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The Pfaffian state, which may describe the quantized Hall plateau observed at Landau level filling fraction
�= 5

2 , can support topologically-protected qubits with extremely low error rates. Braiding operations also allow
perfect implementation of certain unitary transformations of these qubits. However, in the case of the Pfaffian
state, this set of unitary operations is not quite sufficient for universal quantum computation �i.e. is not dense
in the unitary group�. If some topologically unprotected operations are also used, then the Pfaffian state
supports universal quantum computation, albeit with some operations which require error correction. On the
other hand, if certain topology-changing operations can be implemented, then fully topologically-protected
universal quantum computation is possible. In order to accomplish this, it is necessary to measure the inter-
ference between quasiparticle trajectories which encircle other moving trajectories in a time-dependent Hall
droplet geometry �cond-mat/0512072�.
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I. INTRODUCTION

The fractional quantum Hall regime2 contains a cornuco-
pia of Abelian fractional quantum Hall states, i.e., states
whose quasiparticle excitations have Abelian braiding
statistics.3,4 It is possible that an even more wonderful phe-
nomenon may occur there: non-Abelian quantum Hall states.
The strongest candidate is the �= 5

2 quantum Hall state. This
state is quite robust in the highest-mobility samples,5 and
numerical studies indicate that the Pfaffian state,6,7 which has
excitations exhibiting non-Abelian braiding statistics,8–16 has
large overlap with the exact ground state for small numbers
of electrons at this filling fraction.17,18 An experiment has
been proposed19 which would determine if the �= 5

2 state is,
indeed, in the universality class of the Pfaffian state by ob-
serving the signature of non-Abelian statistics: a degenerate
set of multiquasiparticle states that cannot be distinguished
locally but can be distinguished by a non-Abelian analog of
the Aharonov-Bohm interference measurement. In the two
quasiparticle case, this is simply the observation of a
topologically-protected qubit.20,21 In the presence of many
pairs of quasiparticles, all kept far apart, the topologically
degenerate ground states form many qubits. These states are
locally indistinguishable. If the environment interacts only
locally with the system, it cannot act on these qubits. Braid-
ing the quasiparticles around each other, an intrinsically non-
local operation, transforms the qubits. These gates are exact
because small deformations of the qusiparticle trajectories do
not affect their braiding topology. However, there is a sense
in which the Pfaffian state is not quite non-Abelian enough:
the set of all possible braiding operations only gives a finite
set of unitary transformations on the qubits. Thus, with these
operations, it is not possible to perform any desired unitary
transformation, which would be necessary for a universal
quantum computer.

In this paper, we suggest ways in which this apparent
shortcoming of the Pfaffian state �and, by implication, the
�= 5

2 quantum Hall state� can be circumvented.1 The first,
more pedestrian, approach is to use some nontopological op-
erations. Consider, for instance, what happens when two qua-

siparticles are brought close together. The degeneracy be-
tween the two states of their qubit is broken. Since unitary
evolution in time will now cause a phase difference to de-
velop between the two states of the qubit, we thereby imple-
ment a phase gate. We explain how a universal quantum
computer can be constructed using these ideas. The second,
more interesting, approach relies on �1� the construction by
Bravyi and Kitaev22 of a universal set of gates for the Pfaff-
ian state that exploits topology change in an abstract context
in which there are no restrictions on the global topology of
spacetime �using, for instance, overcrossings and undercross-
ings, which seem unlikely to be realized in a system of elec-
trons confined to a plane�; and �2� the observation that their
operations actually can be implemented in a way that re-
mains entirely in the plane as long as one is able to measure
the interference between trajectories encircling quasiparticles
that are moving, merging, and splitting—i.e., interference in
a time-dependent background Hall fluid. We note, in passing,
that �= 12

5 may also be a non-Abelian state, specifically one
of the states proposed by Read and Rezayi.23 It may be par-
ticularly interesting—even though it is seen more weakly—
because, if it is indeed a Read-Rezayi state,23 braiding opera-
tions alone are sufficient to implement any unitary
transformation to within a desired accuracy—i.e., it supports
topologically protected universal quantum computation.24 In
the event that the �= 12

5 state proves to be simply an Abelian
state or to have too small an energy gap to permit manipu-
lation, the protocols described in this paper, if they can be
experimentally realized, would save the day by boosting the
computational power of the �= 5

2 state so that it, too, can be
regarded as a universal quantum computer. Furthermore, the
basic architecture that we describe in Secs. II and III is rel-
evant to the �= 12

5 state as well.

II. QUBITS IN THE PFAFFIAN STATE

In this paper, we will assume that the �= 5
2 plateau is in

the universality class of the Pfaffian quantum Hall state. In
this section, we list some basic facts about the Pfaffian quan-
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tum Hall state and introduce some notation that will be use-
ful in the following sections. The goal is to describe the
qubits that arise when many quasiparticles25 are present.

The Pfaffian wave function6,7 takes the form

�g.s.�zj� = �
j�k

�zj − zk�2�
j

e−�zj�
2/4 · Pf� 1

zj − zk
� , �1�

where the Pfaffian is the square root of the determinant of an
antisymmetric matrix. It has a Landau level filling factor
1 /2. �There is an obvious generalization to other even filling
factors and also to odd filling factors of bosonic particles.� It
does not appear to be a good description of electrons at fill-
ing fraction 1/2, which are in a metallic state down to the
lowest observable temperatures �see Ref. 2 and references
therein�. However, it is a candidate for the half-filled first
excited Landau level of the observed �= 5

2 =2+ 1
2 quantum

hall plateau.5 If we assume that the filled lowest Landau level
of both spins is inert and translate the Pfaffian wave function
to the first excited Landau level, it has high overlap with the
exact ground state wave function of small systems of elec-
trons interacting through Coulomb interactions in a half-
filled first excited Landau level.17,18 The Pfaffian state is also
the exact ground state of a certain three-body Hamiltonian.7

While this three-body Hamiltonian is unrealistic, it has the
advantage that we can also write down exact multiquasihole
wave functions. Since it appears from numerical studies of
small systems that this three-body Hamiltonian is in the same
universality class as the actual Hamiltonian of the real sys-

tem, we will assume that these multiquasihole states capture
the essential topological features of the excitations of the
�= 5

2 quantum Hall state.
The form of the Pfaffian factor in this wave function,

Pf� 1

zj − zk
� = A� 1

z1 − z2

1

z3 − z4
. . . � �2�

is strongly reminiscent of the real-space form of the BCS
wave function. Indeed, the Pfaffian state may be viewed as a
quantum Hall state of p-wave paired fermions.12–14

The fundamental quasiparticles in this state carry half of a
flux quantum and, therefore, charge e /4. A wave function for
a two-quasihole state may be written as follows:

�g.s.�zj� = �
j�k

�zj − zk�2�
j

e−�zj�
2/4

� Pf� �zj − �1��zk − �2� + zj ↔ zk

zj − zk
� . �3�

When the two quasiholes at �1 and �2 are brought together at
the point �, a single flux quantum quasiparticle results:

�g.s.�zj� = �
j�k

�zj − zk�2�
j

e−�zj�
2/4 � �

i

�zi − ��Pf� 1

zj − zk
� .

�4�

The situation becomes more interesting when we consider
states with four quasiholes. A wave function with four quasi-
holes at �1, �2, �3, �4 takes the form

��13��24��zj� = �
j�k

�zj − zk�2�
j

e−�zj�
2/4 � Pf� �zj − �1��zj − �3��zk − �2��zk − �4� + �j ↔ k�

zj − zk
� . �5�

However, there is another wave function with four quasiholes at �1, �2, �3, �4:

��14��23��zj� = �
j�k

�zj − zk�2�
j

e−�zj�
2/4 � Pf� �zj − �1��zj − �4��zk − �2��zk − �3� + �j ↔ k�

zj − zk
� . �6�

These two wave functions are linearly independent, but they have the same charge density profiles as long as �1, �2, �3, �4 are
far apart. In fact, they are indistinguishable by any local measurement. One might even think that there is a third four-quasihole
state ��12��34�, but this is not independent of the other two,8

��14��23� − ��12��34� = x���13��24� − ��12��34�� �7�

where x= ��1−�3���2−�4� / ��1−�4���2−�3�.
It is enlightening to pick as the basis of the two dimensional space of four-quasihole wave functions ��13��24� and the

following state11 �N is a normalization factor�:

��13��24� − ��14��23� = N�
j�k

�zj − zk�2�
j

e−�zj�
2/4

� A�z1
0z2

1 �z3 − �1��z3 − �3��z4 − �2��z4 − �4�
z3 − z4

�z5 − �1��z5 − �3��z4 − �2��z6 − �4�
z5 − z6

. . . � . �8�
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The interpretation is that a Cooper pair can be broken and the
resulting neutral fermions put into zero modes.11 In this case,
the zero modes have wave functions z0 and z1; in the
n-quasihole case, they have the form zk with 0�k�n−1. In
fact, a Cooper pair can even be broken when there are only
two quasiparticles, but only one of the neutral fermions can
go into a bulk zero mode; the other one must be at the edge.
�Similarly, in the four-quasihole case, there are two addi-
tional states in which a neutral fermion is in one of the two
zero modes while the other one is at the edge.�

In this way, it can be seen that there are 2n 2n-quasihole
states8,11 �half of them have a neutral fermion at the edge and
the other half do not�. It has been shown12 that precisely the
same degeneracy is obtained in a p+ ip superconductor when
there are 2n flux hc /2e vortices present: there is one zero
mode solution of the Bogoliubov-de Gennes equations per
vortex. These solutions are Majorana modes. Grouping them
into pairs, we have n fermionic levels, each of which can be
occupied or unoccupied. By breaking Cooper pairs, we can
change their occupancies. We interpret this degeneracy as n
qubits, one qubit for each pair of quasiholes. �Of course, the
grouping of quasiholes into pairs is arbitrary and any two
pairings are related by the a change of basis.�

Hence, we envision a platform for quantum computation
depicted in Fig. 1. An n-qubit system can be created by en-
dowing a Hall bar with 2n antidots at which quasiholes are
pinned. Each pair of quasiholes has a two-dimensional Hil-
bert space spanned by �0	 and �1	, which correspond to the
absence or presence of a neutral fermion. In the following
sections, we will discuss how these qubits can be manipu-
lated and measured.

These qubits will be manipulated by braiding quasiparti-
cles, which causes states in this 2n-dimensional Hilbert space
to transform into each other. To discuss these transforma-
tions, a different basis than �5� is useful. The effect of braid-
ing quasiparticles is a combination of the explicit mono-
dromy of the wave function and the Berry matrices obtained
from adiabatic transport of the �i’s. The phase factors in �9�
below have been chosen so that the latter are trivial and the
former completely encapsulate quasiparticle braiding
properties.8 �We could have worked with the basis ��13��24�,
��14��23�, in which there is no explicit monodromy, but then
we would have to evaluate Berry matrix integrals.9,10�

��0,1��zj� =
��13�24�1/4

�1 ± 
x�1/2
���13��24� ± 
x��14��23�� , �9�

where �13=�1−�3, etc. and x=�14�23/�13�24. �Note that we
have taken a slightly different anharmonic ratio x than in

Ref. 8 in order to make �9� more compact than Eqs. �7.17�,
�7.18� of Ref. 8.� From this expression, we see, for instance,
that taking �3 around �1 transforms ��0��zj� into ��1��zj�.

