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We present results of ab initio, self-consistent calculations of electronic properties of AlAs in the zinc-blende
structure. Our nonrelativistic calculations employed the generalized gradient approximation of density func-
tional potential and Bagayoko, Zhao, and Williams implementation method of the linear combination of atomic
orbitals formalism. Our calculated indirect band gaps at the X and L points are 2.15 and 2.38 eV, respectively,
in good agreement with experimental values. The calculated direct gap at � is 25% smaller than the experi-
mental one. We also present calculated total and partial densities of states and the electron effective mass at the
bottom of the conduction band at �.
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I. INTRODUCTION

AlAs has attracted much attention because it is not only
one of the most important electronic and optoelectronic ma-
terials, but also a very essential component in GaAs-based
heterostructures, supperlattices, and quantum wells. There
are numerous device applications of AlxGa1−xAs alloys, in-
cluding diode lasers, light-emitting diodes, photodetectors,
and electro-optic modulators. AlAs and its heterostructures
have been studied extensively for both their scientific and
technological relevance.1–7

The theoretical prediction of band structures, fundamental
energy gaps, and effective masses of semiconductors and al-
loys is of great importance for the fabrication of the hetero-
structures and devices. Over the past 2 decades, there have
been many theoretical calculations of the electronic struc-
tures of AlAs.3,5,7–19 To our knowledge, however, except for
the fitting approaches such as the tight-binding model,13,14,16

almost all of the theoretical calculations of the band structure
of AlAs led to band gaps that deviate from the experimental
values3,7–12 to varying degrees. Table I lists the referenced
theoretical and experimental band gaps of AlAs. For the the-
oretical works, the table also shows the applicable potential
and computational method. Unlike other III-V compounds,
AlAs is an indirect band gap semiconductor with the conduc-
tion band minimum close to or at the X point7–12,19 while the
valence band maximum is at the gamma ��� point. Usually,
three band gaps are reported for the AlAs system: the mini-
mum indirect band gap Eg

X, the direct gap Eg
�, and the second

and larger indirect gap Eg
L. As can be seen from Table I,

previous, ab initio local density approximation �LDA� calcu-
lations typically reported values of the minimum, indirect
gap that are 36% to 47% off the measured one.4 Although the
agreement with experiment has been improved dramatically
by using the Green function and screened Coulomb potential
approximation and the pseudopotential method �GW-PP�,15

the Green function and screened Coulomb potential approxi-
mation and the quasiparticle approach �GW-QP�,9 and a
semi-ab initio approach utilizing a minimum basis set of
orthogonalized functions in a linear combination of atomic
orbitals �OLCAO�8 and an additional atomiclike potential,
the discrepancies for the calculated band gaps Eg

X, Eg
�, and Eg

L

have remained significant. These band gaps, for the GW-PP15

and the GW-QP are 2.08, 2.75, and 2.79 eV for the former
and 2.09, 3.26, and 2.81 for the latter. While the improve-
ment for the minimum, indirect gap is significant, the over-
estimations of the larger, indirect gap are by 18% and 28%
for the GW-PP and GW-QP calculations, respectively.

The above discrepancies are key motivations for this work
that employs a GGA potential and the Bagayoko, Zhao and
Williams �BZW� method20,21 within the linear combination
of atomic orbital formalism �LCAO�. The BZW method has
been successfully applied to reproduce or to predict the band
gaps of numerous semiconductors, including cubic InN,22

wurtzite InN,23 GaN, Si, and C,21 and carbon nanotubes.24,25

II. COMPUTATIONAL METHOD AND DETAILS

Our nonrelativistic calculations employed a nonlocal den-
sity functional potential from the generalized gradient ap-
proximation �GGA�.26–28 We utilized the formalism of the
linear combination of atomic orbitals �LCAO� in real space.
The implementation of the BZW method in carrying out the
self-consistent computations is the major, distinctive feature
of the present work as compared to previous works on AlAs.
The details of the BZW procedure are widely available in the
literature21–25 and are discussed further below. A brief over-
view of its implementation follows.

In the implementation of the BZW procedure, we started
the self-consistent calculations with a minimal basis set, i.e.,
the basis set just accounting for all the electrons in the
atomic or ionic species present in the system under study.
For AlAs, we chose the ions Al1+ and As1− for our self-
consistent calculations, as preliminary studies indicated
charge transfers closer to these species, i.e., the self-
consistent system is approximately Al0.94+As0.94−. We subse-
quently carried out several other self-consistent calculations
with larger and larger basis sets by augmenting with one or
more ionic orbitals that belong to the next and lowest-lying
energy levels in Al1+ or As1−. The occupied bands of a given
calculation are compared to those of the previous one until
they are found to be identical in numerical values, curvature,
and branching, within computational uncertainties. The re-
sults reported here are those of the calculation before the last
one. The basis set for this calculation �i.e., VII for AlAs� is
referred to as the optimal basis set. As explained further be-
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low in the discussion section, upon the convergence of the
charge density, potential, and occupied energy levels, as is
the case for the calculation with the optimal basis set, com-
putations with larger basis set are inherently affected by a
basis set and variational effect. This effect stems from the
use of a variational approach where the charge density is
computed using only the wave functions of occupied states
and consequences of the Rayleigh theorem.21–23 Table II
shows the basis sets employed in the various, self-consistent
calculations we performed for AlAs. The results discussed
here are those from Calculation VII for which the basis set is
optimal in the sense specified above.

