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Transport and scattering is examined in a simple coupled double-well model of infrared monopolar lasers via
a nonequilibrium Green’s function �NEGF� based analysis. Roughly speaking, in such lasers a more or less
three level system is formed where electrons are injected into the first excited state subband of a leading well,
decay via photon emission to intermediate ideally resonant-state subbands resulting from coupling of the
ground state subband of the leading well to the first excited state subband of the trailing well, and subsequently,
preferably quickly to allow population inversion between the initial and intermediate state, decay via phonon
emission to the ground state subband of the trailing well. Golden Rule based analysis is widely used to model
scattering including in this system. Implicit in its use is a random-phase approximation among the final states.
However when scattering processes appear to produce not only changes in energy states but also real-space
transport as between the wells here, this approximation can become suspect. In this work the affects of this
approximation on scattering-induced population and depopulation of intermediate level�s� are addressed and
overcome using a NEGF technique that allows consideration of transport and scattering absent the Golden Rule
and associated random phase approxmiations. It is found that as the barrier becomes thick, the Golden Rule
approximation can overestimate the depopulation rate of the intermediate levels. Through changes in the
homogeneous broadening of the photon transition associated with changes in the depopulation rates of the
intermediate level�s�, the variations in barrier thickness could also have additional effects on population
inversion and gain not apparent through Golden Rule calculations. Accordingly, barrier thickness is found to
also be a potentially critical parameter for optimizing device performance.
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I. INTRODUCTION

Intersubband injection lasers operate on the condition that
phonon-assisted interwell electronic transitions provide a fast
depopulation of the final states of the optical transition al-
lowing population inversion.1 Although both cascaded and
noncascaded designs have been successfully implemented,
the essential element, two quantum wells separated by a tun-
nel barrier, is the same, as illustrated in Fig. 1. To optimize
the carrier transport through the barrier, the quantum wells
are designed such that the lower subband of leading quantum
well �the narrower of the two quantum wells in the exampled
of Fig. 1� and the first excited subband of the trailing quan-
tum well �the wider well in the example of Fig. 1� are nomi-
nally degenerate allowing for coherent quantum mechanical
tunneling between wells; to optimize phonon scattering the
energy separation between the ground and excited state of
the trailing well are tuned according to the phonon
energies.2–9 Previously, Golden Rule �GR� based calculations
have been used to carefully examine the effects of variations
in the well widths and of the various types of phonon modes
involved, interface and confined, on this process.10 In this
work, nonequilibrium Green’s function �NEFG� based calcu-
lations with scattering are used to extend this study by ex-
amining the essential effects of variation of the barrier thick-
ness.

The indicated switch from a GR-based analysis to a true
quantum transport calculation is inherently necessary to

achieve the above goal over the full range of barrier thick-
nesses considered �although the use of simpler models may
be possible in various limiting cases�, and demonstrating and
explaining this need is a secondary goal of this work. Under
the ideal resonance condition, the energy eigenstates associ-
ated with the ground subband of the first well and the first
excited subband of the second well are, in fact, delocalized
among the two wells, a result that is independent of the bar-
rier thickness even if harder to achieve for thicker barriers.
Under these conditions the GR calculation neglects the time
required for coherent tunneling between the wells via the
implicit application of the random phase approximation
�RPA� among the intermediate states, as is elaborated on in
the Results. This is a reasonable approximation for suffi-
ciently thin barriers. However, as the barrier becomes
thicker, the interwell tunneling time will become a significant
and then the dominant limitation on depopulation of the final
state of the optical transition.

II. SCHRÖDINGER EQUATION MONTE CARLO

In this work these quantum transport issues are addressed
using the unique nonequilibrium Green’s function code
Schrödinger Equation Monte Carlo �SEMC�.11 SEMC al-
ready has been used to study the effects of phase-coherence
and phase-breaking on carrier capture by quantum wells,11–14

and failures of the Golden Rule to properly model carrier
capture in tunnel injection lasers14 among other things.
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SEMC provides a qualitatively and quantitatively accurate,
nonperturbative, current conserving treatment of coherent
electron transport and phonon-mediated transport due to real
scattering processes, including the process of long-range
polar-optical phonon scattering considered here. The
“Schrödinger Equation Monte Carlo” moniker was chosen as
an indicator of the unique Monte Carlo based method of
treating phase-breaking scattering, while coherent propaga-
tion of the complex wave function continues to be treated
deterministically. The SEMC method is described in detail in
Ref. 11; a brief summary is provided here.

