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Within the maximum entropy principle we present a general theory able to provide, in a dynamical context,
the macroscopic relevant variables for carrier transport under electric fields of arbitrary strength. For the
macroscopic variables the linearized maximum entropy approach is developed including full-band effects
within a total energy scheme. Under spatially homogeneous conditions, we construct a closed set of hydrody-
namic equations for the small-signal �dynamic� response of the macroscopic variables. The coupling between
the driving field and the energy dissipation is analyzed quantitatively by using an arbitrary number of moments
of the distribution function. The theoretical approach is applied to n-Si at 300 K and is validated by comparing
numerical calculations with ensemble Monte Carlo simulations and with experimental data.

DOI: 10.1103/PhysRevB.73.245209 PACS number�s�: 72.10.Bg, 72.20.Ht, 52.25.Kn

I. INTRODUCTION

Recently, the formal derivation of hydrodynamic �HD�
moment equations from the very microscopic dynamics of
the physical system has been intensively studied using ex-
tended thermodynamics1 and the maximum entropy principle
�MEP�.1–10 Both of these approaches provide good insight
into the origin of different terms entering the HD equations
and into the approximations involved in their derivation. In
particular, to include the details of a microscopic description
�such as the energy band structure and scattering mecha-
nisms� several simplifying assumptions have been intro-
duced and different closure schemes have been implemented
for the construction of self-consistent HD models.3–11 In this
context, the MEP approach emerged as a very promising
method by offering a definite procedure to construct a mac-
roequivalent distribution function1,12–23 that determines the
microstate corresponding to the given set of macroscopic
variables. With this method, the microscopic state is obtained
by maximizing the entropy of the system under the constraint
that the macroscopic state is described by a fixed number of
average quantities. We remark that by using this approach in
a dynamical context1–8,19,20 we differ from previous
applications15–18,21–23 in which the information theory is used
as an extrapolation technique. The MEP, by itself, does not
provide any information about the dynamic evolution of the
system, but offers only a definite procedure for the construc-
tion of a sequence ofapproximations for the nonequilibrium
distribution function. To obtain a dynamical description, it is
necessary to know a set of evolution equations for the con-
straints, which include the kinetic details of the microscopic
collisional processes. Thus, being the MEP distribution func-
tion known, we consider the Boltzmann equation �BE� to
obtain a set of equations for the constraints that represents
completely closed HD model in which all the constitutive
functions are completely determined starting from their ki-
netic expressions. In this sense, the dynamical application of
MEP will depend on both the constraints used in the maxi-
mization procedure and the determination of a system of
evolution equations for these constraints which takes into

account, in an explicit and accurate way, the kinetic colli-
sional processes the carriers are subject to.24 Only by know-
ing the correct dynamic evolution of the macroscopic quan-
tities used as constraints is it possible to determine the
correct dynamic evolution of the distribution function in
phase space.25

Recently, this approach was found promising also to carry
out a small-signal analysis in the homogeneous case.8,9 In-
deed, small-signal coefficients are of fundamental and ap-
plied importance for a complete description and characteriza-
tion of the thermodynamic state of hot carriers in
semiconductor materials and devices.26–46 In particular, the
study of the eigenvalues of the response matrix and the
analysis of the time decay of the response functions provide
valuable information both on the coupling processes and on
the relaxation processes of the relevant macroscopic
variables.8,9,34,36–39,41,43

The aim of this work is to develop and apply a general
theory of MEP to the case of static and dynamic high field
transport in semiconductor materials. In this way, the MEP is
proved to sustain a rigorous kinetic theory that is comple-
mentary to other numerical techniques available in the
literature47–52 and with the advantage of offering a systematic
classification of the macroscopic moments in terms of their
physical properties. To this purpose, we consider as relevant
variables an arbitrary number of moments of the distribution
function using a linear approximation of the MEP. In this
case the linearized maximum entropy approach is closely
related to the Grad type moments method1,2,6,7 and, as shown
in Refs. 19 and 20, within this level of approximation it is
possible to proceed by maximizing directly a quadratic ex-
pansion of the entropy to obtain equivalent results.

The theory will include full-band effects within a total
energy scheme, thus obtaining a closed set of coupled differ-
ential equations for the macroscopic variables of interest.
The moment equations will be generalized to a set of balance
equations describing the dynamic response around the sta-
tionary state. This, enables us to calculate both the general-
ized response matrix and the generalized response functions
of the relevant macroscopic variables for parabolic and non-
parabolic band models. For particular cases of interest the
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present approach recovers the results given in previous
papers.8,9,30,31,37,39,41,43

The content of the paper is organized as follows. Section
II presents the general theory. Section III develops the small
signal response under space homogenous conditions. Section
IV applies the total energy scheme to include a nonparabolic
band structure. The case of n-type Si at 300 K is considered
in Sec. V. Here a detailed comparison of present calculations
with results obtained by Monte Carlo simulators and direct
experiments is carried out. The overall agreement is used to
validate the theoretical approach and to provide a systematic
physical insight of the microscopic dynamics. Major conclu-
sions are drawn in Sec. VI.

II. GENERAL THEORY

Below we develop an extended hydrodynamic approach
within a total-energy scheme for a spatially homogenous
electron system. At a kinetic level the microscopic descrip-
tion is governed by the BE for the single particle distribution
function F�k� , t�

�F
�t

−
e

�
Ei

�F
�ki

= Q�F� , �1�

where e is the unit charge, Ei the electric field, ki the
wavevector, � the reduced Planck constant and

Q�F� =
V

�2��3�� dk�� S�k�,k�� �F�k�� ,t� −� dk�� S�k�� ,k��F�k�,t�� ,

�2�

the collision integral for nondegenerate conditions, being

S�k�, k�� � the total scattering rate for the transition k�� →k� and
V the crystal volume.

