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In previous work �K. R. Patton and M. R. Geller, Phys. Rev. B 72, 125108 �2005�� we have proposed that
the non-Fermi-liquid spectral properties in a variety of low-dimensional and strongly correlated electron
systems are caused by the infrared catastrophe, and we used an exact functional integral representation for the
interacting Green’s function to map the tunneling problem onto the x-ray edge problem, plus corrections. The
corrections are caused by the recoil of the tunneling particle, and, in systems where the method is applicable,
are not expected to change the qualitative form of the tunneling density of states �DOS�. Qualitatively correct
results were obtained for the DOS of the one-dimensional electron gas and two-dimensional Hall fluid when
the corrections to the x-ray edge limit were neglected and when the corresponding Nozières-De Dominicis
integral equations were solved by resummation of a divergent perturbation series. Here we reexamine the x-ray
edge limit for these two models by solving these integral equations exactly, finding the expected modifications
of the DOS exponent in the one-dimensional case but finding no changes in the DOS of the two-dimensional
Hall fluid with short-range interaction. Our analysis provides an exact solution of the Nozières-De Dominicis
equation for the two-dimensional electron gas in the lowest Landau level.
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I. INTRODUCTION

In a previous paper,1 we proposed a connection between
anomalies in the tunneling density of states �DOS� at the
Fermi energy of a wide variety of low-dimensional and
strongly correlated conductors and the infrared catastrophe.
The latter is the well-known singular screening response of
an ordinary metal to the sudden appearance of a localized
potential, in this case produced by an electron added to the
system during a tunneling event. Systems where we expect
this connection to apply include all one-dimensional �1D�
electron systems,2–8 the 2D diffusive metal,9–20 the Hall
fluid,21–30 and the edge of the confined Hall fluid.31–63 We
argued that in such systems, the accommodation of a new
electron added during a tunneling event is frustrated by the
low dimensionality, localizing effects of a magnetic field,
disorder, or any combination of these. In these cases we
made a plausibility argument that the tunneling problem is
similar to the x-ray edge problem. The argument begins with
the following thought experiment: If one replaces the tunnel-
ing electron by an infinitely massive particle that tunnels in
at time �=0 and is removed at some later time �0, this pro-
cess produces a localized potential, abruptly switched on and
off as in the x-ray edge problem. In reality the newly added
electron does not have an infinite mass, but in the above
listed systems the potential produced by the tunneling elec-
tron would be similar to that of a massive particle because of
the inhibited charge relaxation.

A mapping between the x-ray edge problem and tunneling
is done via an exact scalar functional integral representation
for the interacting propagator, replacing it by a Gaussian av-
erage of noninteracting propagators for electrons in the pres-
ence of potentials ��r ,��. We single out a “dangerous” field
configuration

�xr�r,�� = U�r����0 − ������ , �1�

which would be the potential produced by an electron added
to the origin at time �=0 and removed later at �0, if it had an
infinite mass. Here U�r� is the bare electron-electron inter-
action. In Ref. 1 this special field configuration was treated
by resumming a divergent perturbation series, and fluctua-
tions about �xr�r ,�� were ignored, yet qualitatively correct
expressions for the DOS were obtained.

To obtain quantitatively correct results it will be necessary
to go beyond this “perturbative” x-ray edge limit. In Ref. 64
we proposed and investigated a functional cumulant expan-
sion method that includes field fluctuations away from
�xr�r ,��, and treats field configurations close to �xr�r ,�� per-
turbatively as in Ref. 1. Although the improved method
yields the exact DOS exponent for the important Tomonaga-
Luttinger model, calculable by bosonization, we do not ex-
pect it to be generally exact in 1D. �Furthermore, the method
fails in the presence of a strong magnetic field because of the
ground state degeneracy.�

In this paper, we neglect fluctuations about �xr�r ,�� �as in
Ref. 1� but treat that field configuration exactly �in the large
�0 asymptotic limit�. This is accomplished by finding the
exact low-energy solution of the Dyson equation for nonin-
teracting electrons in the presence of �xr�r ,��, which we
refer to as the Nozières-De Dominicis equation. We carry out
this analysis for the 1D electron and 2D Hall fluid, both with
short-range interaction. We then obtain an exact solution of
the Nozières-De Dominicis equation for the 2D electron gas
in the lowest Landau level.