In the 2n-quasihole case, the result can be stated as
follows.8,13 The 2n states of the system can be grouped into a
representation of the Clifford algebra

��i,� j� = 2�ij , �10�

with i, j=1,2 , . . . ,2n. We could, for instance, organize the
states according to their eigenvalues 	i

†	i= ±1, where 	 j
=�2j−1+ i�2j, j=1,2 , . . . ,n. When quasiparticles i and j are
exchanged, the states transform according to:8,13

��	 → e−�
/4��i�j��	 . �11�

These braiding matrices, �ij =exp�−�
 /4��i� j� will be a set
of topologically protected unitary transformations that we
can use to manipulate our qubits.

Several important calculational and heuristic tools follow
from field theories for the Pfaffian state. While they illumi-
nate this section and Sec. III, they are somewhat technical
and take us away from the main line of our exposition, so we
have deferred a discussion of these field theories to Appendix
A. For reasons that are discussed there, it is convenient to
call excitations that have the same braiding properties �up to
Abelian phase factors� as, respectively, �a� the vacuum, �b�
charge-e /4 quasiparticles, and �c� neutral fermions either 1,
�, 	 or, equivalently, isospin 0, 1

2 , 1.
Thus far, we have assumed that the only quasiparticles in

our system are the quasiparticles which we have induced on
our antidots. There could also be thermally excited quasipar-
ticles. They are the main source of error and their density
was estimated in Ref. 19 to be exponentially small at low
temperatures. However, even at zero temperature, there will
always be some quasiparticles that are trapped by local varia-
tions in the potential, such as those caused by impurities.
Assuming that they cannot move, the effect of these quasi-
particles can always be accounted for with “software,” i.e.
quantum computations must be done with some more com-
plicated algorithms that compensate for the presence of these
stray quasiparticles. As a practical matter, however, we
would like to make them as benign as possible. To the extent
that we can tune the magnetic field to the center of the pla-
teau and use gates to move the edge of the system to avoid
impurities �as in Ref. 28�, we should do so. If we can remove
these localized quasiparticles with gates or a scanning probe
microscope tip �such as an atomic-force microscope �AFM�
tip� we should also attempt this. Finally, one simplifying fea-
ture of the Pfaffian state, in particular, noted in Refs. 28 and
29, is that there is an even-odd effect with quasiparticles. An
even number of quasiparticles fuse to form a quasiparticle
with Abelian statistics, while an odd number of quasiparti-
cles fuse to form a quasiparticle with non-Abelian statistics.
Hence, we handle stray localized quasiparticles in the fol-
lowing way. We should associate each stray quasiparticle
with one of the antidots �most naturally the antidot to which
it is closest�. Then, we want the number of stray quasiparti-
cles associated with each antidot to be even. In this way, the
degrees of freedom of the antidot are not modified by its
associates. Finally, we need to ensure that the quasiparticle

FIG. 1. A system with n quasihole pairs �held at pairs of anti-
dots, depicted as shaded circles� supports n qubits. Additional anti-
dots �hatched� can be used to move the quasiparticles, as described
in Sec. III.
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braiding trajectories always encircle an even number of stray
quasiparticles. Then, as may be seem from a repeated appli-
cation of �11�, the braiding matrices acting on the qubit Hil-
bert space are unaffected by the presence of the stray quasi-
particles and the Hilbert space of the stray quasiparticles will
not become entangled with it.

III. BRAIDING AND INTERFEROMETRY

A. Braiding

The basic process by which we will manipulate many-
quasiparticles states is the counterclockwise exchange de-
picted in Fig. 2. We suppose that the quasiparticles are local-
ized at antidots and that they are transferred from one antidot
to another by varying the voltages on the antidots. With three
antidots, an exchange can be performed. Two successive ex-
changes results in a full braid of one quasiparticle around the
other. We may need to move one quasiparticle greater
distances—for instance, to take it around several others—in
which case we could use an array of antidots as a “bucket
brigade” �as in CCD devices such as digital cameras�.

The process depicted in Fig. 2 can be used, for instance,
to exchange a quasiparticle from one qubit with a quasipar-
ticle from a different qubit. Such a process, which applies the
gate g3 �g1 and g2 will be introduced later� has a spacetime
diagram that is depicted later in Fig. 14:

g3 =
1

2

1 0 0 − i

0 1 − i 0

0 − i 1 0

− i 0 0 1
� . �12�

This will be one of the basic gates used below.
One can imagine another possibility, which might become

realistic at some point in the future: one quasiparticle could
be dragged around another with a scanning probe micro-
scope tip, e.g., an AFM tip, which could couple to a quasi-
particle electrostatically with the required spatial resolution

�which is presumably the magnetic length, on the order of
100 Å�, as depicted in Fig. 3.

There is one other type of braiding process that we can
do, namely taking a quasiparticle from the edge of the sys-
tem around one of the quasiparticles in a qubit, as depicted in
Fig. 4. Such a process is a NOT gate for this qubit.

B. Interferometry

The basic process by which we will determine the state of
our system, i.e. read our qubits, is an interference measure-
ment. The two states of a qubit, which differ by the absence
or presence of a neutral fermion 	, can be distinguished by
taking a charge e /4 quasiparticle around the pair. If the neu-
tral fermion 	 is present, an extra �−1� occurs in the ampli-
tude. In Ref. 19 it was shown how this minus sign could be
detected by measuring the longitudinal resistance, �xx. It is
determined by the probability for current entering the bottom
edge from the left in Fig. 5 to exit along the top edge to the
left. This is given, to lowest order in tMN and tPQ, by the
interference between two processes: one in which a “test”
quasiparticle tunnels from M to N; and another in which the
“test” quasiparticle instead continues along the bottom edge
to P, tunnels to Q, and then moves along the top edge to N.
�We subsume into tPQ the phase associated with the extra
distance traveled in the second process and the extra
Aharonov-Bohm phase.�

�xx  �tMN�2 + �tPQ�2 + 2 Re�tMNtPQ
* �	�B�		� . �13�

The third term is the interference between the two possible
tunneling trajectories. �		 is the state of the qubit and the test

FIG. 2. �Color online� The exchange of two qubits through a
third antidot.

FIG. 3. Using an AFM tip to braid quasiparticles.

FIG. 4. �Color online� Taking a quasiparticle from the edge
around one of the quasiparticles in a qubit implements a logical
NOT on the qubit.

FIG. 5. �Color online� The state of a qubit can be determined
from a measurement of the longitudinal conductance when inter-
edge tunneling is allowed at two interfering junctions.
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quasiparticle, and B is the operator that takes the test quasi-
particle around the qubit, i.e., the braiding matrix.15 It can be
computed by any of three equivalent ways: �1� taking �3
around �1 and �2 in Eq. �9�; �2� using the expression in �11�;
or �3� by evaluating the Jones polynomial at q=e
i/4 for the
link diagrams in Fig. 6 �see Appendix A for more on the
meaning and an evaluation of these diagrams�. Either of
these methods shows that �	�B�		= ± i for the two states of
the qubit �the factor of i comes from the Abelian sector of the
theory�. Hence,

�xx  �tMN ± itPQ�2. �14�

with the � sign corresponding to the state �0	 and the � sign
corresponding to the state �1	.

In the many-qubit device of Fig. 1, we would need tunnel
junctions on either side of each qubit. By doing a sequence
of tunneling conductance measurements, we could read each
qubit in succession.

The presence or absence of a charge e /4 quasiparticle on
an antidot can, of course, be detected simply by measuring
the charge on the antidot. However, we will have occasion to
measure the topological charge contained within some com-
plicated spacetime loops, so it will also be useful to detect
charge e /4 quasiparticles by interferometry. This can be done
using the experimental setup of Refs. 15 and 26 as analyzed
in Refs. 27 and 28 When a charge e /4 quasiparticle is
present on the antidot in Fig. 7, the authors of Refs. 27 and
28 showed, the two trajectories do not interfere at all because
�	�B�		=0 for Eq. �13� applied to this setup. This may be
seen by evaluating the Jones polynomial at q=e
i/4 for the
first link in Fig. 25, later �see Appendix A for more details�.

Hence, �xx �t1�2+ �t2�2. Varying the phases of t1 and t2 will
not affect the longitudinal conductivity, which is the signa-
ture of a � particle.

C. Tilted Interferometry

We now consider a generalization of the interferometry
measurements of the previous subsection. Consider the dia-
gram of Fig. 8, in which a quasiparticle-quasihole pair is
created, one member of the pair winds around another qua-
siparticle fixed at an antidot, and then the pair is again anni-
hilated. This picture has a special feature, namely that the
quasiparticle-quasihole loop can be continuously deformed
into a single time slice or, for that matter, stretched out so
that it takes place over a very long time, as in the third
picture in Fig. 8. Because the antidot is simply sitting there
passively, the evolution in the time direction can be chosen
to our advantage.

The amplitude for such a process is a measure of the total
topological charge of the planar region bounded by this loop
when deformed into a single time slice �as in the middle
picture in Fig. 8�—in other words, it measures the topologi-
cal charge on the antidot. However, we are also free to con-
sider such processes even when they do not have an inter-
pretation in terms of the charge in some region of a fixed
time-slice plane. This type of process can occur when the
spacetime topology is nontrivial. For instance, if the system
is on a torus, then there is a process in which a quasiparticle-
quasihole pair is created, the quasiparticle taken around the
meridian of the torus until it again meets the quasihole, and
they are both annihilated. The corresponding loop does not
enclose any region, so the usual interpretation is not avail-
able. Such loops are an important part of the Bravyi-Kitaev
construction that we describe in Sec. VI. An even more ex-
otic possibility is depicted in Fig. 9. Suppose we have two
antidots that we bring close together so that they fuse for a
short period of time T before we pull them apart again. The
spacetime diagram for this process is depicted in Fig. 9. Now
consider a test quasiparticle that travels between the two
dots. We have drawn two interfering trajectories that the test
quasiparticle can take, labeled p and p� in Fig. 9. One of
these trajectories, p, passes between the antidots before the
merger while the other, p� passes between the antidots after
the merger. The curve � captures the matrix element for the
interference between these two trajectories.

Ordinarily, one thinks of the amplitude of Fig. 9 as being
quite different from the middle one in Fig. 8 �for instance, in
Yang-Mills theory, a Wilson loop in the time direction is a
measure of the force between separated charges, and there-

FIG. 6. The interference between the two trajectories in Fig. 5
can be obtained from the Jones polynomial �operator� evaluated on
the two diagrams in this figure. In �a� the qubit is in the state 0,
while in �b� it is in state 1.

FIG. 7. �Color online� When there is a charge e /4 qusiparticle at
the antidot in the middle of the device, then there is no interference
between the two trajectories from X to Y contributing to the longi-
tudinal conductance.