Scattering and the associated phase breaking and energy
dissipation within this Schrödinger equation-based method
are modeled via the exchange of probability among oscillator
degrees of freedom nq within a many-body electron-phonon
system just as in the true carrier-phonon scattering. A set of
Schrödinger equations is defined for the charge carrier cor-
responding to an “initial” state ��r ,n1 , . . . ,nq , . . . ,nQ� and
many �e.g., 100s or 1000s of� “final” states separated from
the initial state by the emission or absorption of one phonon
��r ,n1 , . . . ,nq±1, . . . ,nQ�. Coupling potentials between the
initial and final states are provided by Monte Carlo sampling
of the �spatial correlation functions of the� true carrier-
phonon interactions �for phonons of approximately the same
energy� M�r ,q�. A probability source �which makes this a
Green’s function method as noted� to the initial state A�r ,E�
�capital Greek “alpha” for ‘the beginning’� is provided by an
open boundary in the carrier coordinates or coupling to the
prior phonon state, or as for the calculations of this work and
that of Ref. 15, a prior photon state; probability sinks
��r ,E� �“�” for the “the end”� are provided by open bound-
aries in the carrier coordinates of both the initial and final
states and/or, as required for bound final states in this work,
complex “self-energy” potentials in the final states represent-
ing still subsequent scattering. The equation �or set of equa-
tions, depending on how you look at it� to be solved �simul-
taneously� is of the basic form,

�He�r� − E + ��r,E����r,n1, . . . ,nq, . . . ,nQ�
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for the “final” states. �This basic equation is then trans-
formed into the most convenient coordinates system, specifi-
cally the real-space coordinate x normal to the plane of the
wells and the crystal momentum coordinate ky,z in the plane
of the wells in this case.� This equation is solved to find the
many-body carrier-phonon wave functions ��r ,n1 , . . . ,nQ�
from which any physical observable �transmission, reflec-
tion, and capture probabilities, self-energies/scattering rates,
currents in real-space or “phonon-space,” etc.� can be ob-
tained. Probability and energy are inherently conserved and
phase information is inherently retained with respect to the
full-many body system, but with respect to the carrier alone,
the interaction is inelastic and phase breaking although still
probability conserving.

This procedure precisely emulates scattering, both real
and virtual, in the true carrier-phonon system to first-order,
and to higher orders within the accuracy of the estimated
final-state self-energies. Scattering is neither local in position
nor time. Indeed, the calculations of this work are time-
independent propagating energy eigenstate calculations in
the coupled carrier-phonon system. “Initial” and “final” only
indicates the direction of probability current flow in the pho-
non coordinates.

This basic procedure can be repeated sequentially to trace
carriers through an unlimited number of scattering “events.”
The old initial state becomes the source; a new intermediate
state is selected by Monte Carlo sampling from among the
old final states according to the probability flow to/through
the final states, and a new set of final states is generated each
with its own complex self-energy potentials.

III. DEVICE MODEL

To isolate the essential physics we have used the basic
square-well potential structure, if not precise numerical val-
ues, that was used previously in the GR-based analysis of
this system, Ref. 10, as shown in Fig. 2 for one particular set
of well and barrier widths. We have also used an envelope
function approximation for the electrons and the macro-
scopic model of the phonon modes employed in Ref. 10. The
electron effective masses and nonparabolicity constants for
the well and barrier materials, and the parameters used to
calculate the confined, interface and half-space phonon
modes and their interaction with electrons in SEMC are
given in Table I. Note that in actual intersubband lasers,

FIG. 1. A typical quantum-well laser structure. The left arrow
shows the optical emission and the right arrow shows the phonon
emission.
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whatever the actual well widths discretized in terms of
atomic layers, resonance between the wells is achieved
through adjustment of the potential drop across the device, as
illustrated in Fig. 1. In the square-well model system of Ref.
10, for modeling purposes it was achieved through adjusting
the well widths continuously. Here, subject to the constraints
of a discrete lattice required for the SEMC calculations, once
the system was near resonance, the dept of the first well was
adjusted to fine tune the resonance when required to retain
�by choice not necessity� the square-well nature of the
model.

We injected carriers, actually a carrier probability current,
into the simulation region via photon emission using the
usual electron photon interaction Hamiltoninan H� �nphoton

+1�Â ·p� operating on the well-localized excited state wave
function of the first well to define the source term A�r ,E�,
where Â is a unit vector in the direction of the vector poten-
tial which is assumed to be normal to plane of the well here,
p� is the momentum operator operating on the electron coor-
dinate, and nphoton is the photon occupation number repre-
senting the, here arbitrary, intensity of the light. The energy
E in the above equations and here is the excited state energy
of the first well minus the photon energy ��photon. To isolate
the essential physics we have taken the 0 K temperature limit
so that the only way out of the first well in these simulations
is, roughly speaking, via tunneling through the barrier and

down to the ground subband of the second well via phonon
emission where the probability current is then absorbed via a
complex potentials ��r ,n1 , . . . ,nq−1, . . . ,nQ� representing
subsequent scattering as described in Sec. II.

