of the coherence length, i.e., the distance over
which charge is transported by a single coherent wave
packet. The peaks in density ��nk�z��2 are localized in the
wells as charge tends to accumulate in the low-potential re-
gions. The currents carried by the wave functions �nk�z� are
more evenly distributed, which reflects the ability of the
wave packets to transport charge across the structure. Note
the nonvanishing divergence of current density which re-
flects the local balance of scattering processes. Thus, these
complex wave functions �nk�z� can be viewed as generalized
states for a nonequilibrium system, where the drive by bias
and scattering processes compensate.

The currents associated with these wave packets can dif-
fer significantly: The state at −29.2 meV �corresponding to

the upper laser level� has only a small current, but a high
occupation. In contrast, the state at E=−41.3 meV �lower
laser level� exhibits a strong current to the right, effectively
moving electrons away from the lasing transition which oc-
curs vertically between these states. There are also states
exhibiting local current flow to the left, e.g., at −22.4 meV.
Such considerations may provide new tools for the optimi-
zation and design of new laser structures.

The complex states �nk�z� are of particular importance at
level crossings. This is demonstrated in Fig. 5 for a simple
superlattice at the resonance between the ground state and
the first excited state of the neighboring well. Figure 5�a�
depicts the Wannier-Stark states, which are spread over both
wells. The first two eigenvalues fn0�E� �for k=0� exhibit a
clear peak at the level energies �see Fig. 5�b�	, and the cor-
responding states carry particles to the right �state 1, Fig.
5�c�	 and to the left �state 2, Fig. 5�d�	. However, the occu-
pation of the state 1 is about two orders of magnitude larger,
thus providing a strong current flux over the barrier.

Our viewpoint of current-carrying coherent wave func-
tions differs essentially from the conception that scattering
transitions propel the current. This manifests itself in two
ways: �i� In a scattering transition picture, the current would
stop immediately once the scattering processes stop �Hscatt
drops to zero�. However, the occupation of current-carrying
wave functions only changes on the scale of the scattering
time; thus the current flow will continue on this time scale.
�ii� The current is sensitive to quantum mechanical phases.
E.g., phase conjugation would reverse the direction of Jo,
while scattering rates would be unaffected.

VI. RELATION TO WANNIER-STARK HOPPING MODEL

In the Wannier-Stark hopping model, the current is carried
by scattering transitions between Wannier-Stark states and
depends only on scattering rates and the populations of these
states. The coherences, i.e., off-diagonal elements ��k,�k �di-
agonal in k in contrast to scattering transition amplitudes
��k,�k�� of the density matrix, play no role in this model and
are neglected. There are two peculiarities in this picture: �i�

FIG. 4. �Color online� Spatially and energetically resolved cur-
rent from Eq. �3� for sample A. The quasilevels, which are eigen-

states of Ĥo at k=0 renormalized by the scattering interactions are
shown for the upper and lower laser state for comparison.

FIG. 5. States for the superlattice of Ref. 23. �a� Doublet of
Wannier-Stark states. �b� Eigenvalues fnk�E� of −i / �2��G��,k

� �E�
for k=0. �c,d� Corresponding eigenfunctions �nk�z� at E=
−7 meV for the two largest eigenvalues, f1k and f2k, respectively.
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The Wannier-Stark hopping picture of transport through scat-
tering transitions and our picture of transport by coherent
wave packets each provide the entire current and yet offer
such conflicting views of the transport mechanism. �ii� If we
examine Eq. �2� expressed in the Wannier-Stark basis, we see
that a diagonal density matrix results in zero total current.24

Thus, coherences are central to the transport process, even in
the Wannier-Stark basis �see, also, Ref. 25�. This conflicts
with the common Wannier-Stark hopping picture. How do
we reconcile these contradictions? The answer is that the
Wannier-Stark hopping model is derived from Eq. �2� by
expressing, in a low-order approximation, the off-diagonal
elements of the density matrix in terms of the diagonal
elements.26–28 Under conditions where such an approxima-
tion is applicable the Wannier-Stark hopping model gives the
same results as a full quantum transport model �see, e.g.,
Ref. 28 for superlattices�, but it should be remembered that
the Wannier-Stark hopping model uses populations which are
in fact an approximation for the coherences.

Following the concepts of standard quantum optics, one is
tempted to assume that coherences are created by the electric
field and destroyed by scattering. However, the opposite is
true in the quantum treatment of transport within the basis of

Wannier-Stark states, which are eigenstates of Ĥo including
the electrostatic potential. Here coherences are induced by
the scattering processes via the nondiagonal self-energies,
which are crucial in a consistent quantum treatment.

VII. SUMMARY

We have shown that the entire current through QC struc-
tures is carried only by complex, quantum mechanical wave
functions as shown, e.g., in the upper panel of Fig. 3. This
conclusion follows from two main results: �i� The scattering
current Jscatt vanishes, which directly follows from

�Ĥscatt , ẑ	=0, if the scattering potentials couple to the spatial
coordinate of electron states. �ii� In the position basis, only
the diagonal scattering matrix elements V�� are significant in
determining the current Jo, and hence the entire current. Such
matrix elements do not induce spatial translation of the elec-
tron state within the scattering transition. Thus, the principal
scattering events which transfer momentum and/or dissipate
energy in the transport process in quantum cascade structures
occur only through spatially local transitions which do not
give rise to propagation of charge.

The locality of scattering transitions contrasts with the
simple picture of electrons hopping between energy eigen-
states due to scattering events, which is a common descrip-
tion in heterostructure systems. On the other hand, our point
of view is analogous to bulk transport, where the scattering
term in Boltzmann’s equation is local in space, and the entire
current is carried by Bloch states.
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