FIG. 8. A quasiparticle trajectory that winds around the antidot
�straight line� can be deformed into a single time slice or stretched
over a long time.
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fore is a probe of confinement�. However, in a topological
phase, the curve � in Fig. 9 is put on the same footing as the
loop in Fig. 8 �see Appendix A for more on the relation
between these diagrams and matrix elements in the Chern-
Simons theory�. In a topological phase, the system does not
know about any preferred metric �at least at long distances
and low energies�, so the time direction is just as good as a
spatial direction. The results of such interferometry measure-
ments correspond to topological charges, even though there
is not an interpretation as the topological charge enclosed
within a spatial loop. This may be familiar to some readers in
the context Laughlin states in the quantum Hall effect. At
�= 1

3 , an interference experiment around the meridian of a
torus can return as its answer q=0, 1

3 , 2
3 �modulo 1�. Of

course, the meridian of the torus does not enclose a region,
so these are not charges enclosed within a meridional loop.
Rather, these results correspond to the different possible qua-
siparticle boundary conditions �monodromies� around the
meridian �namely 	→e2
im/3	, m=0,1 ,2� that are the same
as the phases that a quasiparticle would acquire in going
around a region containing charges q=0, 1

3 , 2
3 . Similarly, in

the Pfaffian state tilted interferometry experiments will re-
turn as their result either 1, �, 	, just as ordinary interferom-
etry does.

Such measurements, in which quasiparticles encircle the
time-dependent trajectories of quasiparticles on antidots, will
be important for the protocols proposed in this paper, so it is
worth spending a little time determining the limitations on
such measurements, which we will call “tilted interferom-
etry” because the curve � cannot be deformed into a single
time slice. �We thank Ady Stern for pointing out that tilted
interferometry is analogous to the less well-known experi-
ment proposed by Aharonov and Bohm,29 in which the time
dependence of A0 affects quasiparticle interference between
trajectories that do not pass through regions of a finite elec-
tric �or magnetic� field.�

Unlike in the case of “ordinary” interferometry, a tilted
measurement cannot, strictly speaking, be a dc measurement.
In an ordinary interference experiment, the different interfer-
ing quasiparticle wave functions are plane-wave-like states,
hence, even though the travel time for the two trajectories in
Fig. 5 will be different, the wave functions will have a spa-
tiotemporal overlap, so they will still be able to interfere.

Consider, however, the trajectories in Fig. 9. Let us suppose
that the two antidots are merged from time t1 until time t2.
Then the first trajectory between the antidots must occur be-
fore t1 while the second trajectory must occur after t2. The
only way that the wave functions for the two quasiparticle
trajectories can have an overlap is if there is a delay built into
the first trajectory that will allow the second one to “catch
up.” This can be done as shown in Fig. 10. We turn on and
off some of the gates in order to direct the quasparticles
along the specified trajectories. It will also be helpful to vary
the quasiparticle velocities, as also shown in the figure.

IV. TOPOLOGICAL PROTECTION

The main advantage of using a topological state as a plat-
form for quantum computation is that such states have intrin-
sic fault tolerance.20 The multiquasihole states cannot be dis-
tinguished by local measurements, as long as the quasiholes
are kept far apart. Hence, interactions with the environment,
which are presumably local, cannot cause transitions be-
tween different topologically degenerate states nor can it
split them in energy. Suppose that we have 2n quasiparticles
in our system, which is the device of Fig. 1. One might
worry, for instance, that there could be a local voltage fluc-

FIG. 9. Two antidots are merged for a short while and then
separated again. The spacetime curve � encircles the merger region.
The interference between the trajectories p and p� measure the to-
pological charge around this curve.

FIG. 10. �Color online� Two antidots are merged for a short
while and then separated again. By putting delays into the possible
quasiparticle trajectories �depicted in red and blue�, we can enable
them to interfere. In order to give the two antidots enough time to
merge, we might wish to make the velocities v1, v2 small.
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tuation at one of the antidots. This has a trivial effect, how-
ever: the voltage fluctuation changes the energy of all 2n

states of our Hilbert space by precisely the same amount.
Thus, it does not apply a phase gate, as could occur in a
nontopological quantum computing scheme. The only way in
which errors can occur is if a stray quasiparticle �created by
the interaction with the environment� moves across the sys-
tem and spontaneously performs a topological operation such
as the braiding operation of Fig. 4 or the interference mea-
surement of Fig. 5. This is closely related to the longitudinal
resistance, which is the probability of an event in which a
quasiparticle travels from one end of the system to another. If
the spacing between antidots is large enough that quasiparti-
cle transport at this scale is in the Ohmic regime, then the
error rate and the longitudinal resistance will be controlled
by the same kind of processes. �We thank Leon Balents for a
discussion of this point.� Experimentally, the longitudinal re-
sistance is observed to be in the thermally activated regime.
Hence, it is limited by the density of thermally excited qua-
siparticles, which is exponentially small, �exp�−� /kBT�,
where � is the quasiparticle energy gap and T is the
temperature.30 In Ref. 19 the resulting error rate � was esti-
mated to be

�

�
�

kBT

�
e−�/kBT. �15�

In order to minimize the error rate, we want the temperature
to be as low as possible, and we want the gap to be as large
as possible, which seems to be aided by ultrahigh mobility
samples. The lowest temperature reached in the experiment
of Ref. 5 was T=5 mK, while the measured gap was � /kB
=0.5 K. This leads to an error rate of less than 10−30.

Of course, quasiparticles cannot be kept infinitely far
apart, so there will be some splitting between multiquasihole
states. This splitting can be understood as the formation of a
band of propagating Majorana fermion modes, which mix
the localized states. The width of this band will be propor-
tional to the tunneling matrix element between two quasi-
holes, which should decay as w�e−R�/c, for some constant c,
with dimensions of velocity, where R is the distance between
quasiholes and � is the quasiparticle gap. The condition that
the quasiparticles should be kept far apart can be translated
into the statement that braiding operations should be done on
time scales shorter than 1/w. By keeping R large compared
to the inverse of the gap we can ensure that this will always
be the case.

When quasiparticles are brought close together, however,
there is no longer exponential protection. Suppose, for in-
stance, that we merge two antidots into one large antidot of
radius �. The splitting between the states �0	 and �1	 is now
determined by processes in which a quasiparticle-quasihole
pair is created at the edge of the antidot; they move in op-
posite directions around the antidot, and annihilate on the
other side. Since there is no gap for the creation of quasipar-
ticles at the edge of the antidot, there is no longer exponen-
tial suppression of such a process. Instead, it leads to a split-
ting w�1/�. This means that the resulting phase error will
be small if two quasiparticles are merged into a large antidot

for a short period of time, even though the protection is not
as good as exponential. However, there is still topological
protection against bit flip errors since these would require a
neutral fermion to tunnel to or from the qubit.

A second aspect of topological protection is the exactness
of braiding operations. In the case of, say, spin qubits, gates
are necessarily noisy because they depend on our ability to
precisely tune the duration of a 
 pulse or the strength of an
applied magnetic field, which is necessarily imperfect. When
gates are applied by braiding quasiparticles, however, no
such tuning is necessary. The process is discrete: we either
braid two quasiparticles or we do not, and if we do braid
them, then the corresponding unitary transformation occurs
with the same level of exactness as the vanishing of the
longitudinal resistivity or the quantization of the Hall resis-
tivity.

However, one might wonder what happens if a quasipar-
ticle only goes 359° around another. If our qubits were qua-
siparticle pairs that we created out of the vacuum and then
measured after annihilating them again in pairs at the end of
the computation, then it would be clear that we would be
dealing with closed braids. As long as the topological class
of the closed braid traced out by the entire history of the
system were preserved, it would not matter whether one qua-
siparticle went 360° around another or only part of the way
around. However, we envision measuring our qubits through
a quantum interference measurement of the topological
charge around some closed curves. Therefore, we will con-
sider this issue in a little more detail. If one quasiparticle
were to go 360° around another then the initial and final
states of the system lie in the same Hilbert space and the
action of the braiding operation is just its unitary representa-
tive on this Hilbert space. However, if a particle only goes
359° around another, then the initial and final states of the
system do not lie in the same Hilbert space. Of course, the
initial and final Hilbert spaces are unitarily equivalent, but
the problem is that a unitary transformation between them
could be trivial or it could undo the braiding operation. So
what happens? The answer is that it depends on how the
system is now measured. If the state of the system is mea-
sured by interference, then the result will depend on what
path the interfering test quasiparticle takes �incidentally, this
is always true since we can undo the effect of a braid by
choosing a convoluted interfering path�. If a particle goes
359° around another, then almost all paths will give a result
that is the same as if it had gone 360°. In other words, it is
not necessary to have very precise control of quasiparticle
positions. Of course, if a quasiparticle were to only go 270°
around another, then we would have to exercise more care in
choosing a trajectory for a test quasiparticle. However, even
as drastic a deviation as this is not that serious a problem.
The same caution holds if, instead of measuring the system,
we wanted to act on it with yet another braiding operation.
An example of such a situation is given in Fig. 11. The same
logic also holds for the uncontrolled motion of a stray qua-
siparticle; whether or not it has moved far enough to cause
an error will depend on how the qubit is subsequently mea-
sured.

A potential second source of error is braiding operations
that are performed too quickly. The time scale top over which
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a braiding operation is done must be slow compared to the
gap, top�1/�. If this inequality is violated, a pair of quasi-
particles might be created. These quasiparticles might then
execute a nontrivial braid before annihilating each other �the
Coulomb blockade presumably prevents them from annihi-
lating the quasiparticles on the antidots�, thereby applying
g ·g�, for some g�, rather than our intended gate g. The am-
plitudes for various g� depend on the ability of quasiparticles
to move around the system �semiclassically, a random walk�.
To avoid such errors, we must make sure that such quasipar-
ticles are not created in the first place by performing all
braiding operations slowly, top�1/�. Again, it is advanta-
geous to make the gap � as large as possible.

While the braiding operations and interference measure-
ments described in this paper are similar in the sense that
they both involve topological operations, they are actually
quite different in an important respect. The braiding opera-
tions by which we envision manipulating our qubits are uni-
tary operations. They involve moving quasiparticles around
our system over time scales that must be long compared to
the inverse of the gap and small compared to the inverse of
the error rate:

1

�
� top � Te�/T. �16�

As long as this order of time scales is respected and the
quasiparticles are kept far apart �compared to the magnetic
length, which is the only length scale in the problem�, then

the system is topologically protected: the quantum state of
the system evolves precisely as we specify.

On the other hand, our interference measurements are dis-
sipative dc measurements �since they require nonzero �xx�.
As far as the multiqubit Hilbert space is concerned, these are
not unitary operations but, rather, projection onto specified
states. It is worthwhile thinking a little more about how this
“wave function collapse” occurs because these measure-
ments are potentially noisy. For instance, if a current-
carrying edge quasiparticle were to scatter inelastically, then
the interference between its two possible trajectories will be
spoiled. If this inelastic scattering rate becomes too large,
then we will be unable to read the state of our quasiparticles
through an interference measurement because we will not be
able to resolve two different values of the longitudinal con-
ductivity. We would like to know when this will occur. Also,
when this occurs, there is an interesting quantum measure-
ment theory problem: does the qubit wave function still “col-
lapse” even when the inelastic scattering rate for the test
particles is too high to allow us to distinguish the two states
of the qubit?