Within the framework of the moment theory, to pass from
the kinetic level of the BE to the extended HD level, for a
general many-valley band model, we must consider the fol-
lowing set of generalized kinetic fields:

�A�k�� = ��m,�mui1
, . . . ,�mui1

¯ uis
, . . . � , �3�

where ��k�� is a general single particle band energy dispersion
of arbitrary form and ui the carrier group velocity, being m
=0,1 , . . . ,N and s=1,2 , . . . ,M, with N, M integers labeling
the maximum number of moments considered. With this ap-
proach, we consider the corresponding macroscopic quanti-
ties FA= �F�m� ,F�m��i1

, . . . ,F�m��i1¯is
, . . . �, where

FA =� �A�k��F�k�,t�dk� �4�

and the following set of moment equations:1,3–9

�FA

�t
= −

e

�
RAiEi + PA, A = 1, . . . ,N , �5�

where N is the fixed number of moments used, and RAi, PA
indicate, respectively, the external field productions, and the
collisional productions defined as

RAi =� ��A�k��
�ki

F�k�,t�dk� , �6�

PA =� �A�k��Q�F�dk� . �7�

In particular, for N=M =1 the above quantities admit a direct
physical interpretation such as F�0�=n �numerical density�,
F�1�=W �total energy density�, F�0��i=nvi �velocity flux den-
sity�, F�1��i=Si �energy flux density�. In general, for arbitrary
values of �N ,M�, we obtain a system of differential equa-
tions of finite order where the flux of each equation becomes
the field variable of the successive equation.8

With the above procedure, we obtain a system of balance
equations in which there are some unknown constitutive
functions HA= �RAi , PA� that must be determined in terms of
the variables FA. Following information theory, one can de-
termine systematically the HA, by introducing the MEP in
terms of generalized kinetic fields as in Eq. �3�.1–4,8,10,14,19,20

By using this approach, the distribution function takes the
explicit form

FN = FMexp�− ��, � = 	
A=1

N

�A�̂A, �8�

where �̂A are the nonequilibrium part of the Lagrange
multipliers1,3,4,8,10 and FM the local Maxwellian. By consid-
ering that for a band of general shape only the total average
electron energy is a well defined quantity,53 the MEP is ap-
plied within a total energy scheme.5,8,9 Consistently with this
choice, the local distribution function should be defined as
FM =� exp
−���k���, where �=��n ,W� and �=��W /n� are
appropriate functions which can be determined by means of
local equilibrium conditions5,8

n�t� =� FMdk�, W�t� =� ��k��FMdk� . �9�

By expanding the distribution function in Eq. �8� around the
maxwellian FM, up to a fixed order R, by means of the
moments in Eq. �4� we obtain a set of nonlinear equations in

the nonequilibrium quantities �̂A

FA − FA�E =� �AFM	
r=1

R
�− 1�r

�r�! �	
B=1

N

�B�̂Br

dk� . �10�

By introducing in Eqs. �10� �̂B in polynomials terms of the
nonequilibrium variables FB the nonlinear system can be in-
verted and the lagrange multipliers obtained.1,3,4,10 In this

way, having determined an analytic expression for the �̂A,
both the distribution function F and the constitutive func-
tions HA can be estimated, up to the R order, as polynomials
in the nonequilibrium variables whose coefficients depend on
the local equilibrium quantities �n�r� , t� ,W�r� , t��. In particular,
to evaluate the collisional production PA we consider in Eq.
�2� the collision rate for acoustic intravalley transitions,
within the elastic and equipartition approximations, and for
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intervalley transitions with non-polar optical and acoustic
phonons as reported in Refs. 3, 4, and 8.

III. SMALL-SIGNAL ANALYSIS

Linear-response functions around the bias point are
known to play a fundamental role in the investigation of
hot-carrier transport.30,31,37–41,43 In the time domain they re-
flect both the dynamic and the relaxation processes inherent
to the hot-carrier system. In the frequency domain they pro-
vide the ac coefficients of interest such as the usual differen-
tial mobility28–31,37–41 the noise temperature,43,46 the thermal
conductivity,42,44 etc.

The objective of this section is to carry out a general
theory for the linear-response analysis in the framework of
the moment approach. In particular, from the theory we ob-
tain the analytical expression for the real and imaginary part
of the ac generalized differential mobility for each moment
of the distribution, thus generalizing existing
results.8,9,30,37–41

A. Kinetic approach

By considering the steady state distribution function

F0�k�� in the presence of a constant electric field E� , Eq. �1�
becomes

−
e

�
Ei

�F0

�ki
= Q�F0� . �11�

By superimposing to E� a small harmonic perturbation
	E��t�=E�exp�i
t�, applied along the � direction, we ana-

lyze the linear response of the moments F̃A=FA /n.
In the framework of an extended linear-response theory,

we introduce the moment generalized differential-mobility
tensor �A�� �
� in terms of the response tensor KA��t�

�A� = − e�
0

�

KA��t�exp�− i
t� . �12�

In the linear approximation, the components of the tensor
�A�� �
� are independent of the magnitude of the perturbing
electric field. As a consequence, they can be described com-
pletely via the inherent characteristics of the unperturbed

state of the system. In particular, if 	E� is parallel to E� , then
�A�� �
� is the moment generalized longitudinal differential
mobility. We recall that �A�� �
� is a complex quantity, the
imaginary part being associated with the reactive contribu-
tion. Calculation of the �A�� �
� reduces to the determination
of the Fourier transform of the response tensor

KA��t� = −
1

�
� �� �A�k���G�k��,k�,t�dk��� �F0�k��

�k�

dk� ,

�13�

where �being the carrier concentration uniform� the distribu-
tion function F0�k�� is normalized to unity and the G�k�� ,k� , t�
is the evolution function 31 giving the probability for a carrier
to make a transition from state k�� to state k� at time t, i.e., it is

the Green function of the unperturbed Eq. �1� subject to the
initial condition G�k�� ,k� ,0�=	3�k��−k��. In particular, from
Eq. �13� for t=0 we obtain

KA��0� =
1

�
R̃A��0 =

1

�
� ��A�k��

�k�

F0�k��dk� , �14�

where the R̃A��0’s are the stationary values of the single-
particle external field productions, along the electric field
direction �, present in the moment balance Eq. �5�.

The general procedure of calculating the linear response
function from both, a direct MC simulation of the distribu-
tion function gradient in the k�, or a direct numerical resolu-
tion of the perturbed BE, has been used for more than two
decades.31,40,54 Such a kinetic approach has the obvious ad-
vantage of providing a complete microscopic picture of car-
riers transport in phase space. However, the calculation of
both the generalized moment response functions and the gen-
eralized moment differential mobilities requires a consider-
able amount of CPU and the need to repeat a complete simu-
lation each time any parameter of the microscopic model is
varied.