We utilized an expanded version of the electronic struc-
ture calculation program package from the Ames Laboratory
of the Department of Energy �DOE�.29–31 AlAs, in the zinc-
blende structure, is a member of the III-V family and belongs

to the Td
2−F4̄3m space group. As per Table I, only Experi-

ment 3, done at a temperature of 295 K, provides2 values for
the two indirect and one direct gaps noted above. For com-
parison purposes, we selected the experimental lattice param-
eter of a=5.66 Å for a temperature of 291 K.34 Except for

the gap values shown in Table I for a zero-temperature lattice
constant6 of 5.6524 Å, the results discussed here are for the
above room temperature lattice constant. The atomic wave

TABLE I. Comparison of theoretical and experimental band gaps of zinc-blende AlAs. The three band
gaps at respective �15v−X1c, �15v−�1c, and �15v−L1c.

Potential Computational method Eg
X �eV� Eg

� �eV� Eg
L �eV�

Experiment 1 Photoluminescence �T=12 K� 2.25a

Experiment 2 Excitonic gap, photoluminescence �T=4 K�
Excitonic gap, photoluminescence �T=300 K�

2.23b

2.15b
3.13b

3.03b

Experiment 3 Transport �T=295 K� 2.16c 2.98c 2.36c

GGA LCAO-BZW �Present work� a=5.66 Å 2.15 2.35 2.38

GGA LCAO-BZW �Present work� a=5.6524 Å 2.14 2.38 2.39

LDA Projector-augmented-wave �PAW� 1.32d 1.94d 2.06d

GW PAW 1.57d 2.7d 2.73 d

LDA Pseudopotential method �PP� 1.20e 1.77e 1.89e

GW PP 2.08e 2.75e 2.79e

LDA Ab initio PP 1.44f 2.35f 2.12f

LDF First-principles full-potential self-consistent
linearized-muffin-tin-orbital �LMTO�

1.31g

Ab-initio PP 1.3h 2.5h

LDA Self-consistent full-potential
linearized-augmented-plane-wave �FLAPW�

1.36i 1.95i 2.07i

GW Quasiparticle �QP� 2.09j 3.26j 3.03j

LDF Minimal basis semi-ab initio orthogonalized
LCAO method

2.37k 2.79k 2.81k

Tight-binding
model �TBM�

PP 2.21l 2.79l 2.48l

TBM 2.142m 2.998m 2.313m

TBM 2.262n 2.974n 2.756n

aReference4.
bReference1.
cReference2.
dReference7.
eReference15.
fReference12.
gReference11.

hReference10.
iReference3.
jReference9.
kReference8.
lReference16.
mReference13.
nReference14.

TABLE II. The atomic orbitals used in calculations I to VIII for
AlAs. Superscript zeros indicate added orbitals representing unoc-
cupied atomic states.

Basis set 0: core-state orbitals in calculations
I to VIII: Al �1s�, As �1s,2s,2p�

Basis set I: Al�1s,2s,2p,3s�,
As�1s,2s,2p,3s,3p,3d,4s,4p�

Basis set II: Set I plus Al�3p0�
Basis set III: Set II plus As�5s0�
Basis set IV: Set III plus Al�4s0�
Basis set V: Set IV plus As�4d0�
Basis set VI: Set V plus Al�3d0�
Basis set VII: Set VI plus As�5p0�
Basis set VIII: Set VII plus Al�4p0�
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functions of the ionic states of Al1+ and As1− were obtained
from self-consistent, ab initio, atomic calculations. The ra-
dial parts of the atomic wave functions were expanded in
terms of Gaussian functions. Sets of even-tempered Gaussian
exponentials were employed with a minimum of 0.10 for
both Al and As, and a maximum of 4.5000�104 for Al and
1.5000�105 for As, in atomic units. We used 19, 19, and 17
orbitals for the s, p, and d states for both Al and As. A mesh
of 60 k points, with proper weights in the irreducible Bril-
louin zone, was employed in the self-consistent iterations.
The computational error for the valence charge was about
0.000129 for 34 electrons. The self-consistent potentials con-
verged to a difference of 10−5 after about 30 iterations. The
total number of iterations varied with the input potentials.
The basis sets for each of the self-consistent calculations
used in the BZW procedure in this work are listed in Table II.
The optimal basis set for the AlAs calculation is the basis set
for calculation VII.