To answer these questions, we begin by considering Fig.
5. When a single test quasiparticle tunnels between the two
edges �without scattering inelastically�, its wave function be-
comes entangled with the state of the qubit: it is in one state,
which we will call �a	 when the qubit is in the state �0	 and it
is in a different state, �b	, when the qubit is in the state �1	. If
the initial state of the system were ��0	+��1	, then it is now

��0	�a	 + ��1	�b	 . �17�

If �a	 and �b	 were the same, then there would be no en-
tanglement with the test quasiparticle at all and the coherent
superposition of �0	 and �1	 is maintained. However, if �a	
and �b	 were orthogonal, then the entanglement between the
qubit and the test quasiparticle would completely spoil the
coherent superposition of �0	 and �1	 �unless they can be dis-
entangled later�, i.e., the qubit wave function is ‘collapsed’.

For small tunneling amplitudes tMN and tPQ, both �a	 and
�b	 are concentrated on the bottom edge in Fig. 5, and there
is very little difference between these two states of the test
quasiparticle. We can write

�b�a	 = 1 − � , �18�

with � small. Hence, a single test quasiparticle does not do
an effective job of “collapsing” the qubit wave function. In
order to be an effective measurement, we would like the
qubit to be in the state �0	 with probability 1 when the test
quasiparticle is in the state �a	. When �18� holds, the qubit is
instead in the state ��0	+��1−���1	 when test quasiparticle
is in the state �a	.

However, if N test quasiparticles tunnel, then they all be-
come entangled with the qubit. The combined state of the
qubit and test quasiparticles is

��0	�a,a, . . . ,a	 + ��1	�b,b, . . . ,b	 . �19�

Notice that we now have

FIG. 11. �Color online� In �a�, we have two pairs of quasiparti-
cles. The dashed lines connect quasiparticles that fuse to form the
�topologically� trivial particle. In �b�, the second and third quasipar-
ticles are exchanged. A measurement of the topological charge
around the blue curve or an operation that takes another quasipar-
ticle around this curve will give a nontrivial result as a result of this
exchange. The same result is clearly obtained even if the final po-
sition of the quasiparticles is slightly different from those shown. If
the exchange is incomplete, as in �c�, then a measurement around
the blue curve will give a non-trivial result but a measurement
around the red curve will give a trivial result. As long as we are
careful to measure the system with the blue curves in �b� and �c�,
we will find the correct result.
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�b,b, . . . ,b�a,a, . . . ,a	 = �1 − ��N. �20�

For N sufficiently large, these states are nearly orthogonal.
Hence, the two states of the qubit cannot be coherently su-
perposed unless the qubit is disentangled from the test qua-
siparticles. This cannot happen once the test quasiparticles
leave the system at the current lead and thermalize there,
which is an irreversible process. Thus, we conclude that the
qubit wave function “collapses:” when the test quasiparticles
are all in the state �a	, the qubit is in the state �0	 with prob-
ability 1− �1−��2N, which is �1 for N large.

Now, consider the effect of inelastic scattering on the test
quasiparticles. Those test quasiparticles which are inelasti-
cally scattered, do not become entangled with the qubit. As
far as measuring the qubit is concerned, we can forget about
them. However, as long as there is a large number N of
quasiparticles that coherently encircle the qubit without in-
elastically scattering, the qubit wave function will collapse,
according to the previous logic. In principle, we can always
ensure that this happens simply by waiting long enough, but
once the inelastic scattering rate becomes of order �cr
�v /L where L is the device size and v the edge velocity, we
would have to wait an exponentially long time.

The criterion for actually being able to read the value of
the qubit is a little different, however. It depends on the
resolution of our ohmmeter. When the inelastic scattering
rate is too high, we will not be able to resolve that there are
actually two different values of the longitudinal conductivity.
However, depending on how accurately we can measure the
longitudinal conductivity, this could occur before the bound
�cr is reached. Thus, it is possible that the qubit wave func-
tion might “collapse” by a measurement, even though we
would not be able to read the result.

We should conclude this section with a comment directed
to our topologically inclined readers �perhaps 100% of those
who have come so far�. Many critical details of the interfer-
ometer, such as the inelastic scattering length, travel times,
quasiparticle “delays,” etc., are not topological in nature.
How is this to be reconciled with the fact that in a topologi-
cal theory all information on the change of state should be
encoded by the 2+1-dimensional spacetime history of the
medium? The answer is that the topology of various tunnel-
ing trajectories gives us operators h1 ,h2 , . . ., evolving the
system from initial to final states. However, experimental
details determine other �dissipative� terms in the evolution
equation of the density matrix of the system. In the limit that
these other terms are small, a pure quantum state will remain
pure and different 2+1-dimensional space-time histories will
contribute coherently to the evolution of this quantum state.
When they are large, a pure quantum state will evolve into a
mixed one and the 2+1-dimensional space-time histories
will effectively combine to form a superoperator for this
mixed state density matrix.

V. UNIVERSAL GATE SET USING SOME
TOPOLOGICALLY UNPROTECTED GATES

For all of its remarkable properties, the Pfaffian state suf-
fers from one serious drawback: the transformations gener-

ated by braiding operations are not sufficient to implement
all possible unitary transformations.22,26 Hence, these opera-
tions do not permit universal quantum computation. How-
ever, we do not need to supplement braiding with much in
order to obtain a universal gate set. In this section, we ex-
plain a “quick and dirty” way of doing this.

First, consider single-qubit operations. If we bring the two
quasiparticles that comprise a qubit close together, as shown
in Fig. 12, then their splitting will become appreciable. This
splitting has the form �E�r��e−r�/c, where r is the distance
between the quasiparticles and c is some constant with di-
mensions of velocity. If we wait a time Tp before pulling the
quasiparticles apart again, then we will apply the phase gate:

UP = �1 0

0 ei �E�r�Tp
� . �21�

A particularly convenient choice is �E�r�Tp=
 /4, which
would allow us to apply the same transformation as the gate
g1 described in the next section.

Let us further assume that we can actually perform this
operation on any pair of quasiparticles, not just two quasi-
particles from the same qubit. Note that in order to do this
we only need precise control over the distance between one
pair of antidots since we can use g3 to move any desired pair
of quasiparticles to these preferred antidots �e.g., using the
bucket brigade of auxiliary antidots to move quasiparticles�.
If we bring together in precisely the same manner two qua-
siparticles from different qubits, then we will couple the two
qubits. In terms of the Majorana modes of �11�, this gate is
exp��
 /8��i� j�. �In the special case that i and j come from
the same quasiparticle, this is the same as �21� up to an
overall phase.�

The other gate that we need for a universal quantum com-
putation is the nondestructive measurement of the total topo-
logical charge of any pair of qubits. This can be done by
using g3 to move one qubit so that it is next to the other.
Then, the interference measurement depicted in Fig. 13 can
determine the sum of the topological charges of the two
neighboring qubits. This is a measurement of �1�2�3�4. Ac-
cording to Ref. 31, this measurement is equivalent to the
application of the gate exp��
 /4��1�2�3�4� as long as we
have the ability to �a� create ancilla in the state �0	 and �b�

FIG. 12. By bringing together quasiparticles 1 and 2, which
form a qubit, we can apply the gate g1. This operation is unpro-
tected and requires control of the distance between the quasiparti-
cles and the length of time that they are brought together. However,
the required precision might not be very stringent as a result of the
availability of topologically protected operations such as g3.
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apply exp��
 /4��i� j�, which is simply the exchange of qua-
siparticles i and j.

An obvious problem is that we have now given up some
of the protection that we have worked so hard to obtain.
Even if we could calculate �E�r� with high precision, there
would always be some chance of a mistake in the length of
time Tp that the quasiparticles are close together. Thus, we
would be in a situation in which some gates are exact—those
resulting from braiding operations—while others are unpro-
tected. The threshold error rate for the unprotected opera-
tions can be much less stringent �as high as 10%�, as shown
by Bravyi and Kitaev32 for a specific set of perfect gates
together with the noisy creation of a one-qubit ancilla in a
specified state �a “magic state”�. It is still an open problem
what the threshold is for the set of protected gates and the
one unprotected gate described previously.

VI. BRAVYI-KITAEV CONSTRUCTION

In Ref. 22, Bravyi and Kitaev constructed a universal set
of gates for a system in the topological phase described by
the SU�2�2 Chern-Simons theory, which is the effective field
theory15,16 likely to describe the �= 5

2 quantum Hall state,
apart from an Abelian factor, which is unimportant here. For
reference, their gates �g1 ,g2 ,g3� are

g1 = �1 0

0 e
i/4 �, g2 =
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
� ,

g3 =
1

2

1 0 0 − i

0 1 − i 0

0 − i 1 0

− i 0 0 1
� . �22�

g1 is a phase gate on a single qubit. g2 and g3 are two-qubit
gates. g2 is a controlled phase gate: if both qubits are in state
�1	, the state acquires a �−1�. Otherwise, it is unchanged.
Alternatively, if we change the basis of the second qubit to
��0	± �1	� /
2, then g2 is simply a CNOT gate. g3 is a two-
qubit gate, which, together with g1, g2, form a universal gate
set. This particular gate is chosen because it can be imple-

mented with the simple quasiparticle braiding process de-
picted in Fig. 14.

The controlled phase gate g2 is more complicated. Sup-
pose we have two qubits composed of two pairs of quasipar-
ticles �1, 2� and �3, 4�. We would like to multiply the state of
the system by �−1� only when qubits �1, 2� and �3, 4� are
both in state �1	. The problem is that if qubit �3, 4� is in state
�1	 and we take it around quasiparticle 1, then a factor of
�−1� results, regardless of whether �1, 2� is in the state �0	 or
�1	. The trick of Bravyi and Kitaev22 is to split qubit �1, 2� in
such a way as to produce a charge e /4 quasiparticle only
when �1, 2� is in the state �1	. If this occurs, then we can take
�3, 4� around this quasiparticle, and a �−1� will occur if �3, 4�
is also in the state �1	.

In order to do this, we perform the following steps that we
will describe here without regard to their feasibility �which
will be taken up in the next section�. Suppose that quasipar-
ticles 1 and 2 are at antidots, which should be understood as
punctures in the quantum Hall fluid. The state of the �1, 2�
qubit is equal to the topological charge around the loop B0 in
the top diagram in Fig. 15. We will denote this topological
charge by W�B0�. We create an overpass that connects these
two punctures, as depicted in the middle part of Fig. 15. We
check with an interferometry measurement that the boundary
of the antidots-plus-overpass, labeled B1 in Fig. 15, has
trivial topological charge, W�B1�=1. If it does not, we break
the overpass and rebuild it again until we find W�B1�=1. We
do not need to repeat this very often since the probability for
W�B1�=1 is 1 /2 and the probability for W�B1�=	 is also 1

2
�since the isospin 0 and 1 quasiparticles have the same quan-
tum dimension—i.e., the same zero-temperature entropy per
particle—in SU�2�2 Chern-Simons theory�. Each time we
break the overpass, we return the qubit to its original state.
This follows from the general principle �see Appendix B�
that adding quantum media is reversible simply by deleting
what was added �whereas deleting quantum media is gener-
ally irreversible�.