A valuable alternative to the kinetic approach is given by
the linear analysis of the moment balance equations obtained
within the MEP formalism. In this way, we obtain an ana-
lytical closed model able to investigate the main features of
the hot-carrier system in the time and frequency domains
with the relevant advantage of providing a compressed infor-
mation on the only basis of the knowledge of the micro-
scopic interactions.

B. Hydrodynamic approach

The balance equations of the moments F̃A=FA /n take the
form

�F̃A

�t
+

e

�
R̃AiEi − P̃A = 0. �15�

By assuming that at the initial time the carrier ensemble is

perturbed by an electric field 	E�t� along the direction of E�


where �t� is an arbitrary function of time satisfying ��t� �
�1�, we calculate the deviations from the stationary values

of the moments denoted, respectively, with 	F̃A. After linear-
izing Eqs. �15� around the stationary state, we obtain a sys-
tem of equations which can be written as

d	F̃��t�
dt

= ���	F̃��t� − e	E�t���
�E�, �16�

where the relaxation of the carrier ensemble to the stationary
state is described by the response matrix ���, and where the
−e	E�t���

�E� are the perturbing forces.
Equation �16� has the formal solution37

	F̃�t� = exp��t�	F̃�0� − e	E�
0

t

K�s��t − s�ds , �17�

where
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exp��t� = � diag�exp��1t�, . . . ,exp��N−1t���−1, �18�

K�s� = exp��s���E� �19�

with �� the eigenvalues of ��� and � the matrix of its eigen-
vectors.

The eigenvalues �� can be real or complex conjugate, and
they represent the generalized relaxation rates ��=−��. We
remark, that an exact correspondence between these rates
and the respective relaxation processes exists only in the re-
laxation time approximation for the collision integral in Eq.

�2� and in the absence of coupling among the variables F̃�.
The response functions K�t� are real by definition. They

determine the linear response of the moments F̃A to the ac-
tion of a perturbation of the static electric field, and satisfy
the causality principle K�t�=0 if t�0. The initial values of
the response functions as function of the static electric field
can be calculated analytically using Eq. �19� for s=0. It is
worth noting that, as it was obtained from the kinetic ap-
proach 
see Eq. �14��, also in this case it is

KA�0� = �A
�E� =

1

�
R̃A, �20�

where R̃A is the component of the external field productions

along the electric field direction E� . Since at the initial time

t=0 the moments are unperturbed, we assume that 	F̃�0�
=0 in Eq. �17� so that the small-signal analysis is described
by the explicit form of the function �t�. In particular, the
linear response of the carrier ensemble to a steplike switch-
ing or to a small harmonic shape of the superimposed field
are of special interest.

In the first case �t�=1 for all t�0 and, using Eq. �19�,
with an integration of Eq. �17� one obtains the algebraic
expression for the perturbation

	F̃��t� = − e	E���
−1 
K��t� − ��

�E�� . �21�

The above relation can be used for a direct calculation of the

differential response 	F̃��t� /	E to the steplike switching of
the perturbing field and it is the solution of the differential
equation

K��t� = −
1

e	E

d	F̃��t�
dt

. �22�

This means that the linear response function K��t� is propor-
tional to the time derivative of the corresponding perturba-

tion 	F̃��t� and that to the extreme position of 	F̃� at time t
it corresponds K��t�=0, that represents the same relaxation
phenomenon. Analogously, by a further differentiation of Eq.
�22� we obtain

dK��t�
dt

= −
1

e	E

d2	F̃��t�
dt2 �23�

and we observe that one flex point of the perturbation 	F̃� at
time t� can be associated with an extreme position of the
corresponding response function K��t��.

In the second case of a small harmonic perturbation �t�
=exp�i
t�, we observe that at long times the upper limit in
the integral of Eq. �17� can be replaced by infinity and thus
we obtain a perturbation of the single-carrier moments which

is also harmonic 	F̃�t�=	F̃�
�exp�i
t� where

	F̃��
� = ����
�	E,

with ����
� = − e�
0

�

K��s�exp�− i
s�ds .

�24�

By using Eq. �19�, a cyclic integration by parts transforms
Eq. �24� in the algebraic relation

����
� = 	
r=0

N
− e

�i
�r+1���
r ��

�E� +
1

�i
�N+1���
N+1����
� �25�

with N=0,1 , . . . ,S, being S an arbitrary integer number. In
particular, for S=0 we obtain

����
� = e
��� − i
	���−1��
�E�. �26�

By considering the real and imaginary parts separately, we
have ����
�=X��
�+ iY��
�, and by using Eq. �26�� we ob-
tain

X��
� = e���
���
2 + 
2	���−1��

�E�, �27�

Y��
� = e

���
2 + 
2	���−1��

�E�. �28�

It is worth noting, that in the low frequency limit the real
parts X��
� of the ac generalized differential mobility tend to
the corresponding dc values of the generalized differential
mobility

lim

→0

X��
� = X��0� = �dF̃�

dE
�

dc
. �29�

In particular, for vanishing values of 
 it is

X��
� � X��0� +
1

2
�d2X�

d
2 �
0

2, Y��
� � �dY�

d

�

0

 ,

�30�

where from Eqs. �24� and Eqs. �27�, �28� we obtain the gen-
eral relations

X��0� = − e�
0

�

K��s�ds = e���
−1 ��

�E�, �31�

�dY�

d

�

0
= e�

0

�

sK��s�ds = e����
−1 �2��

�E�, �32�

�d2X�

d
2 �
0

= e�
0

�

s2K��s�ds = − 2e����
−1 �3��

�E�. �33�

Analogously, in the high frequency limits, by using Eq. �25�
�being N arbitrarily large� and Eqs. �27�, �28�� we obtain the
asymptotic relations
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X��
� �
e


2�����
�E� =

e


2�dK�

dt
�

0+
, �34�

Y��
� �
e



��

�E� =
e



K��0� . �35�

Since X��
� is even in 
 and Y��
� is odd in 
, by consid-
ering the inverse Fourier transform of Eq. �24� and using
Eqs. �27�, �28�, �31��, the integrals of the functions X� and
Y� /
 give