III. RESULTS

Figure 1 shows the band structure of AlAs at high sym-
metry points and along high symmetry lines in the Brillouin
zone. The calculated conduction band minimum is at the X
point while the valence band maximum is at G, in agreement
with experiment. The energy levels at high symmetry points

in the Brillouin zone are listed in Table III. Our calculated,
indirect, fundamental band gap value of 2.15 eV agrees very
well with the experimental values of 2.15 and 2.16 eV, at
room temperature, and is lower, by less than 5%, than the
zero temperature values of 2.23 and 2.25 eV, as shown in
Table I. Similarly, the calculated indirect band gap at the L
point, 2.38 eV, agrees very well with the experimental find-
ing of 2.36 eV. However, our direct band gap of 2.35 eV is
about 21% and 25% lower than the measured values, as dis-
cussed further below.

Figures 2 and 3 show the total �DOS� and partial densities
of states �PDOS� for AlAs, respectively, as obtained from
Calculation VII. The total DOS curves, particularly the inset,
show that the practically measurable band gap could be any-
where between 2.14 and 2.4 eV, where the latter corresponds
to a value of 0.1 for the DOS, in excellent agreement with
experiments.1,2,5 The lowest peak between −11.8 and
−9.7 eV arises from the Al�3p� and As�4s� orbitals. The
peaks appearing between −5.6 and 0 eV stem from Al�3s�,
Al�3p�, and As�4p� orbitals. A significant hybridization of

TABLE III. Electronic energies �eV� at high symmetry points,
with the top of the valence band set to 0 eV. Data are from Calcu-
lation VII for a lattice constant of 5.66 Å.

� X L K

−11.74 −9.70 −10.30 −9.74

0.00 −5.52 −5.56 −5.27

0.00 −2.21 −0.88 −3.33

2.35 2.15 2.38 −1.84

4.58 2.65 5.20 2.79

FIG. 1. Electronic band structure of AlAs. The solid lines rep-
resent the results from Calculation VII and the dashed lines those
from Calculation VIII. Other results in Tables I and III and Figs. 2
and 3 are from Calculation VII. The lattice constant is 5.66 Å.

FIG. 2. The calculated density of states for AlAs, as obtained
from the bands from Calculation VII, for a lattice constant of
5.66 Å. The inset shows the practically measurable band gap from
2.14 to 2.4 eV.

FIG. 3. The partial density of states �PDOS� for AlAs from the
contribution of the s, p, and d states of Al and As atoms, respec-
tively. These PDOS are derived from the bands from Calculation
VII, for a lattice constant of 5.66 Å.
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Al�4p�, Al�3d�, and As�4d� orbitals is apparent in the PDOS
curve in Fig. 3.

Our calculated electron effective mass of AlAs, m*, at the
bottom of the conduction band at the � point, is 0.15 m0,
where m0 is the free-electron mass. This result is also in
excellent agreement with the experimental value of 0.15 m0
in Ref. 32 and is 21% higher than the 0.124 m0 estimated
from a fit to absorption data.33

IV. DISCUSSIONS

In comparison to previous density functional and other
calculations, this work has resolved most of the discrepan-
cies between experiment and theory. Previous density func-
tional calculations, as per the content of Table I, woefully
underestimated the indirect band gaps and the direct one. The
GW calculations improved the agreement between theory
and experiment for the fundamental, indirect gap, by reduc-
ing the underestimation to about 3% from the room tempera-
ture value. For the larger indirect gap at L, however, they
overestimated significantly �by 18% and 28%�. While
GW-PP15 underestimates the room temperature direct gap by
close to 8%, the GW-QP9 overestimates it by 9%. Vurgaft-
man et al.6 underscored the difficulties associated with the
experimental determination of the direct gap at �. These dif-
ficulties are apparent in the work of Monemar1 where high
impurity concentrations caused a broadening of exciton spec-
tra. Consequently, the well-defined dip in the spectrum, that
would have indicated the direct gap, is replaced by a much
broader dip from the uncertain location of which one extracts
the value of the direct gap. We expect the uncertainties asso-
ciated with the determination of this direct gap to contribute
to the unusual deviation of our calculated value from experi-
ment. Further, given that this gap is not the minimum one,
GGA-BZW calculations are not necessarily expected to de-
scribe it correctly from a ground state theory as it does for
the fundamental bang gap.20–25

A central issue in these discussions relates to the physical
and mathematical reasons that explain the success of the
BZW method where many others have failed, including
some rather sophisticated approaches that go beyond density
functional theory. The answer resides in a thorough under-
standing of basis set related effects on the outcomes of these
calculations. Specifically, as discussed by Bagayoko et al,35

LCAO type calculations have to ascertain the completeness
of the basis set. In doing so, one typically includes diffuse
orbitals, with relatively small exponents, to accommodate the
charge redistribution in the molecular or solid state environ-
ments as compared to those for atoms or ions. Additionally,
one has to provide for angular symmetries that may arise in
molecular or solid environments. Most works cited herein
appear to have handled these two points correctly.