Once we know that W�B1�=1, it follows for reasons that
we discuss below that if �1, 2� is in state �1	 �i.e., if W�B0�
=	�, then W�C�=� in Fig. 15. If this is the case, then taking
�3, 4� around the loop C multiplies the state by �−1� if �3, 4�
is in state �1	 and leaves it unchanged if it is in state �0	. On
the other hand, if �1, 2� is in state �0	, then W�C�= �1
−	� /
2 in Fig. 15, and taking �3, 4� around C does not
change the state. Therefore, this sequence of operations ap-
plies the gate g2 of �22�.

The Chern-Simons theory calculations that lead to this
result are facilitated by the observation that the topology of

FIG. 13. �Color online� A nondemolition measurement of the
total topological charge of two neighboring qubits �comprised of 1,
2 and 3, 4� can be done with the interference measurement shown
here. Together with g3 and the operation UP shown in Fig. 12, this
forms a universal gate set.

FIG. 14. Quasiparticles 1 and 2 form a qubit; 3 and 4 form a
second qubit. Exchanging 2 and 3 applies the gate g3.
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two antidots joined by an overpass is a torus with two punc-
tures, corresponding to B0 and B1, as depicted in the bottom
diagram of Fig. 15. The curve C is the meridian of the torus.
Once we have made sure that W�B1�=1, we know that we
can fill in this puncture without changing anything; in other
words, the system is equivalent to a torus with one puncture,
B0. Observe that W�B0� is the state of the qubit: it is either 1
or 	. We would now like to determine W�C�. This can be
obtained from the S matrix of the theory, which relates the
topological charge around the meridian, W�M�, to the topo-
logical charge around the longitude, W�L�. If W�B0� is 1, the
S matrix is

Sij
1 =

1

2

1

2

1

2

1

2

0 −
1

2

1

2
−

1

2

1

2

� , i, j = 1,�,	 . �23�

However, W�L� is simply the topological charge on each of
the antidots, which is � �i.e., �0, 1, 0� in the matrix notation
of �23��. Hence, the S-matrix tells us that W�C� is the linear
combination �1−	� /
2. On the other hand, if W�B0�=	,
then the vanishing of all S matrix elements Sij

	 other than
S��

	 =e−i
/4 tells us that W�C�=�.

We now turn to g1. The first step in the implementation of
gate g1 in �22� is the same as previous: we take the two
antidots associated with the qubit under consideration and
join them with an overpass as in Fig. 15. Again, we check
that W�B1�=1. Now, however, we act on this qubit by per-
forming a double Dehn twist on the curve C. This means that
we cut along the curve C, thereby forming two boundaries.
We rotate one of them by 4
 relative to the other �i.e., per-
form two twists� and then glue them back together. Finally,
we remove the band, thereby returning the system to a state
of two � quasiparticles, one on each of the two antidots.

A Dehn twist on C has an equivalent effect as a 2
 rota-
tion of the topological charge associated with C. Since the
conformal spins of 1, � and 	 are, respectively, 0, 1

16 , and 1
2 ,

the effect of performing two successive Dehn twists is sim-
ply the identity 12= �−1�2 if W�C� is, respectively, 1 or 	 and
it is �e2
i/16�2=e
i/4 if the topological charge is �. Since
W�C� is perfectly correlated with the value of the qubit, the
effect of this sequence of operations is the gate g1 in �22�.
Note that a single Dehn twist would necessarily change the
charge of the two antidots by transferring charge e /4 from
one to the other.

VII. FROM NONPLANAR TOPOLOGY
TO TIME-DEPENDENT PLANAR TOPOLOGY

The operations described in the previous section may
never be practical in a real quantum Hall device. Overpasses
with high mobility are implausible, let alone gating them in
and out at will. Dehn twists seem an even more remote pos-
sibility. Fortunately, there are some features of Chern-
Simons theory, which is the effective field theory of our sys-
tem, which can be exploited to mimic these types of
operations without leaving the plane or attempting to per-
form surgery on our quantum Hall fluid. In this section, we
will explain these features of Chern-Simons theory and how
they can be used to apply the gates g1 and g2. Once this
problem in topological quantum field theory �TQFT� has
been solved, we turn in the next section to the new set of
problems that arises when we try to realize this construction
in a quantum Hall device. For the reader who is uninterested
in the TQFT details and wishes to skip ahead to the next
section, we summarize the results of this section: �1� an op-
eration equivalent to the addition and removal of an overpass
between two antidots can be performed by connecting the
two antidots as long as a curve surrounding the connection
�which might be tilted� has a trivial topological charge; �2� a
measurement of the topological charge around a curve �
�with a particular framing� is equivalent to a “Dehn filling”
on this curve �which, in turn, is related to a Dehn twist, as
explained below� modulo a few caveats described in this
section. With these two observations in hand, we can replace
“impossible” operations with operations that are merely very
difficult. In Sec. VIII, we give concrete illustrations of how
this can be done with the device architecture described in
this paper.

One particularly fortuitous feature of topological field
theories, for our purposes, is the fact that when the topologi-
cal charge around a hole is trivial, then the part of the system

FIG. 15. By adding an overpass, we connect two antidots. The
dashed curve labeled B1 is the combined boundary of the antidots-
plus-overpass. In the implementation of both g1 and g2, we need to
check that W�B1�=1. In the case of g2, the controlled qubit must be
taken around C in order to implement a controlled phase gate on it.
To enact g1, a double Dehn twist must be performed in C. The two
antidots joined by an overpass in the middle of the figure are topo-
logically equivalent to a torus with two punctures corresponding to
B0 and B1 as shown at the bottom. The meridian of the torus is C.
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outside the hole is impervious to whether the hole is filled in
or not. For example, if the topological charge around � in
Fig. 9 is trivial, then this spacetime history is equivalent, as
far as a topological field theory is concerned, with a space-
time history in which there is no merger whatsoever between
the two antidots. This suggests a way in which we can effec-
tively have overpasses by taking advantage of the time di-
rection so that “over” is realized as “at a different time,” as
shown in Fig. 16. Suppose we want a band of material B to
form an overpass over another band A. We instead break A at
time t1, allow B to pass, use B for whatever purpose, break B,
and then reconstitute A at time t2. If we could measure the
topological charge around the resulting timelike hole t1� t
� t2 in A and if we found that it was trivial, it would be, as
far as Chern-Simons theory were concerned, as if A were
never broken. The faux overpass—or, simply, faux pass—B
is then just as good as an overpass.

Note that this figure can be continuously deformed to our
convenience. From a topological point of view, Fig. 16 is
equivalent to Fig. 17. However, their realizations are quite
different, and they have different practical advantages and
disadvantages. The tilted measurement of � in Fig. 16 is
untilted in Fig. 17. However, Fig. 17 has a moving antidot
and island �whose velocity is the slope of the faux pass in
Fig. 17�.

A second “impossible” operation which we need to per-
form is a Dehn twist on a closed curve C. In order to make it
possible, we use the following two facts. �i� It is a fundamen-
tal identity of the “Kirby calculus” that �−1�-framed “Dehn
surgery” on a simple linking circle imparts a �+1� Dehn twist
and, of course, a double Dehn twist arises if two such sur-
geries are performed. By “frame,” we mean that the curve C
is thickened into a ribbon so that a self-linking number can
be well defined: it is the linking number of the two curves
formed by the edges of the ribbon �one edge of the ribbon is
C, the other edge is traced out by the tip of the frame vector�.
Some examples of framed curves are shown in Fig. 18. We
would like C to be framed so that this self-linking number is
�−1�. The meaning of “Dehn surgery” is that a tubular neigh-

borhood �in spacetime� of the loop C is deleted and then
glued back so that the meridian disk is glued to the circle
defined by the tip of the frame vector. Obviously, physical
limitations prevent us from doing this in a quantum Hall
device, but we can instead �ii� measure the particle content of
a loop � in the interior of a 2+1-dimensional space-time. If
the result is 1, we have �up to an overall normalization factor,
corresponding to capping a 2-sphere� accomplished Dehn
surgery on C as far as the Chern-Simons theory is concerned.
This Dehn surgery on a spacetime history has the result of
making it into a history that interpolates between an initial
state before a Dehn twist has been performed on the faux
pass and a final state in which the faux pass has been Dehn
twisted.

We would like to explain the relation between Dehn twist,
Dehn surgery, and Dehn filling. The Dehn twist is a method
for constructing a diffeomorphism of a surface: given a
closed loop l on a surface, cut the surface along l, twist one
side by 2
 and reglue. This is either a � or � Dehn twist

FIG. 16. A nonplanar overpass configuration can be mimicked
by breaking the region A and adding B. This is done by merging the
two antidots between times time t1 and t2. During this merger in-
terval, we allow the quantum Hall fluid the fill the region B. This
faux pass splits the merged antidot in the perpendicular direction.
These changes are then undone to return the system to its initial
configuration. In order to verify that removing A was harmless, we
have to perform a tilted interferometry measurement to check that
the topological charge around � is trivial. See Fig. 20, later, for a
time slicing of this process.

FIG. 17. Topologically, the process depicted here is equivalent
to that depicted in Fig. 16. However, as a result of the tilt of the
faux pass, the triviality of the charge around the hole in A can be
measured with an untilted measurement. Consequently, the curve �
can now be deformed into a single time slice. The curve labelled C
in this figure is equivalent to the curve C that goes over the over-
pass in Fig. 15. This is the curve on which we wish to perform a
Dehn twist. Measuring the topological charge around this curve
allows us to effect the same transformation on the quantum state of
the system without any surgery. See Fig. 24, later, for a time slicing
of this process.

FIG. 18. The curve in �a� can be framed, for example, as shown
in �b� and �c�. The self-linking number in �c� is greater by +1 than
in �b�.
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�depending on sign conventions�. Our interest in Dehn twist
is that it provides a way to transform a 3-manifold M by
cutting it open along a surface and then regluing using a
Dehn twist. To discuss this procedure, we will simplify mat-
ters by concentrating on an annular neighborhood A of l.
�The framing of l defines an annulus A, as may be seen in
Figs. 18�b� and 18�c�. We split the 3-manifold M along A,
thereby opening a toridal cavity within M. The boundary of
this cavity is a torus B, which is just two copies of A, joined
along their boundaries. This new manifold with the cavity is
essentially M \neigh�l�, M minus a neighborhood of l. The
term “Dehn filling” refers to gluing a solid torus back into
the cavity; the double process of first making the cavity and
then refilling it is called “Dehn surgery.” The possible out-
comes of Dehn surgery are parametrized by the slope of that
curve on the cavity boundary B that is matched to the disk
factor D2 of the reglued solid torus D2�S1. Notice that Dehn
twist, from one copy of A to the other, carries a radial arc in
one copy to a twisted arc in the other so that the two mate
together to become a diagonal—either �1,1� or �1;−1� in the
natural B coordinates �the first component counts the wind-
ing number around the “meridian” or the shortest direction
and the second coordinate counts the winding number
around the “longitude” defined by either component of the
boundary of A within B� depending on whether the Dehn
twist is � or �, respectively. Conversely, the instuction to do
“−1 Dehn surgery on l” can be expressed as follows: �1�
open the cavity around l �a normal framing on l is required at
this point to pick out the surface A�; �2� change the corre-
spondence between the two copies of A by a+1 Dehn twist;
�3� with respect to these new coordinates, Dehn fill the solid
torus by gluing the disk to the meridian of the cavity. �Steps
�2� and �3� together constitute −1 Dehn filling since they tell
us to match the �1,−1� curve on the cavity boundary B,
which is taken to the meridian by step 2, to the disk within
the reglued solid torus.� Thus cutting and regluing by a �/�
Dehn twist is identical to doing �/� Dehn surgery. The later
is simply a more three dimensional language for the former.
Measuring the trivial charge along a curve C is, from the
point of view of Chern-Simons theory, equivalent to supply-
ing a disk �containing no quasiparticles� for the curve C to
bound, or an entire solid torus �with no Wilson loop at its
core� for B to bound. Thus, we propose to accomplish
through measurement a topological operation, namely Dehn
twist, which otherwise would have no reasonable experimen-
tal realization.