II. FORMALISM

We calculate the tunneling DOS by analytical continua-
tion of the Euclidean propagator
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G�r f� f,ri�i,�0� � − �T��f
�r f,�0��̄�i

�ri,0��H, �2�

where H=H0+V is the grand-canonical Hamiltonian for the
D-dimensional interacting electron system, with

H0 � �
�
	 dDr��

†�r�
�2

2m
+ ��r� − 	����r�

and

V �
1

2
	 dDrdDr�
n�r�U�r − r��
n�r�� .

Here ��p+ e
cA, with A the vector potential �if a magnetic

field is present�, and


n�r� � �
�

��
†�r����r� − n0�r� �3�

is the density fluctuation operator. H0 is the Hamiltonian in
the Hartree approximation, and v�r� includes any single-
particle potential along with the Hartree interaction with the
self-consistent density n0�r�.

After an exact Hubbard-Stratonovich transformation, the
interacting Green’s function can be written as a functional
integral over a scalar field �

G�r f� f,ri�i,�0� = Ne1/2��xrU
−1�xr	 D	���e−i��U−1�xr

�g�r f� f,ri�i,�0
i�xr + �� , �4�

where N��T exp�−�0
�d�V��0

−1 is a constant, independent of
�0,

D	��� �
D�e−1/2��U−1�

	 D�e−1/2��U−1�

�5�

is a measure normalized according to �D	���=1, and

g�r f� f,ri�i,�0
��

� − �T��f
�r f,�0��̄�i

�ri,0�ei�0
�d��dDr��r,��
n�r,���0 �6�

is a noninteracting functional of �.
The dangerous field configuration �xr�r ,��, which itself

depends on the parameters ri, r f, and �0 appearing in Eq. �2�,
has been given in Ref. 1. For the case the tunneling DOS at
point r0 of interest here, the general definition reduces to Eq.
�1�, which is the potential that would be produced by the
added particle in Eq. �2� if it had an infinite mass. Fluctua-
tions about �xr account for the recoil of the finite-mass tun-
neling electron.

In the x-ray edge limit, we ignore fluctuations about �xr,
in which case

G�r f� f,ri�i,�0� � Ng�r f� f,ri�i,�0
i�xr� . �7�

Equation �9� defines the interacting propagator in the x-ray
edge limit. The local tunneling DOS at position r0 is ob-
tained by setting ri=r f =r0 and �i=� f =�0, and summing
over �0. In the remainder of this paper we will evaluate Eq.

�7� for the 1D electron gas and the 2D Hall fluid, with a
short-range interaction of the form

U�r� = 

�r� . �8�

III. X-RAY GREEN’S FUNCTION

The quantity g�r f� f ,ri�i ,�0
i�xr
� required in Eq. �7� is
related to the Euclidean propagator

Gxr�r��,r������ � −
�T���r,���̄���r�,���e−��xr
n�0

�Te−��xr
n�0
,

according to

g�r f� f,ri�i,�0
i�xr� = Gxr�r f� f�0,ri�i0�Zxr��0� , �9�

with

Zxr��0� � �Te−�0
�d��dDr�xr�r,��
n�r,���0. �10�

We refer to Gxr�r�� ,r������ as the x-ray Green’s function
which describes noninteracting electrons in the presence of a
real-valued potential �xr�r ,��. It satisfies the Dyson equation