�
0

�

X�d
 = −
�

2
e��

�E� = −
�

2
eK��0� , �36�

�
0

� 1



Y�d
 = −

�

2
e���

−1 ��
�E� = −

�

2
X��0� , �37�

Analogously, by considering the integrals of the functions


Y�−e��

�E�� and 

2X�−e�����
�E��, and by using Eqs. �27�,

�28� we obtain

�
0

�



Y� − eK��0��d
 =
�

2
e�����

�E� =
�

2
e�dK�

dt
�

0+
,

�38�

�
0

� �
2X� − e�dK�

dt


0+
�d
 =

�

2
e���

2 ��
�E� =

�

2
e�d2K�

dt2 �
0+

,

�39�

It is worth noting that all the previous relations in Eqs.
�17�–�39� are the natural generalization of the results re-
ported in Refs. 8, 30, 37–39, and 41. We remark that, some
limiting properties of the real and imaginary part of the ac
generalized differential mobility ��� are easily extracted from
Eqs. �29�–�39�. Accordingly, from Eq. �29� we obtain that
X��
� tends to the corresponding dc differential mobility

dF̃� /dE when 
→0, while from Eq. �34� X��
�→0 for 

→�. Analogously from Eq. �30� and Eq. �35� Y��
� tends to
zero when 
 tends to zero or infinity.

From what reported above, we conclude that the advan-
tages of the approach proposed here are the following: �i�
The formulation of the ac and dc theory is carried out as at a
kinetic level, and can be performed using an energy disper-
sion of general form �full-band approach�. �ii� From the ex-
plicit determination of the response matrix ��� and the vec-
tor ��

�E�, we can construct an algebraic �in place of an
integral� formulation of the theory. �iii� As far as the closure
relations HA are concerned, also the small signal coefficients
���, ��

�E�, K��t�, X��
�, and Y��
� are consistently obtained
as function of both the different moments and the order of
the expansion that are used to determine the distribution
functions F. In the following sections we will consider an
application of the MEP in a linear context.

IV. APPLICATION OF THE TOTAL ENERGY SCHEME

We consider a total-energy scheme to describe the full
complexity of the band in terms of a single particle with an

effective mass function of its average total energy W̃.5,8,9 In
this framework, the effective mass becomes a new constitu-
tive function which should be independently determined
from the fitting of experiments and/or from MC calculations
of the bulk material.5 The advantages of the total-energy
scheme are that �i� all the constitutive relations are obtained
in analytic form and �ii� the same set of balance equations
describe the transport properties of the carrier ensemble for
both the parabolic �when m* is constant� and full-band cases


when m*=m*�W̃��. The present extended HD theory does
not need other adjustable parameters but the knowledge of
the elementary microscopic interactions as for the kinetic
theory.

A. Linear expansion with an arbitrary number of moments

The general formulation of the MEP in a linear context,
and the construction of self-consistent closure relations with
an arbitrary number of moments, was developed in Ref. 8.
With this approach, the unique independent average quanti-
ties are the traceless part F�p���i1¯is�

of the tensor F�p��i1¯is
. In

particular, for problems with axial symmetry we can take
Ei= �E ,0 ,0�, so that only the independent components

are of concern, where the angular brackets indicate the
deviatoric1 part of the tensor of rank s. According to this
choice we obtain: for s=0 the scalar moments F�p�, for s=1
the vectorial moments of components F�p��i= �F�p��1 ,0 ,0� and,
for s�1 the traceless tensorial moment of rank s of which
the unique independent component is F�p���s�=F�p���1¯1�.

By considering the single carrier quantities F̃A

= �F̃�q� , F̃�p��1 , . . . , F̃�p���s�� the corresponding balance equa-
tions under homogeneous conditions read

�F̃�q�

�t
= − eEqF̃�q−1��1 − P̃q

�0� − 	
l=2

N

�ql
�0��̃�l� for q = 1, . . . ,N ,

�F̃�p��1

�t
= − eE�pF̃�p−1���2� +

1

m*

2p + 3

3
F̃�p�� − 	

l=0

N

�pl
�1�F̃�l��1,

� � �

�F̃�p���s�

�t
= − eE�pF̃�p−1���s+1�

+
1

m*

s2

2s − 1
�2�p + s� + 1

2s + 1
�F̃�p���s−1��

− 	
l=0

N

�pl
�s�F̃�l���s�, �40�

with p=0,1 , . . . ,N and s=2, . . . ,M.

The quantities �̃�l� represent the nonequilibrium parts of

the scalar moments F̃�l�, where
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F̃�l��E =
�2l + 1� ! !

3l W̃l, �̃�l� = F̃�l� − F̃�l��E. �41�

In the linear approximation F̃�p���M+1�=0 and the closure re-

lations for the quantities �P̃p
�0� ,�pl

�0� ,�ql
�s�� are explicitly re-

ported in Ref. 8.
By considering the small signal theory and using Eq. �14�,

for the initial value of the response functions we obtain the
analytic expression

K�p���s��0� = pF̃�p−1���s+1� +
s2

2s − 1
�2�p + s� + 1

2s + 1
� 1

m* F̃�p���s−1�.

�42�

We remark that for the quantities which admit a direct physi-

cal interpretation �W̃= F̃�1�, v= F̃�0��1, S̃= F̃�1��1�, it is

Kw̃�0� = v, Kv�0� =
1

m*�w̃�
, Ks̃�0� = F̃�0���2� +

5

3

W̃

m*�w̃�
,

�43�

where �v ,1 /m*� are the standard response functions of mo-

ments �W̃ ,v� evaluated at t=0.30,39 Analogously, it can be
shown that the initial value of the response functions for the

moments �̃�l� are expressed in terms of the quantity

K�̃�l�
�0� = l�F̃�l−1��1 −

�2l + 1� ! !

3l W̃l−1F̃�0��1� , �44�

with l=2, . . . ,N.