Of course other scattering mechanisms, such as acoustic
phonon scattering, carrier-carrier scattering, interface rough-
ness scattering, impurity scattering etc. could aid in the de-
population of the final state of the optical transition. How-
ever, the essential limitation of the GR-based calculations for
these processes would be the same. On the other hand, when
the wells are not in resonance and the intermediated states
become much more localized to one well or the other, the
artifacts of GR calculations considered in this work would be
at least reduced. However, under this latter condition, the
depopulation rate would be less than optimal and the inter-
well transitions themselves would likely mediated by the
various scattering processes �which is actually included in
the calculations here for optical phonon emission�. Our goal
in this work is to isolate and address the essential physics of
the optimal processes intended by design.

IV. SIMULATION RESULTS

The energy states within two wells as a function of the
first well width a are shown in Fig. 3, for the specific case of
a 2 nm barrier and the second well of 10 nm width. The
resonance between the ground state in the first well and the

FIG. 2. Band diagram and energy levels of an AlAs/GaAs
double quantum well heterostructure. Here, the ground state of the
first well is aligned with the first excited state of the second �in the
limit of large barrier thicknesses� to maximize interwell tunneling.
The two delocalized energy eigenfunctions resulting from this
alignment are also shown �with the zero reference for the each
eigenfunction aligned to its respective energy eigenvalue�.

TABLE I. Effective mass, nonparabolicity constant, dielectric constant, and phonon frequencies used in
this work �Ref. 16�.

M* Nonparabolicity ��high� ��low� ��LO� /meV ��TO� /meV

GaAs 0.067 0.61 12.90 10.89 36.25 33.29

AlAs 0.14 0.25 8.15 10.90 50.09 44.88

FIG. 3. Subbands in the double-well structure as a function of a,
the first well width, for fixed barrier width �2 nm� and second well
width �10 nm�. Except near the anticrossings, the width-dependent
energies are of course those of states localized predominately to the
first well, and the width independent energies those of state local-
ized predominately to the second well.
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first excited state in the second well occurs at a=4.25 nm
where the anticrossing is found. Or at least it does so to
within the spatial resolution of the code; again a small ad-
justment to the potential in the first well was made to opti-
mize the resonance at this point.

The transition rates from the intermediate state after pho-
ton emission in the first well to the final, ground state local-
ized to the second well—calculated as the probability current
flow out of the intermediate state divided by the probability
density in the intermediated state—are showin in Fig. 4 as a
function of the width of the first well. For this figure and Fig.
5 the photon energy is chosen as that for which the injection
current is greatest, which as expected is roughly the energy
separation between what would be the well-defined ground
and first-excited states of the first well in the absence of the

tunneling and scattering that broaden these states in SEMC.
In this calculation, both interface and confined phonon
modes are considered as in Ref. 10. Our results for the 2 nm
barrier show a close coincidence �both in shape and peak of
the curve� with the result obtained in the GR-based calcula-
tions of Ref. 10. As expected, the total transition process,
photon emission followed by phonon emission, from the ex-
cited state localized to the first well to the ground state lo-
calized to the second well is optimized at this anticrossing
where the intermediate states—the final state for the optical
transition and the initial state for phonon scattering—are de-
localized among the two wells. For GR calculations, how-
ever, this is simply because the intermediate state wave func-
tions significantly overlap both the initial and final states.
There is no direct consideration of the tunneling time. As a
result, at the anticrossing, the GR calculations simply satu-
rate for large well thicknesses as shown in Fig. 5.

However, also as shown in Fig. 5, as the barrier width
increases the corresponding transistion rate decreases rapidly
in the SEMC calculations. At a 2 nm barrier width, the GR
and SEMC give nearly the same results, while by time the
barrier thickness goes to 5 nm, the SEMC calculations give a
transition rate of approximately 3% of that obtained via the
GR approximation. The reason for the discrepancy is, again,
that tunneling through the interwell barrier limits the de-
population rate of the intermediate state. Roughly speaking,
for thick barriers at least, there are three processes to con-
sider each of which takes time, as illustrated in Fig. 6�b� and
shown via the SEMC simulation of Fig. 7. Photon emission

FIG. 4. Interwell polar optical-phonon-assisted transition rate
under the double electron-phonon resonance condition as a function
of a, width of the first well, with the second well width fixed at
10 nm. As the barrier becomes thicker, not only does the resonance
width decrease but the peak transition rate decreases as well.

FIG. 5. Maximum transition rate, occurring at the anticrossing,
as a function of barrier width for SEMC and GR calculations. Note
that the GR results are essentially unaffectted by the barrier width
while for SEMC calculations the transition rate falls as tunneling
becomes the limiting process.