An important detail to be considered is that measurement
might result in a nontrivial charge. This means, in fact, that
the reglued solid torus does carry a Wilson loop of precisesly
that charge. This Wilson loop is depicted in Fig. 19 as a loop
� in the exterior solid torus, as shown. These states with
Wilson loops correspond to the other two ground states on
the torus �up to an additional factor of 2 degeneracy coming
from the Abelian part of the theory�. These are the states
obtained by performing the Chern-Simons functional integral
over a solid torus with a Wilson loop carrying topological
charge �� or 	, resp.�, but expressed in the meridinal basis.

��a� = �
A�T2=a

DA W�A,��e�MLCS�A�, �24�

where LCS�A� is the Chern-Simons Lagrangian and M =D2

�S1 is the solid torus. W�A ,�� is the Wilson loop �i.e., the
trace of the holonomy of the gauge field A�, W�A ,��
=Tr�P exp���A��, with the trace taken in the fundamental or
the adjoint representation �for, respectively, � or 	�, and the
functional integral is over SU�2� gauge fields A such that
A=a on T2, the boundary of the solid torus. Since the Wilson
loop must be around the meridian, � is depicted as “outside”
the torus in Fig. 19.

In order to perform a double Dehn twist on C, we need to
measure the topological charge around two framed curves
that run parallel to C. We will call these curves ��1 ,−1� and
��2 ,−1�; the −1 denotes the framing. Note that C is equiva-
lent to untwisted copies of the �’s, which can be denoted
��1 ,0� and ��2 ,0�. In order to measure the topological charge
around ��1 ,−1� and ��2 ,−1�, our measurement quasiparticles
will have to go along a curve with an extra twist; a way of
realizing this is shown later in Fig. 23. If a measurement
finds W��1�=1, then we have performed the desired Dehn
twist. Finding W��1�=	 is not the end of the world because
the extra Wilson loop that results just gives some extra minus
signs. However, we want to avoid W��1�=�. One way to do
this is to take a charge � around the loop ��1 ,0�. Then let
��1 ,−1� run parallel to the charge, encircling it to yield the
framing �−1�. Later, in Fig. 23, we have depicted a time
slicing of such a framed curve: the measurement quasiparti-
cle must wind around the quasiparticle, that is following the
loop ��1 ,0�.

We can now use a similar argument to that used after �23�
to show that W��1�= �1−	� /
2: since ��1 ,−1�=L−M �i.e.,
longitude-meridian�, we claim that W��1� is given by
ST−1��	, where n,

FIG. 19. If we measure the topological charge around ��1 ,−1�
and it is not 1, then we have performed a Dehn filling on ��1 ,−1�
and left behind a Wilson loop �, carrying this topological charge,
inside the solid torus. The state of the system is given by the func-
tional integral in Eq. �24� for this manifold. The 3-D mapping cyl-
inder of a Dehn twist can be described as follows: delete a solid
torus, then replace it with a twisted Dehn filling. For convenience,
we have drawn the torus in a nonstandard way so that L−M appears
simple.
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S =  1/2 
2/2 1/2


2/2 0 − 
2/2

1/2 − 
2/2 1/2
� and T = 1 0 0

0 ei
/8 0

0 0 − 1
� ,

in the �1,� ,	� basis. We check that ST−1��	=e−i
/8��1	
− �		� /
2. Hence, a measurement of W��1� can only give 1 or
	 �with equal probabilities�. By doing this with another
charge, parallel to �2 and encircled by it, we can force a
measurement of W��2� to be 1 or 	, again with equal prob-
abilities, and completely independent of the result of the
W��1� measurement.

To see that ST−1 gives the correct transformation, note that
we wish to transform from the longitudinal basis L to the
framing=k basis, L+kM =longitude+k�meridian�. To define
a basis V�T2�=�particle types,aVaā�S1� I�, we need to select a
circle, the “cuff,” to cut the torus along a dual circle, the
“seam,” to trivialize the resulting annulus as S1� I. The
transformation is then done in the following two steps:33

�cuff,seam� = �L,M� ——→
twistk

�L,M + kL� ——→
S−1

�M + kL,L� .

�25�

Hence, the composition of these transformations is given by:
S−1TkS.

In the previous discussion, we have shown that with two
tilted interferometry measurements, we can accomplish the
same thing as a double Dehn twist, as far as Chern-Simons
theory is concerned, with the caveat that extra Wilson loops
might be added to to the final state.

One important difference between the Bravyi-Kitaev
protocol,22 and our proposal to mimic this with time-
dependent planar topologies is that, in the latter case, W�B1�
cannot be measured until the end of the entire operation.
Consequently, we must use the overpass without knowing if
W�B1�=1 or 	 �these are the only two possibilities since two
�’s can only fuse into these two possibilities�. This means
that we must learn to live with the possibility that W�B1�
=	. The saving grace is that we will at least know after the
operation whether W�B1�=1 or 	, which allows us to com-
pensate in the latter case. Under the assumption that W�B1�
=1, we deduced from the S matrix of the theory that W�C� is
perfectly correlated with W�B0�, which is the value of the
qubit,

W�B0� = 1 Þ W�C� = �1 − 	�/
2,

W�B0� = 	 Þ W�C� = � . �26�

However, the same logic shows that if W�B1�=	, then

W�B0� = 1 Þ W�C� = � ,

W�B0� = 	 Þ W�C� = �1 − 	�/
2. �27�

In other words, the correlation between W�C� and W�B0� has
been reversed or, in other words, the roles of the states 1 and
	 of the qubit have been reversed.

In the case of g2, this applies to the control qubit, on
which all of the operations are performed �the controlled

qubit is passive�. Hence, if we find at the end of our proce-
dure that W�B1�=1, then we know that we have applied the
desired phase gate g2. If, instead, W�B1�=	, then the gate has
inadvertently interchanged the roles of 1 and 	 within the
controlling qubit so that

g̃2 =
1 0 0 0

0 − 1 0 0

0 0 1 0

0 0 0 1
� , �28�

has instead been applied. This is not too serious since a re-
peated application of the protocol gives a random walk in the
group Z2 � Z2= �1,g2 , g̃2 ,g2g̃2�. Our W�B1� measurements
tell us where we are within Z2 � Z2 as we randomly walk; we
simply halt upon reaching g2. The tails on a “long walk”
decay exponentially so this delay is acceptable.

Now consider g1. Let us first suppose, for simplicity, that
W��1�=W��2�=1. If we find at the end of our procedure that
W�B1�=1, then we know that we have applied g1= � 1 0

0 e
i/4 �.
However, if we find that W�B1�=	, then we have applied

�e
i/4 0

0 1
� = e
i/4g1

−1. �29�

There is one added complication in the case of g1, as com-
pared to g2: we have the added uncertainty in the outcome of
the W��1�, W��2� measurements. If W��1�=W��2�=	, then
two Wilson loops carrying 	 appear within the solid torus.
However, these two Wilson loops fuse to form 1, which is
again trivial, just as in the case W��1�=W��2�=1. However,
if W��1� ·W��2�=	, which is as good as a single Wilson loop
� carrying topological charge 	 parallel to C, there can be a
nontrivial effect. If W�C�= �1−	� /
2, which means that
W�B0� ·W�B1�=1, the Wilson loop contributes no extra
phase. However, if W�C�=�, which means that
W�B0� ·W�B1�=	, then the Wilson loop � encircles the same
topological charge � that is encircled by C �to which it is
parallel�. When a 	 encircles a �, a �−1� results. This means
that if W��1� ·W��2�=	, then instead of g1 or g1

−1, we have
actually applied �zg1=g1

−3 or �zg1
−1=g1

3, where �z= � 1 0
0 −1

�.
In all eight measurement outcomes for W��1�, W��2� we

have, up to an overall phase, implemented either g1, g1
−1, g1

−3,
or g1

3. Thus our protocol generates a type of random walk on
Z8. Since we know the measurement outcomes we may iter-
ate the protocol until we arrive at g1, which is again efficient.

Therefore, we conclude that finding W�B1�=	 is not a
calamity for the implementation of either g1 or g2.

VIII. REALIZING THE BRAVYI-KITAEV GATES
WITH TIME-DEPENDENT PLANAR TOPOLOGY

AND TILTED INTERFEROMETRY

In this section, we will discuss how the operations of the
previous section, which are merely difficult, rather than im-
possible, might be implemented in a quantum Hall device.
We need to be able to do four things: �1� move our qubits at
will, �2� create “faux passes”—which are equivalent to over-

FREEDMAN, NAYAK, AND WALKER PHYSICAL REVIEW B 73, 245307 �2006�

245307-14



passes in Chern-Simons theory—with the spacetime histories
depicted in Fig. 16 or Fig. 17, �3� measure the topological
charge around a tilted trajectory such as C in Fig. 17, and �4�
create a quasiparticle pair and move them around as desired
before annihilating them. We have already discussed �1� and
�3� in Sec. III. We now turn to �2� and �4�.

The spacetime history shown in Fig. 16 can be realized by
the sequence of steps depicted in Fig. 20. In this figure, the
region A �the “underpass”� of the quantum Hall fluid sepa-
rates the two antidots. At time t1, region A is broken so that
the two antidots are joined into one large oblong antidot.
After this occurs, a strip of quantum Hall fluid is allowed to
split the large antidot in the perpendicular direction �the bot-
tom left picture in Fig. 20�. This is the faux pass B that plays
the role of the overpass. The spacetime region carved out by
this strip is the tube in Fig. 16.

In order to check that the topological charge around the
timelike hole is trivial, we need to do a tilted interferometry
measurement similar to that depicted in Figs. 9 and 10. The
interference between the red and yellow curves in Fig. 20
measures the topological charge around the hole in A. There
is an obvious drawback here, which is that the result of this
measurement will not be known until after the entire proce-
dure is complete. We will return to this issue later. For now,
let us consider the other operations that we need to perform.

During the time that the faux pass region B is available,
we must take our qubit over it and then check whether the
topological charge around the curve B1 is 1 or 	. These are
both depicted in Fig. 21. Both of these processes must occur
while those depicted in Fig. 20 are simultaneously occurring.
We envision doing both of these with a bucket brigade of
antidots that are used to ferry both the measuring test quasi-
particles and the controlled qubit across the faux pass, as
shown in Fig. 22. This is relatively straightforward for the
qubit: the two quasiparticles comprising the qubit must be

moved across the region B in Fig. 20. Of course, this process
must occur without the two quasiparticles of the controlled
qubit fusing. Hence, we need to keep them far apart, either
with a large faux pass or by having one follow at a distance
behind the other.