There is still a nontrivial basis set related effect distinct
from the issues of angular symmetry and of diffuse orbitals.
The preoccupation for guaranteeing the completeness of the
basis set explains the use of as large basis sets as possible, as
long as linear dependency is avoided. Consequently, no par-
ticular limit is placed on the size of the basis set. This size
often varies widely from one group of investigators to an-

other, even for the same system and for similar orbitals �i.e.,
Gaussians�. The Rayleigh theorem,36,37 however, indicates
that serious problems could be associated with arbitrarily
large basis sets. The statement of this rigorous, mathematical
theorem follows: Let an eigenvalue equation be solved twice,
by an LCAO method, respectively, with N and �N+1�
orbitals—such that the �N+1� orbitals of Calculation II in-
clude all the N orbitals of Calculation I plus an additional
one—and let the eigenvalues from the two calculations be
ordered from the lowest ��1

N and �1
�N+1� for I and II, respec-

tively) to the highest ��N
N and ��N+1�

�N+1�, respectively), then the

theorem states that �i
�N+1���i

N for all i�N. Alternatively,
this theorem states that a variational eigenvalue, upon an
increase of the basis set �and hence of the dimension of the
matrix�, is not increased. It either stays the same �if it is
equal to the exact, physical eigenvalue of the matrix� or it
decreases to approach this exact eigenvalue from above. This
theorem therefore points to the need to utilize as large a basis
set as possible in order to lower variational eigenvalues to
reach the exact ones. Such a large basis set is also needed to
ensure completeness. Bagayoko, Zhao, and Williams20,21

identified a basis set and variational effect stemming from
any lowering of unoccupied energy levels or bands, for mol-
ecules or solids, respectively, when the occupied levels or
bands have converged �vis-à-vis an increase of the basis set�.
The effect can exist in any variational calculations for which
the occupied and unoccupied states are not treated in identi-
cal manners. Specifically, for all variational calculations of
which we know, the occupied and unoccupied states are
treated in fundamentally different manners: in the iterative
process toward self-consistency, the charge density is con-
structed or reconstructed using only the wave functions of the
occupied states. Hence, only the wave functions of these
states affect the charge density, the potential, and the Hamil-
tonian itself, i.e., the physics of the system. It is therefore
necessary to guarantee that an applicable basis set is large
enough to ensure the convergence of the occupied levels or
bands vis-à-vis the size of the basis set. To do so, Bagayoko,
Zhao, and Williams �BZW� introduced their method that re-
quires the utilization of a minimum basis set for the first,
self-consistent calculation. The outcomes of this first calcu-
lation are generally not the correct solutions for the physical
system under study. The method therefore requires subse-
quent calculations where the basis set is methodically aug-
mented as described above and elsewhere.20,21 The occupied
energy levels or bands of a calculation are compared to those
of the previous one that has a smaller basis set. This process
continues until calculation N and �N+1� have the same oc-
cupied energy levels or bands, within applicable uncertain-
ties. We then select the outputs of calculation N as the physi-
cal description of the system. Indeed, in light of the Rayleigh
theorem, some unoccupied energy levels or bands of Calcu-
lation �N+1� are generally lower as compared to their coun-
terpart from Calculation N. The BZW method ascribes any
such additional lowering of an unoccupied band, while the
occupied ones do not change, to mathematical artifacts stem-
ming directly from the Rayleigh theorem. While the method
applies to all variational calculations of the Rayleigh-Ritz
type that employ an LCAO approach, it is particularly perti-
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nent for density functional calculations. Indeed, density func-
tional theory is fundamentally a ground state theory. The
BZW method verifiably guarantees the proper description of
the ground state with a basis that is sufficiently large. Varia-
tional calculations that do not employ the method generally
have large enough basis sets to describe the applicable sys-
tem. However, they do not actually verify that the size of the
basis set converged vis-à-vis the description of the occupied
states and they do not avoid Rayleigh-theorem related low-
ering of some unoccupied levels or bands on purely math-
ematical ground—given that the Hamiltonian �i.e., the phys-
ics� does not change once the optimal basis size of the BZW
method is attained.

V. CONCLUSION

In conclusion, we successfully performed ab initio, self-
consistent GGA-BZW calculations for the band structure of a

zinc-blende AlAs semiconductor. Our calculated band gaps,
except for the direct gap at �, are in excellent agreement
with measured values. Our calculated effective mass also
agrees very well with a directly determined experimental
value and disagrees with an estimate derived from fitting to
absorption data.
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