Gxr�r��,r����� = G0�r�,r��,� − ���

+	 dDr̄d�̄G0�r�, r̄�,� − �̄��xr�r̄, �̄�

�Gxr�r̄��̄,r����� . �11�

Here we have used that fact that the x-ray Green’s function is
diagonal in spin. For a calculation of the DOS we use the
form �1�, in which case Eq. �11� becomes

Gxr�r��,r����� = G0�r�,r��,� − ���

+ 
	
0

�0

dtG0�r�,r0�,� − t�Gxr�r0�t,r�����,

�12�

where we have assumed the short-range interaction �8�.
By using the linked cluster expansion and coupling-

constant integration, Zxr can be shown to be related to the
x-ray Green’s function by65

Zxr��0� = en0
�0e−
���0
1d��0

�0d�Gxr
� �r0��,r0��+�, �13�

where Gxr
� �r�� ,r����� is the solution of Eq. �12� with scaled

coupling constant �
.
There is no r0 dependence in the DOS for the translation-

ally invariant models considered here and we can take r0
=0.

IV. 1D ELECTRON GAS

Gxr�0�� ,0���� was calculated exactly in the large �0,
asymptotic limit for the 3D electron gas in zero field by
Nozières and De Dominicis.65 Their result is actually valid
for arbitrary spatial dimension D if the appropriate noninter-
acting DOS is used.
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We take the asymptotic form of the noninteracting propa-
gator as

G0��� � − P
N0

�
, with N0 �

1

�vF
. �14�

N0 is the noninteracting DOS per spin component at �F, and
P denotes the principal part. The solution of Eq. �12� for this
model with r=r�=0 is

Gxr��0� = − N0 cos�

�
P
cos�

�

�0
+ � sin�

�
��0��

� � a

�0
�2

/�

, �15�

and

Zxr��0� = � a

�0
�2�

/��2

, �16�

where 

 is the scattering phase shift of the electrons caused
by the potential �xr given by



 = arctan�N0�
� �17�

and a is a short time cutoff on the order of the Fermi energy.
Thus

G��0� � g��0
i�xr� � � 1

�0
�1+2

/�+2�

/��2

�18�

which gives a DOS in the x-ray edge limit as

N��� � �2

/�+2�

/��2
. �19�

By expanding the exponent in Eq. �19� in powers of the
coupling parameter 
 one recovers the perturbative x-ray re-
sult of Ref. 1.

V. 2D HALL FLUID

Unlike the low-energy Dyson equation for the 1D electron
gas, which is solvable by Hilbert transform techniques, there
are no standard methods available to solve the corresponding
integral equation for the Hall fluid. We were able to guess the
exact analytical solution, aided by perturbation theory and by
numerical studies carried out by expansion in a plane-wave
basis followed by matrix inversion.

We assume the system to be spin polarized and spin labels
are suppressed. In the Landau gauge A=Bxey, the noninter-
acting propagator in the 
�
��c

−1 limit is

G0�r,r�,�� = ��r,r���� − ����� , �20�

where � is the filling factor satisfying 0���1, and

��r,r�� �
1

2��2e−
r − r�
2/4�2
e−i�x+x���y−y��/2�2

. �21�

First consider the case where ri=r f =r0. We can let r0
=0 without loss of generality and at the origin Eq. �12� re-
duces to

Gxr�0�,0��� =
� − ��� − ���

2��2 + �	
0

�0

dt�� − ��� − t��

�Gxr�0t,0��� , �22�

where

� �



2��2 �23�

is an interaction strength with dimensions of energy.
The time arguments of Gxr�0� ,0��� on the left side of Eq.