B. Time evolution of perturbations

Under stationary conditions, Eqs. �40� constitute a system
of algebraic equations which numerical solution allows us to
determine the moments as a function of the electric field E.
By considering the time evolution of a small perturbation

around the stationary state of the moments F̃�, the system of
Eq. �16� will be expressed in terms of the N+ �N+1�M quan-
tities

	F̃��t� = �	F̃�q�,	F̃�p��1,	F̃�p���2�, . . . ,	F̃�p���s�, . . . ,	F̃�p���M��T

�45�

with q=1, . . . ,N, p=0, . . . ,N.
Analogously, the vector ��

�E� of the perturbing forces

��
�E� = ���q�

�E�,��p��1
�E� ,��p���2�

�E� , . . . ,��p���s�
�E� , . . . ,��p���M�

�E� �T,

�46�

and the asymmetric 
N+ �N+1�M�� 
N+ �N+1�M� response
matrix ��� given by

��� = �
�w

�0� A�0� B�0� 0 0 0 0 ¯ 0 0 0

�w
�1� C�1� A�1� B�1� 0 0 0 ¯ 0 0 0

��2� 0 C�2� A�2� B�2� 0 0 ¯ 0 0 0

�w
�3� 0 0 C�3� A�3� B�3� 0 ¯ 0 0 0

�w
�4� 0 0 0 C�4� A�4� B�4�

¯ 0 0 0

�w
�5� 0 0 0 0 C�5� A�5�

¯ 0 0 0

� � � � � � � ¯ � � �
�w

�M−1� 0 0 0 0 0 0 ¯ C�M−1� A�M−1� B�M−1�

�w
�M� 0 0 0 0 0 0 ¯ 0 C�M� A�M�

� , �47�

where all the components ��
�E� of the vector reported in Eq.

�46� are explicit functions of moments F̃�p���s�, as reported in
the Appendix.

Analogously, all the elements �w
�s� of the first column of

the matrix in Eq. �47� are vectors that can be expressed by
introducing the chord mobility generalized moments ��p���s�

= F̃�p���s� /E and the differential mobility generalized moments

��p���s�� =dF̃�p���s� /dE, and the quantities �A�s� ,B�r� ,C�n�� are
submatrices explicitly calculated in terms of the coefficients
�ql

�s� and of the electric field �see the Appendix�.
With this approach, from the analytic knowledge of the

coefficients ��qr
�s�� and from the numerical calculation of the

quantities ���p���s�, ��p���s�� � all the elements of the matrix ���

can be explicitly evaluated starting from the stationary val-
ues of the system. Analogously, the evolution of the vectorial
response function K�t� will be expressed in terms of its N
+ �N+1�M components for the perturbation of the moments

F̃�

K��t� = �K�q�,K�p��1,K�p���2�, . . . ,K�p���s�, . . . ,K�p���M��T.

�48�

In particular, for the quantities which admit a direct physi-

cal interpretation �W̃= F̃�1�, v= F̃�0��1, S̃= F̃�1��1�, we have the
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response functions �KW̃=K�1�, Kv=K�0��1, KS̃=K�1��1� ob-
tained, respectively, for the fluctuations of mean energy, ve-
locity and energy flux, while the remaining components of
K�t� refer to the perturbation of other moments.

V. NUMERICAL RESULTS FOR N-SILICON

Below we apply the theory developed above to the rel-
evant case of n-Si. To this purpose we consider an electric
field applied along the �111� crystallographic axes, so that
we keep the axial symmetry, and we account for full-band
effects by introducing an effective mass function of the elec-
tron average total energy.5 For the collisional processes, scat-
tering with phonons of f and g type are considered with six
possible transitions �g1 ,g2 ,g3 , f1 , f2 , f3�. The HD calcula-
tions are performed using the physical scattering parameters
in Ref. 55 and 56. MC simulations have been obtained from
a full-band model57 and an analytic nonparabolic band
model.56 For the differential mobility �v� as a function of
electric field, we report also some experimental data obtained
both in the low frequency limit58 and at a high frequency of
123.3 GHz �Ref. 28� for n-Si samples oriented along the
�111� crystallographic direction.

A. Stationary conditions

To obtain the stationary value of the moments F̃�p���s� as a
function of the electric field, the balance equations �40� are
solved numerically by the Runge-Kutta procedure for stiff
problems.59

Figure 1 reports the HD values for the moments F̃�0���s�

= �v , F̃�0���2� , F̃�0���3� , F̃�0���4� , F̃�0���5��, F̃�1���s�= �W̃ , S̃ , F̃�1���2� ,

F̃�1���3� , F̃�1���4� , F̃�1���5��, and F̃�2���s�= �F̃�2� , F̃�2��1 , F̃�2���2� ,

F̃�2���3� , F̃�2���4� , F̃�2���5�� as a function of the electric field, cal-
culated for N=2 and M =5, both in the parabolic and full-
band case. For the velocity, energy, and energy flux we report
the MC values of full-band simulations57 �open circles� and
analytic nonparabolic-band simulations56 �crosses�; for the
velocity we report also the experimental data, obtained with
the microwave time-of-flight �MTOF� technique,32,58 and
available for field strengths up to 130 KV/cm. The depen-
dence upon the electric field of the moments is traced back to
the relation between the average value of F�p���i1¯is�

and its
kinetic counterpart �pu�i1

¯u�is�
, by recalling that the index p

is associated with the isotropic part of the tensor F�p���s� with
the index s indicating the deviatoric part described by the
angular brackets. For fixed values of the index p, and by
considering different values of the deviatoric part s, the mo-
ments show an analogous behavior for high field values, both
in the parabolic and in the full-band case. In particular, for
p=0 all moments F�0���s� �starting from velocity v=F�0��1 and
for increasing values of s� exhibit an initial increase and then
tend to saturate at the highest electric fields where the dc
differential mobility vanishes. By contrast, for p�1 all mo-
ments F�p���s� exhibit an initial increase, but they do not satu-
rate at high field values. In particular, at high fields, if we

consider increasing values of the index p, then the slope �i.e.,
the dc differential mobility� of all curves is found to in-
creases correspondingly. To provide a physical interpretation
of the curves reported in Fig. 1, it is useful to analyze the
different contributions that can be associated with the sepa-
rate action of the electric field and of the scattering mecha-
nisms. As a general trend, all the moments start increasing
with increasing field because of the induced drift which
breaks the time-space symmetry. For intermediate and high
values of the electric field, due to the higher absorbed power
and the energy dependence of the scattering mechanisms, the
driving field couples with the scattering processes and we
assist to an increase of the scattering efficiency. Such an
increase is known to be responsible for the dissipation of the