The test quasiparticle with which we measure B1 is
trickier. Consider the red and yellow trajectories in Fig. 21.
There should be some small amplitude tr for a quasiparticle
at the bottom edge to tunnel to the top edge via the red

FIG. 20. �Color online� A non-
planar overpass configuration can
be mimicked by breaking the re-
gion A and adding B. This is done
by merging the two antidots at
time t1 and splitting them in the
other direction. The faux pass B is
then used to either apply g1 or g2,
as described in Sec. VII. These
changes are then undone to return
the system to its initial configura-
tion. In order to verify that remov-
ing A was harmless, we have to
perform a tilted interferometry
measurement in which the red and
yellow trajectories interfere.

FIG. 21. �Color online� The interference between the red and
yellow trajectories is a measurement of the topological charge
around B1. In order to apply g2, we take the controlled qubit across
the faux pass.
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trajectory, which takes it over the faux pass, and a small
amplitude ty for it to tunnel via the yellow trajectory. In the
‘bucket brigade’ scenario, the red trajectory is actually com-
posed of a series of hops from one antidot to another. Let us
assume that the amplitude for a quasiparticle to hop from the
edge onto the first antidot is t1. Let us further assume that the
amplitude for it to hop from the first antidot to the second
antidot is tbb; from the second to the third, again tbb; and so
on, until the quasiparticle finally hops onto the top edge.
Then tr� t1tbbtbb . . . tbb, where the number of factors of tbb
depends on how many antidots are in the bucket brigade. We
need this amplitude to be small so that the topological order
of the state is not degraded, but is should be large enough to
be measurable. This might be most easily done by making t1
small and tbb not too small. Of course, the same reasoning
holds for the yellow trajectory. Finally, we need the ampli-
tudes for these two processes to interfere coherently. This
means that the coherence time for a quasiparticle on either
one of these trajectories must be longer than the time of
flight, which might be difficult to ensure.

In order to implement g1, we need to also send an auxil-
iary quasiparticle over the faux pass. This can be done, as
shown in Fig. 23, perhaps using a “bucket brigade,” as in
Fig. 22. We must then measure the topological charge around
the curve ��1 ,−1�, which means that we must measure the
interference between the trajectories in Fig. 23. We do this
with ��2 ,−1� in the same way.

There is a problem with the procedure described in these
figures, which is that the configuration shown in the third
picture in Fig. 20 has two antidots merged. Consequently, the
state of the two antidots does not have exponential protec-
tion. The splitting between the two states of the qubit formed
by this pair of antidots is w�1/x, where x is the linear
extent of the merged antidot. This can actually be avoided in
the following way. Instead of merging the two antidots, we
send an intermediary which shuttles from one to the other.
This is done by breaking the antidot on the right into two
antidots: one with electrical charge e /4 and the other with no
electrical charge. We then move the neutral antidot to the left
and merge it with the left antidot. This would simply replace
the merger by the “tilted merger” shown in Fig. 17. In order
to have an overpass, we need the antidot to be annular so that
there is a region of �= 5

2 quantum Hall fluid in the middle of
it, as shown in Fig. 24. While this moving shuttle is between
the two antidots, we check by ordinary interferometry that it
carries topological charge 1, rather than 	. If it does not, then
we remerge it with the right antidot and repeat the same
process until we find that the topological charge around the
shuttle is 1. The abortive attempts at this do not affect the

qubit �except possibly by an irrelevant overall phase�: split-
ting a into b � c and then refusing results in the original
particle type, so it is a multiple of the identity. The qubit is
clearly unaffected since the phase resulting from such opera-
tions is independent, by locality, of the state of the qubit. In
order to apply g2, the controlled qubit must sit in the interior
of the shuttle as it moves from one antidot of the control
qubit to the other. In order to apply g1, the auxiliary quasi-
particles must do so. It must be noted that this approach
again has the difficulty that the coherence times of compli-
cated interfering quasiparticle trajectories must be kept long.

IX. DISCUSSION

In this paper, we have discussed how the �=5/2 quan-
tized Hall plateau can be used as the basis of a quantum
computer, assuming that this plateau is in the universality
class of the Pfaffian state. Pairs of charge e /4 quasiparticles
form qubits. We propose to pin the quasiparticles at antidots
so that by moving the antidots, we move the quasiparticles.
The two states of a pair of quasiparticles, �0	 and �1	, can be

FIG. 22. �Color online� The quasiparticle trajectories shown in
Figs. 20 and 21 may actually look more like the trajectory on the
right above: a series of hops from one small antidot to another.

FIG. 23. �Color online� In order to apply g1, we must create a
pair of auxiliary quasiparticles, take one over the faux pass �not
shown�, and then annihilate them again. While this is occurring, we
must measure the topological charge around a curve that follows the
auxiliary quasiparticle over the faux pass, while encircling it. By
encircling the auxiliary quasiparticle �presumably while hopping
along a bucket brigade of antidots�, this trajectory obtains a non-
trivial framing: it is the framed curve ��i ,−1�. A measurement of the
interference between the red and yellow curves can determine the
topological charge around this �tilted� framed curve.
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identified with the primary fields 1, 	 of the conformal field
theory of the critical 2-D Ising model, or with the spin 0 and
spin 1 representations of SU�2�2 Kac-Moody algebra �or the
related quantum group�. The value of any qubit can be read
by a transport measurement that is sensitive to the interfer-
ence between two possible quasiparticle trajectories encir-
cling the qubit. However, local measurements cannot distin-
guish the two states of the qubit as long as the two
quasiparticles are kept apart. The error rate is astronomically
low, so these qubits form an essentially perfect quantum
memory.19 Two simple gates can be implemented by quasi-
particle braiding: �1� tunneling a quasiparticle from the edge
between the two quasiparticles comprising a qubit and �2� by
exchanging a quasiparticle from one qubit with a quasiparti-
cle from another qubit.

In order to be able to apply any possible unitary transfor-
mation to our qubits—i.e., in order to have a universal quan-
tum computation—we can try either of two approaches. One
is to use the unprotected operation of bringing together the
two quasiparticles comprising a qubit so that a phase gate
will result from the resulting energy splitting between their

two states. Although this operation is unprotected, the error
threshhold may not be too strict because the other operations
are exact due to topological protection. The other approach is
to use some complicated manipulations of the antidots that
involves moving, splitting, and rejoining them in order to
fool the topological field theory governing the Pfaffian state
into behaving as if we have performed nonembeddable to-
pology changes. Although complicated, these operations al-
low, in principle, for a universal set of exact gates. By now
the reader may have decided that the former approach is
more promising in the short run because it does not require
extremely complicated quasiparticle manipulations. How-
ever, if technological advances make the latter approach
more feasible, then it has the virtue of complete topological
protection. Also, the beautiful topology involved lends it an
intrinsic “coolness” factor.

If the weaker �= 12
5 plateau proves to be a non-Abelian

state related to SU�2�3 Chern-Simons theory, then neither of
these two compromises would be necessary. We would again
realize qubits as previously, but, in this case, the braid group

FIG. 24. �Color online� By
sending an annular intermediary
between the two antidots, we can
construct the spacetime history of
Fig. 17. The shuttle between the
two antidots is annular and the is-
land of quantum Hall fluid in the
middle of the annulus is the faux
pass B. A measurement of the in-
terference between the red and
yellow trajectories can check that
the tilted hole in region A is topo-
logically trivial as far as Chern-
Simons theory is concerned.
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alone would be sufficient for a universal quantum computa-
tion.

Note added in proofs. After the completion of this work,
we became aware of a preprint by Bravyi,34 in which precise
error correction protocols are given for quantum computation
at �= 5

2 using the unprotected operation of �21� and the two-
qubit measurement of Fig. 13. The fault-tolerance thresholds
which Bravyi finds for these operations are 14% and 38%,
respectively.
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APPENDIX A: EFFECTIVE FIELD THEORY APPROACH
TO THE PFAFFIAN STATE

The multiquasihole structure that we encountered in Sec.
II is precisely the same structure as occurs in the Ising
model. Indeed, the motivation of Moore and Read for first
writing down the Pfaffian wave function was its relation to
conformal blocks of the Ising model.6 The first hint that there
might be such a connection comes from the observation that
the Pfaffian factor in the wave function �1� is equal to a
correlator of 	 fields:

�	�z1�	�z2� . . . 	�z2n�	 = Pf� 1

zj − zk
� . �A1�

Multiquasihole wave functions are related to conformal
blocks with spin fields such as Refs. 6 and 8. Before discuss-
ing this in any more detail, however, we should first explain
why the quasiparticles of the Pfaffian state have anything to
do with the primary fields of the Ising model.

The answer lies in the connection discovered by Witten35

between 2+1D Chern-Simons theories and 1+1- or 2-D con-
formal field theories �CFTs�. According to Witten35 �see also
the explicit constructions of Elitzur et al.36�, the Hilbert
space of states of a Chern-Simons theory on a 3-D manifold
M =X�R is equivalent to the vector space of conformal
blocks of an associated CFT on the 2-D manifold X. The
Hilbert space of a Chern-Simons theory with sources located
at r1 ,r2 , . . . ,rn carrying representations �1 ,�2 , . . . ,�n is
equivalent to the conformal blocks of an n-point correlation
function of primary fields associated with these representa-
tions.

If we have an electron system that is described at long
wavelengths by a Chern-Simons theory, we can use the wave
functions of the Chern-Simons theory with sources as ap-
proximate wave functions of the electron system. By the
above connection, this means we can use conformal blocks

in the associated CFT as wave functions of the electron sys-
tem. In each of these two steps, the essential features that are
preserved are the braiding properties of the quasiparticles of
the system. The different primary fields in the CFT corre-
spond to the different topological charges in the Chern-
Simons theory, which, in turn, correspond to the different
quasiparticle species in the electron system.

As shown in Refs. 15 and 16 the low-energy effective
field theory associated with the Pfaffian state of bosons at
�=1 is an SU�2�2 Chern-Simons theory. The effective field
theory for fermions at �= 1

2 �or other even-denominator fill-
ing fractions and for bosons at other odd-denominator filling
fractions� is a deformation of this theory: a Higgs-ed SU�2�2

Chern-Simons theory �independent of the filling fraction�
coupled to a U�1� Chern-Simons theory with a filling-
fraction-dependent coupling constant. The CFT correspond-
ing to this Chern-Simons theory is the tensor product of an
SU�2� /U�1� coset model with a c=1U�1� factor.6 However,
the SU�2� /U�1� coset model is equivalent to the Ising model.
According to this correspondence, the primary fields that are
associated with half-flux quantum quasiparticles are Ising
spin fields �multiplied by a field from the c=1 sector�.