�22� can assume the 12 possible orderings k=1,2 , . . . ,12 de-
fined in Fig. 1; the right side produces terms with two or
more different orderings k� ,k� , . . .. We therefore seek a solu-
tion of the form

Gxr�0�,0��� = �
k

Ak Wk��,��� fk��� , �24�

where Wk�� ,��� is unity if � and �� have ordering k and zero
otherwise; an explicit form for Wk�� ,��� is given in the Ap-
pendix. The functions fk��� are chosen to reflect the fact that
an electron accumulates an additional phase ��� while in the
presence of �xr for a time ��, whereas a hole acquires a
phase −���. The 12 unknown coefficients Ak �which depend
parametrically on �0 and ��� are obtained by solving the 12
linearly independent equations resulting from the decompo-
sition of Eq. �22� into distinct time orderings k=1,2 , . . . ,12.
The result is

Gxr�0�,0��� =
1

2��2� 1

1 − � + �e−��0
���� − 1��W1 + W5�

+ �e−��0�W2 + W6� + �� − 1�e−���−���W3

+ �e−��0e����−��W4 + �� − 1�e−��W7

+ �� − 1�e−��0W8 + �e−���0−���W9

+ �� − 1�e−���0−���W10 + �W11 + �e−��W12� .

�25�

As a side note, the solution for general ri and r f is obtained
using the same method and when both � and �� are in the
interval �0,�0�, the result is

FIG. 1. The 12 possible time orderings k=1,2 , . . . ,12 of
Gxr�0� ,0���. �0 is assumed to be non-negative.
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Gxr�r�,r����

= �� − ��� − �������r,r�� − 2��2��r,0���0,r���

+ 2��2��r,0���0,r��

�
 �� − 1���� − ��� + �e−��0���� − ��
1 − � + �e−��0

�e−���−���;

�26�

the other cases follow similarly. At the origin Eq. �26� re-
duces to

Gxr�0�,0���

=
1

2��2
 �� − 1���� − ��� + �e−��0���� − ��
1 − � + �e−��0

�e−���−���.

�27�

Finally

Gxr�0�0,00� =
1

2��2� � − 1

1 − � + �e−��0
�e−��0. �28�

Using Eq. �13� we obtain

Zxr = e���0�1 − � + �e−��0� , �29�

therefore

g�r0�0,r0�0,�0
i�xr� =
� − 1

2��2e���−1��0. �30�

This is identical to what we obtained in Ref. 1. The tunneling
DOS is therefore

N��� = const � 
�� − �1 − ���� . �31�

Strictly speaking, the delta-function potential �8� would
be invisible in a spin-polarized Fermi system, and the exact
interacting Green’s function reduces to the noninteracting
one. Our approximate interacting Green’s function �7� is
similar for all short-range �on the scale of the magnetic
length� interactions, leading to approximately correct results
for all of these cases except the particular case of a zero-
range interaction. Therefore one should interpret Eq. �31� as
applying to spin-polarized electrons with a short-range �but
not strictly zero-range� interaction.

VI. DISCUSSION

In this paper, we have carried out an exact treatment of
the x-ray edge limit introduced in Ref. 1, for the same mod-

els considered there. Whereas the 1D electron gas result �19�
would be expected, the DOS of the 2D Hall fluid remains
gapped as in Ref. 1. A generalization of our method that
accounts for fluctuations about �xr, and that can be used in a
magnetic field, will be needed to recover the actual
pseudogap of the Hall fluid.21–30
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APPENDIX: TIME ORDERING FUNCTIONS

Let

W1��,��� � ��− ����− ������ − ���

W2��,��� � ��− ����− ������� − ��

W3��,��� � W���W������� − ���

W4��,��� � W���W�������� − ��

W5��,��� � ��� − �0����� − �0���� − ���

W6��,��� � ��� − �0����� − �0����� − ��

W7��,��� � W�����− ���

W8��,��� � ��� − �0���− ���

W9��,��� � ��− ��W����

W10��,��� � ��� − �0�W����

W11��,��� � ��− ������ − �0�

W12��,��� � W������� − �0� ,

where ��t� is the Heaviside step function and W �with no
subscripts� is the a window function, defined as

W � ���0 − ������ . �A1�
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