FIG. 1. Values for the moments F̃�0���s�= �v , F̃�0���2�,F̃�0���3�,

F̃�0���4�,F̃�0���5��, F̃�1���s�= �W̃ , S̃ , F̃�1���2� , F̃�1���3� , F̃�1���4� , F̃�1���5��, and

F̃�2���s�= �F̃�2� , F̃�2��1,F̃�2���2� , F̃�2���3� , F̃�2���4� , F̃�2���5�� vs electric field for

electrons in Si at T0=300 K. Lines refer to present parabolic
�dashed lines� and nonparabolic �solid lines� HD calculations with
N=2, M =5. Open circles refer to full-band MC simulations �Ref.
57� performed along �111� crystallographic directions. Crosses refer
to analytical nonparabolic band MC simulations �Ref. 56� per-
formed along the �111� crystallographic direction. For the drift ve-
locity we report also the experimental data �Refs. 32 and 58� ob-
tained with the microwave time-of-flight technique �MTOF� along
the �111� crystallographic direction.
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energy and momentum gained by charge carriers from the
field. In particular, the behavior of moments F�p���s� �for dif-
ferent values of indices p and s� is due essentially to the
combined action of the external field which accelerates car-
riers in the direction of its application and of the scattering
mechanisms which dissipate energy and distribute momen-
tum in different directions. Furthermore, the applied field
acts mainly on the isotropic part of the moments while the
scattering mechanisms act mainly on the deviatoric part of
the moments. Indeed, at high fields and for increasing values
of the index p, all moments increase faster because of the
reduced efficiency of scattering to dissipate the excess en-
ergy gained by the field. By contrast, for increasing values of
the deviatoric part s, all moments increase slower with in-
creasing fields because of the enhanced efficiency of scatter-
ing to dissipate through randomization the momentum
gained by the field. We have verified that the HD results
exhibit small variations when changing the number of mo-
ments used8 both in the parabolic and full-band case. The
energy dependence of the effective mass obtained by fitting
the velocity-field curve reproduces with good accuracy the
MC data of energy and energy flux, thus validating the
present HD approach.

Figure 2 reports the contribution of the nonequilibrium

part �̃�2� of the scalar moment F̃�2�. Here, �̃�2� initially ex-
hibits a small negative part �with a corresponding small
negative dc differential mobility�. Then, at increasing fields it
increases monotonously both in the parabolic and full-band
model. We also note that the net effect of nonparabolicity is
to reduce systematically the increase of all moments with
field. Such a reduction is found to be more effective for
higher moments as expected. From a microscopic point of
view these general behaviors are understood by the fact that
scattering processes increase their efficiency at increasing
carrier energy thus making their coupling with field more
pronounced.

To interpret the small-signal coefficients under ac condi-
tions, we have calculated the eigenvalues of the response
matrix ��� as a function of the electric field. These calcula-
tions are presented in the next section.

B. Linear analysis: Eigenvalue spectrum

In general the eigenvalues of the response matrix ��� are
complex quantities with the imaginary part indicating the
presence of some kind of deterministic relaxation in the sys-
tem that can be attributed to a streaming character of the
distribution function. The extreme case of a vanishing value
of the real part is well know as the condition of an ideal
streaming motion regime.33,34,36 Here, the carrier is acceler-
ated by the field up to the energy of the optical phonon.
Then, by emitting an optical phonon, it is scattered back to
the bottom of the band and the cycle starts again. In our case,
however, we are far from this ideal regime. Indeed, for Si at
T0=300 K carriers undergo other scattering events in addi-
tion to that of optical phonon emission and, therefore, the
streaming-motion regime is far from being fully achieved.
By using an increasing number of moments, also the number
of coupled eigenvalues increases and the regions with com-
plex eigenvalues extend significantly towards higher fields.
At these fields, the process of energy and momentum dissi-
pation becomes so strong that, to describe the part of stream-
ing present in the system, it becomes necessary to consider
many moments. When the electric field is increased further,
some eigenvalues again become real quantities. At these
highest fields, thermalization of the carrier system occurs at
energies well above the value of optical phonons. As a con-
sequence, no streaming is maintained anymore and transport
takes a nearly full chaotic character �diffusive regime�.

The moments F̃�p���s� are characterized by the indices p
=0,1 , . . . ,N and s=0,1 , . . . ,M. Therefore, to interpret the
eigenvalues spectrum obtained from an increasing number of
moments we proceed gradually by fixing one of the two
quantities �N ,M� and varying the other. Anyway, the spec-
trum behavior becomes sufficiently intricate and in the case
of complex values we represent with continuous lines the
real part −�R and with dashed lines the imaginary part −�I of
the eigenvalues of ���.

Figure 3 �left part� reports the generalized relaxation rates
��=−�� obtained using only an increasing number of scalar
and vectorial moments �i.e., by taking as maximum tensorial
order M =1 with different values of the isotropic part N
=2,3 ,5� in the nonparabolic band model. As a general trend,
with increasing field all the vectorial rates increase because
of the increase with energy of the scattering probabilities. By
contrast, at the highest fields all scalar rates decrease since
energy relaxation rates decrease at increasing electric fields.
Numerical results show different regions, which correspond
to the different character of the eigenvalues. For small and
intermediate values of the electric field, there are some
couples of complex conjugate eigenvalues due to the strong
coupling between scalar and vectorial moments. In particu-
lar, the velocity and energy relaxation rates are coupled by
the electric field practically for all the values of N with an
extension of the coupling region up to about 120 KV/cm for
N=5 in the nonparabolic case and with an imaginary part −�I
comparable with the real part −�R in a large part of this
region. When analyzing the results of Fig. 3, we see also that
the width of the region with complex values and the number
of coupled eigenvalues depend on the increasing number of