FIG. 6. Illustration of physical processes considered via the GR
assumption, and via SEMC. �a� In GR calculations only two physi-
cal processes are considered: photon emission to one of the two
delocalized intermediate state is followed directly by the phonon
emission from that the intermediate state to the final state localized
in the second well. �b� SEMC addresses three physical processes:
photon emission, real-space transport/tunneling through the barrier
and phonon emission.
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first takes the electron to one or the other or, particularly for
thicker barriers, a coherent overlap of the two roughly de-
generate states at the anticrossing that is localized to the first
well. The electron then propagates to the second well via
tunneling �roughly in a time commensurate with the energy
level splitting�. Then finally, the electron now within the sec-
ond well emits a phonon to be captured in the ground state
that is localized to the second well. Of course in reality, and
in SEMC, these individual processes are not so well sepa-
rated. In contrast, the random-phase approximation among
energy eigenstates implicit to the GR—GR calculations pro-
vide the squares of the magnitudes of the amplitude coeffi-
cients of the eigenstates only, ignoring any coherence be-

tween differing initial and/or differing final states—places
carriers in an incoherent overlap of the intermediate states
which, as a result, already overlaps the second well in posi-
tion immediately after “completion” of the photon emission
regardless of barrier thickness. As a result the three-step pro-
cess of Fig. 6�b� is artificially turned into a two-step process,
as illustrated in Fig. 6�a�; the time to tunnel through the
barrier is it not considered regardless of the barrier thickness.
The fallacy of this latter result is self-evident if one considers
huge wells separations of, e.g., a micron, but it becomes
important at only a few nanometers as shown by Fig. 5. This
neglect of the time required for real-space transport is a com-
mon failure mode for the GR approximation when initial and
final states are not localized to the same region.11,14

In addition to affecting the transition rate between wells,
the barrier thickness affects the photon emission rate as well,
as shown in Fig. 8. As the thinner barrier leads to an in-
creased depopulation rate for the intermediate states, it also
inherently leads to an increase in homogeneous �energy/
collision/finite-lifetime� broadening of the photon transition
to the intermediate states. This homogeneous broadening, in
turn reduces the peak photon emission rate per electron in
the excited state of the first well, a peak that would be
aligned to the lasing frequency, at least to within the width of
the laser line and the nonhomogeneous broadening in the
system. The reduced photon emission rate combined with the
increased phonon emission rate as the barrier narrows should
actually further enhance population inversion. However, the
reduction in photon emission rate could also reduce gain
both by itself and, particularly near threshold, by increasing
the relative importance of parasitic dark recombination

FIG. 7. Current flow in the double-quantum-well laser given by
SEMC simulation for fixed photon energy as a function of the in-
termediate state energy and position for a 2 nm barrier, with darker
areas indicating greater current flow: �a� probability flow into the
intermediate state due to photon emission, �b� real-space probability
current flow to the right after photon emission and before phonon
emission, and �c� probability flow out of the intermediate state en-
ergy state due to phonon emission. Solid lines represent the well
potential structure �at k� =0�. The nonzero energy widths of these
contours and the residual phonon emission within the first well seen
in �c� result from the homogeneous broadening of the electron
states.

FIG. 8. Rate of photon emission as a function of photon energy
�arbitrary units� for different barrier widths. The noise in the figure
is a result of the Monte Carlo technique used to model scattering.
Note that when the barrier is thin and the wells strongly coupled
and phonon emission limits the transition rate out of the intermedi-
ate states �2 and 3 nm well widths; see Fig. 5�, two intermediate
states of almost barrier-width-independent amplitude and width are
well resolved. However, when the barrier becomes thicker and tun-
neling begins to limit the transition rate �4 nm well width�, the two
states overlap and the phonon emission peak becomes narrower and
stronger at the peak with the decreasing broadening of the interme-
diate state.
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mechanisms competing with photon emission that are not
sensitive to the final state broadening, such as large angle
phonon scattering, carrier-carrier scattering.

V. CONCLUSION

Using the NEGF quantum transport code SEMC, it has
been shown that the barrier thickness plays an important role
in multiwell quantum lasers not evident via Fermi Golden
Rule calculations. In the simple illustrative case considered
here, only one barrier and two wells, the GR-based calcula-
tions can produce large overestimates in the expected rate of
depopulation of the final state for photon emission for rela-
tively thick barriers. Accordingly, sufficiently thin barriers
must be maintained to optimize population inversion. Fur-
thermore, as the well thickness is decreased, the increase in

homogeneous broadening of the intermediate states associ-
ated with their increased depopulation rates reduces the peak
photon emission rate. This, in turn, actually further aids
population inversion but could ultimately reduce gain in and
of itself and by increasing the relative importance of parasitic
dark recombination mechanisms. Therefore, in addition to
choice of, in particular, the trailing well width as discussed in
Ref. 10, the barrier width must be optimized for peak perfor-
mance, and in a manner not readily apparent through GR-
based calculations alone.
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