The U�1� factor, which accounts for the charge, gives the
correct Abelian factors for quasiparticle statistics and con-
tributes a factor to the ground state degeneracy. The more
nontrivial physics is contained in the SU�2� part of the
theory. Hence, we can be a little sloppy and drop their U�1�
quantum numbers and refer to quasiparticles by their SU�2�2

quantum numbers �which we will call “isospin”�. According
to this nomenclature, there are three primary fields, with
isospins 0, 1

2 , 1, corresponding to 1, �, 	 of the Ising model.
These are, respectively, the vacuum, the half-flux quantum
quasiparticle, and the neutral fermion. The topological de-
generacy of multiquasiparticle states reflects the decomposi-
tion of the product of two isospin 1/2s: 1

2 �
1
2 =0 � 1. Thus,

there are two different reasons why it is natural to call the
two states of a qubit 0 and 1.

Returning now to the conformal blocks that model wave
functions of electrons at �= 1

2 �in the first excited Landau
level�, we note that the corresponding CFT contains both the
c=1/2 Ising model and a c=1 chiral boson �accounting for
the electrical charge�:

S =� d2z�	 �z̄	 + ��z����z̄��� . �A2�

We retain only the right-handed part � of �=�+ �̄, with
�z̄�=�z�̄=0. If we assume that the operator corresponding to
the electron is

�el�z� = 	�z�ei��z�
2, �A3�

then we have

��el�z1��el�z2� . . . �el�z2N�e�d2z���z�
2	

= �
j�k

�zj − zk�2�
j

e−�zj�
2/4 · Pf� 1

zj − zk
� . �A4�

The last term in the correlation function on the left-hand side
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of this equation is a neutralizing charge background without
which the Coulomb gas correlation function would vanish.
To find the primary fields of this c=3/2 theory, we need to
put together the primary fields of the �right-handed chiral
component of the� Ising model—the identity �1�; the Ising
spin field, �; and the Majorana fermion, 	—with exponen-
tials of the chiral boson �. The primary fields must be local
with respect to the electron operator—i.e., quasiparticles can
have nontrivial statistics with each other, but they must have
trivial statistics with respect to an electron since an electron
wave function must be single valued in electron coordinates.
A field that satisfies this condition is

�qp��� = ����ei����/2
2. �A5�

This field corresponds to the charge e /4 quasiparticle:

��qp��1��qp��2� � �el�z1��el�z2� . . . �el�z2N�e�d2z���z�
2	

= Pf� �zj − �1��zk − �2� + zj ↔ zk

zj − zk
�

� �
j�k

�zj − zk�2�
j

e−�zj�
2/4. �A6�

The four-quasihole wave functions in �9� are given by the
conformal blocks of

��qp�qp�qp�qp�el�el . . . �el exp�� d2z��
2�	 .

The two different wave functions correspond to the two dif-
ferent fusion channels � ·��1+	. �Furthermore, the two
conformal blocks are the wavefunctions �9� in the special
basis in which the explicit monodromy of the wavefunction
gives the complete braiding matrices9�.

The full set of primary fields is given in the following
table. The columns correspond to Ising model primary fields
while the rows correspond to the c=1 primary fields. The
entries of the table are the quasiparticle electrical charges.
Each quasiparticle corresponds to an operator formed by
multiplying the operator at the top of its column by the op-
erator to the left of its row. Note that it is not a naive tensor
product between the two theories because the quasiparticles
containing � are offset by ei�/2
2 from those containing 1, 	.
�Again, these assignments are determined by the requirement
of locality with respect to the electron operator �A3�.�

1 �ei�/2
2 	

1 0 e/4 0

ei�/
2 e/2 3e/4 e/2

One of the nice features of the relationship between the
Pfaffian state and SU�2�2 Chern-Simons theory is that it al-
lows us to use Witten’s remarkable result relating Chern-
Simons theory and the Jones polynomial of knot theory.35

Braiding matrix elements can be obtained by computing the
Jones polynomial of the corresponding link diagrams.15,19,28

For instance, the qubit-flipping property of the process that
takes �3 around �1 in �9� can be obtained by evaluating the
Jones polynomial �operator� at q=e
i/4 for the links in
Fig. 25.

What do these pictures mean and how are they evaluated?
They are essentially Feynman diagrams for the topological
interactions of quasiparticles. The lines in this picture repre-
sent isospin 1/2 quasiparticles. Since the electric charge is
not accounted for in these diagrams, quasiparticles and
quasiholes are identical as far as these diagrams are con-
cerned. �The electric charge just contributes Abelian phase
factors.� If two of these isospin 1/2 quasiparticles fuse to
form a spin 0, then they can annihilate to give the vacuum.
Otherwise, they fuse to form an isospin 1 particle, which we
denote by a boxed 1 on the two lines �as in Fig. 25�b�, for
example�. Consider, for instance, the spacetime trajectories
of the test quasiparticle and the quasiparticle on the antidot
in Fig. 7. They will look like Fig. 26�a�. In this figure, we
assume that a quasiparticle-quasihole pair is created at P and
the quasiparticle goes around the antidot. The other trajec-
tory, with which this interferes, is depicted in Fig. 26�b�: in
this case, the test quasiparticle does not go around the anti-
dot. The interference term between these two processes, i.e.,
the third term in Eq. �13�, is given by the matrix element
between these two processes, depicted in Fig. 26�c�. It is just
Fig. 26�b� inverted �which corresponds to turning a ket into a
bra� and then stacked on top of Fig. 26�a�. This matrix ele-

FIG. 25. By evaluating the Jones polynomial
at q=exp�
i /4� for these links, we can obtain the
desired matrix elements for braiding operations
manipulating the qubit. The boxed 1 is a projector
on the pair of quasiparticles that puts them in the
state �1	.

FIG. 26. �a� A quasiparticle trajectory that winds around a qua-
siparticle at an antidot �b� a quasiparticle trajectory that does not
wind around the antidot; �c� the matrix element between the states
resulting from these two trajectories.
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ment measures the topological charge associated with the
loop in Fig. 26�c�.

Hence, to summarize: we specify an initial state �	0	 of n
qubits by drawing 2n incoming lines, which are grouped into
n pairs. At the bottom of the diagram �the distant past�, each
pair is either created from the vacuum �in which case this
qubit is in the state �0	� or was fused to form an isospin 1
particle �in which case this qubit is in the state �1	�. The final
state �		 is obtained by braiding these quasiparticles, which
is depicted in the figure with the vertical direction on the
page being positive time. Finally, the matrix element be-
tween �		 and another state ��	 is obtained by inverting the
corresponding diagram for ��	 and stacking it on top of the
diagram for �		, connecting each quasiparticle line from ���
to the corresponding quasiparticle line from �		.

The matrix element associated with such a diagram is
evaluated recursively in the following way. Each diagram is
replaced by the sum of two diagrams both of which have one
fewer crossing according to the rule

�A7�

The new diagrams come with corresponding coefficients as
indicated in the above relation. We continue this procedure
until all crossings are eliminated. The projector on the iso-
spin 1 state is replaced by the explicit expression

�A8�

where d=−q−q−1. Finally, every closed loop is given the
value

�A9�

APPENDIX B: THE EFFECT OF ADDING OR DELETING
BANDS OF MATERIAL TO A TOPOLOGICAL

STATE

In this appendix, we discuss how a �= 5
2 fractional quan-

tum Hall droplet is modified by topology change, in particu-
lar when bands of material are added or deleted. The basic
guideline is that adding a band of material does not change
the state of the system, so it is reversible; deleting a band of
material can cause the state of the system to change irrevers-
ibly.

In the Bravyi-Kitaev construction discussed in section VI,
we described a process in which a band of material �the
overpass in the middle picture in Fig. 15� is added and then
later removed. The spacetime history of such a process is
depicted in Fig. 27. In this figure, two � quasiparticles on
antidots fuse to form 1 or 	, which is the topological charge
of the boundary. The spacetime history of the quantum Hall
droplet with two antidots is shown as a “pair of pants” legs
P� I, where P is the disk with two punctures and I is the
interval of time �0,1�. The spacetime history depicting the
addition and subsequent removal of an overpass connecting

the antidots is a handle connecting the two pants legs. The
union of this 1-handle and the spacetime history of the drop-
let with two antidots is W= P� I� �1-handle�.

We would like to check that this procedure leaves invari-
ant the qubit supported by P �rather than, say, applies a phase
gate�. In order to do this, we imagine evaluating the Chern-
Simons functional integral on the 3-manifold W. It will give
a state in the Hilbert space of the boundary �W. However,
this boundary is divided into subsurfaces by loops bounding
specified topological charges, so the Hilbert space of the
boundary is, in fact, the tensor product of the Hilbert spaces
of the subsurfaces. Hence, W specifies a vector 	1 in: V0,0
� V0,�,� � V0,�,� � V�,�,x � V�,�,x

*
� Vx,x, where the factors

come from subsurfaces 1,¼,6 in Fig. 22. The zero label in
the first three factors is dictated by the presence of disks in W
capping the boundary of the first component �a cylinder�.
The gluing axiom33,37 tells us that removing the 1-handle
determines a canonical isomorphism to Z�P� I� carrying 	1

to 	0 in V0
*

� V0 � V0,�,� � V0,�,� � V�,�,x � V�,�,x
*

� Vx,x. After
supplying the canonical base vectors �0

*�V0
* ,�0,�,��V0,�,�,

and �x,x�Vx,x ,	1 is canonically identified with id � Hom
�V�,�,x��V�,�,x

*
� V�,�,x. Note that no x-dependent phase has

entered the calculation. Thus we have proved, in the abstract
language of TQFTs, that adding and then breaking a band
induces the identity operator on the qubit supported in P.

The situation is rather different if, instead, we cut out a
band to join the internal punctures and then restore it �i.e.,
fuse the internal punctures and then separate them�. This is
true regardless of whether we assume that we can use the
electric charge of the �s to ensure that each resulting punc-

FIG. 27. The spacetime history of a process in which an over-
pass connecting two antidots is added and then removed. Warning:
this history does not embed in 2+1 dimensions, so the z coordinate
in this picture cannot be literally interpreted as time. The handle
must move into a fourth direction.

FIG. 28. The spacetime history of Fig. 27 is equivalent to the
Feynman diagrams above in the notation introduced in Appendix A.
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ture again carries a charge- e
4 � after they are fused and split.

Such an operation is depicted in Fig. 9. We show below that
this operation acts on P by the identity if � has topological
charge 1. If it has topological charge 	, however, it is �z. If
it is a linear superposition of these two possibilities, then the
applied gate is the same linear combination of 1 and �z. The
moral, in general, is that operations which add quantum me-
dia �in this case, �= 5

2—FQHE fluid� are reversible—simply
delete what was previously added, whereas operations that
delete are often irreversible.

This operation can be depicted in the Feynman diagram
notation introduced in appendix A. It is either Figs. 28�a� or

28�b�, according to the charge of �.
Clearly, both operators are diagonal in the �1,	� basis.

Furthermore, Fig. 28�a� is simply the identity acting on the P
qubit. This may be verified by direct computation of the
diagonal entries. Using the rules introduced in Appendix A,
we 
2·1. The strange 
2 factor is actually S11=S		 that has
entered because we have not rescaled the dual physical Hil-
bert space by 1/S11 prior to gluing. Taking this factor into
account, we obtain the identity.

Computing the diagonal entries for the second process,
we obtain �z, as claimed, after taking into account the cor-
rection described above and rescaling by 1/S		.
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