FIG. 2. �̃�2� is the nonequilibrium part of scalar moment F̃�2� vs
electric field for electrons in Si in the case of parabolic �P� and
nonparabolic �NP� band models at T0=300 K.
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scalar and vectorial moments used. As a matter of fact, for
increasing values of N, we found that the generalized vecto-
rial rates are squeezed towards lower values with the conse-
quent extension of the coupling regions. In particular, for
N=5 the spectrum of ��� shows �see inserts of figures� an-
other pair of complex conjugate eigenvalues �−�s̃ and −��2��
with a coupling region smaller than that associated with ve-
locity and energy relaxation. For the sake of comparison, the
right part of Fig. 3 reports the eigenvalue spectrum of ��� by
taking N=1 �i.e., by fixing the isotropic part of moments�
and varying the tensorial order M =2,3 ,5 �i.e., by consider-
ing moments with increasing deviatoric part�. We can ob-

serve that all moments F̃�0���s� show coupling regions with an
extension that depends on the increasing tensorial order s.
Therefore, in the low-field region, velocity and energy gen-
eralized relaxation rates are coupled by the electric field and

analogously also the remaining generalized rates ���0���s�� are
found to be strongly coupled by exhibiting complex values
that, in some cases, extend to the whole range of considered
electric fields. These numerical results confirm the interpre-
tation given above of the saturation regions shown in Fig. 1,
that strong dissipative phenomena affect all moments F̃�0���s�
which have increasing values of the deviatoric part s. We
have verified that, by considering a simultaneous increment
of values N and M, the essential characteristics of the spec-
trum shown in Fig. 3 remain unchanged. Thus, for increasing
values of the isotropic part N the spectrum of ��� shows that
all eigenvalues ��p���s� are squeezed towards lower values �as
shown on the left of Fig. 3 for increasing N� with the conse-
quent extension of all the coupling regions for the rates
��0���s� and the presence of other small regions �at low fields�
with complex eigenvalues for some rates ��1���s�.

FIG. 3. Eigenvalues of the relaxation matrix vs electric field for electrons in Si in the nonparabolic �NP� band model at T0=300 K. The
continuous and the dashed lines �better evidenced in the insets� refer to the real and imaginary parts of the eigenvalues evaluated in the linear
approximation for �on the left� a set of scalar and vectorial moments with �N=2,M =1�, �N=3,M =1�, and �N=5,M =1� and for �on the
right� a set of tensorial moments with �N=1,M =2�, �N=1,M =3�, and �N=1,M =5�, respectively.
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It should be noted, that the dissipative processes associ-
ated with the streaming character of the transport have been
evidenced in previous works33,34,36,37,39,41,43 using only the

usual HD equations for v and W̃ together with the relaxation
time approximation. Although these results are similar to
those obtained in the present work, yet there are same differ-
ences in the extension of the region where velocity and en-
ergy relaxations show to be strongly coupled. These differ-
ences are mainly attributed to the number of moments used
to calculate the spectrum of ���. Indeed, the eigenvalue
spectrum is rather sensitive to the number of moments con-
sidered with the direct consequence of obtaining a much
more pronounced extension of the coupling regions and of
the number of coupled complex eigenvalues by increasing
the number of moments. We conclude that under conditions

very far from thermal equilibrium the variables �v, W̃� alone
no longer constitute a satisfactory set of relevant variables.
Indeed, the analysis of the eigenvalue spectrum suggests
that, for large values of the electric field, a detailed investi-
gation of dissipative processes involve moments higher than
the second one. Accordingly, the inclusion of a large number
of moments is mandatory for an accurate description of the
dissipation processes in the whole range of electric field
strength.

C. Response functions and differential response

Figure 4 reports the initial values �t=0� of the response

functions for the tensorial moments F̃�p���s� �with p=0,1 ,2

and s=1, . . . ,5� and for the scalar moments �W̃, F̃�2�, �̃�2�� as
a function of the electric field for parabolic and nonparabolic
band models at T0=300 K. As a general trend, hot-carrier
effects �arising above about 1 kV/cm� are responsible for a
systematic change in the bending of all the initial values
�K��0��, which exhibit asymptotic behaviors steeper for
higher moments. The net effect of band nonparabolicity is to
systematically reduce the value of all the moments at high
fields �see Fig. 1� and, according with analytic calculations
of Eq. �42�, also of the corresponding initial values of the
response functions. Only the response functions K�0���s��0�, at
increasing electric fields, exhibit a saturation behavior that
corresponds with the region of saturation for the moments

F̃�0���s−1�. In particular, Kv�0�=1/m* remains almost constant
in the whole range of values of E. Indeed, because of band
nonparabolicity, all curves K�0���s��0� exhibit small changes at
high fields due to increasing values of the carrier mass m*, so

that K�0���s��0� �1/m*F̃�0���s−1� slightly decrease. For the scalar
moments 
Eq. �42� with s=0� KW̃�0� saturates at high fields

FIG. 4. Initial values �t=0� for the tensorial response functions K�p���s�= �K�0���s� ,K�1���s� ,K�2���s�� �with s=1, . . . ,5� and for the scalar
response functions K�p�= �KW̃ ,K�2� ,K�̃�2�

� vs electric field for electrons in Si at T0=300 K. Symbols refer to present parabolic �dashed lines�
and nonparabolic �solid lines� HD calculations with N=2 and M =5. In particular for K�̃�2�

�0� we report also the calculation �crosses�

obtained by using in Eq. �44� the MC nonparabolic simulations �Ref. 56� for the moments �v ,W̃ , S̃�.
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similar to the drift velocity v, while the moments K2�0� in-

crease with the field proportionally to the energy flux S̃. In
the insert of Fig. 4 we report also the response function
K�̃�2�

�0� obtained from Eq. �44� �with l�2� by using HD and

MC �Ref. 56� calculations for �v ,W̃ , S̃�. In this case, it should
be noted that K�̃�2�

�0� takes always negative values and it

decreases monotonically with increasing fields both in the
parabolic and nonparabolic band models.

Figure 5 reports the time dependence of the scalar-
response functions �KW̃ ,K�2� ,K�̃�2�

� and of the corresponding

differential response �	W̃ /	E ,	F̃�2� /	E ,	�̃�2� /	E� to the
steplike switching-on of the electric field for the nonpara-
bolic band model and at increasing electric fields. The re-
sponse function KW̃ clearly evidences hot carriers effects
through a nonmonotonic behavior with a maximum45 �circles
in the insert� which separates the initial ballistic regime from
the subsequent diffusive regime where dissipation phenom-
ena associated with the scattering take place. By contrast, the

corresponding differential response 	W̃ /	E increases sys-
tematically with field until reaching the steady-state value. In
general, the response function of scalar moments exhibits a

decay slower than that of the remaining tensorial moments, a
behavior associated with the energy dependence of the scat-
tering mechanisms considered here.33,34,36 Thus, all the scalar
response functions and the corresponding differential re-
sponses exhibit a time evolution analogous to that of the

functions KW̃ and 	W̃ /	E. As a matter of fact, being

�̃�p�� F̃�p��E �see, for example, F̃�2� and �̃�2� in Figs. 1 and

2�, the evolution of the functions K�p� and 	F̃�p� is mainly

related to the equilibrium part F̃�p��E�W̃p of the scalar mo-
ments. Accordingly, all the K�p� functions show a nonmono-
tonic behavior �with a steep initial increase, the attainment of
a maximum, and a successive slow decay� that evolves ap-
proximately with the same time scales of the curves associ-
ated with the response function KW̃. The corresponding dif-

ferential responses 	F̃�p� /	E exhibit a behavior similar to

that of the function 	W̃ /	E, with a monotonous time varia-
tion for all the values of the electric field. Figure 5 also

reports the functions K�̃�2�
and 	�̃�2� /	E, which are associ-

ated with the nonequilibrium moment �̃�2�. In particular,
K�̃�2�

�t� is initially negative and then decreases, at very short

FIG. 5. Time dependencies of response function �Kw̃ ,K�2� ,K�̃�2�
� and of corresponding differential response �	w̃ /	E ,	F̃�2� /	E ,	�̃�2� /	E�

to a steplike switch-on of the electric field obtained for n-Si in the case of a nonparabolic �NP� band model at T0=300 K and increasing
electric fields. The dashed and continuous lines refer to different number of moments used.
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times, to a minimum before increasing towards its null value
and, in case of high electric fields, it becomes positive and
relaxes slowly towards zero. Analogously, for every value of
the electric field, the corresponding differential response

	�̃�2� /	E quickly decreases, reaches a negative minimum
and slowly relaxes to the value of the steady state. The shape

of the functions �K�̃�2�
, 	�̃�2�� is consistent with the relations

�29�, �31� and �22�, �23�. Indeed, for every value of the elec-
tric field K�̃�2�

�0� is always negative �see insert in Fig. 4�
while for E�20 KV/cm the dc differential mobility �see
Fig. 2� takes always non-negative values. From Eqs. �29� and
�31� we obtain that, in these conditions, the integral of
K�̃�2�

�t� over all times is generally non-negative, so that posi-

tive values of the integrand must dominate. Therefore, being
K�̃�2�

initially negative, at later times it must transit from a

zero to positive values with increasing time. If in the transi-
tion point the derivative dK�̃�2�

/dt is strictly positive then,

from Eqs. �22� and �23�, we obtain that to a zero of the
response function it corresponds a minimum of the differen-
tial response �open squares in the inserts of Fig. 5�, and

analogously, to flex points of 	�̃�2� �full squares in the insets
of Fig. 5� one can associate the extreme positions for the
corresponding response function K�̃�2�

.

Figure 6 reports the response functions K�p���s� �for p=0
and s=1,2 ,3� and the corresponding differential response
	F̃�p���s� /	E to a steplike switch-on of the electric field for the
nonparabolic band model at increasing electric fields. Each
curve K�p���s� is normalized to its initial value to allow for a
comparison of the different decay-time scales. The results
show that, at increasing values of the deviatoric part s, all
functions �K�0���s� ,	F̃�0���s� /	E� exhibit a time evolution very
similar to that of the functions �Kv ,	v /	E� for the velocity
v. Accordingly, at the lowest fields all the response functions
K�0���s� exhibit an exponential decay, with a relaxation time

characteristic of the corresponding moment F̃�0���s�. The pres-
ence of higher electric fields induces nonexponential decays.
Accordingly, the shape of all functions K�0���s� becomes more
complicate by exhibiting a negative part that implies an over-
shoot of the corresponding differential response. Thus, the

responses 	F̃�0���s� /	E quickly increase with time when

FIG. 6. Time dependencies of normalized response functions �Kv ,K�0���2� ,K�0���3�� and of corresponding differential response

�	v /	E ,	F̃�0���2� /	E ,	F̃�0���3� /	E� to a steplike switch-on of the electric field obtained for n-Si in the case of a nonparabolic �NP� band
model at T0=300 K and increasing electric fields. The dashed and continuous lines refer to different number of moments used.
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K�0���s��t��0, reach a maximum at time t corresponding to
K�0���s��t�=0, and then decay asymptotically to zero when
K�0���s��t��0. We note that, also in this case, from Eqs. �29�
and �31� one can infer the relevant features of the response
functions. In fact, by considering the regions of saturation
�see Fig. 1� for the moments F̃�0���s�, from Eq. �29� we obtain
that X�0���s��0� decreases to zero and the integral in Eq. �31�
vanishes for high fields. Thus, if the initial part of the re-
sponse functions is positive �see Fig. 4�, then at long times
the contribution of the integrand in Eq. �31� should be nega-
tive to compensate. In this transition, the response functions
fall through a zero and the corresponding derivative becomes
negative. In particular, if at the transition point it is
dK�0���s� /dt�0, then, from Eqs. �22� and �23�, to a zero value

of K�0���s� it corresponds a positive maximum of 	F̃�0���s�
�open squares in the insets of Fig. 6�, and analogously, to one
flex point of the perturbation 	F̃�0���s� �full squares in the
insets of Fig. 6� can be associated an extreme position of
the corresponding response function. We remark that, for
continuity reasons, the previous behavior of the functions
K�0���s��E , t� must be valid also in some range of intermediate
dc electric fields. Of course, being in this case, X�0���s��E ,0�
�0, the positive values of the integrand in Eq. �31� must
predominate. According with the previous interpretation, this
phenomenon is associated with the combined action of the
electric field and dissipative processes. At the very begin-
ning, the field accelerates the electron gas, and all the par-
ticles will move toward the region of energy where phonon
emission becomes possible. In this time interval �t�0
−0.1 ps� we are in the presence of a ballistic regime, and the
perturbations of the mean velocity and remaining moments
increase linearly with time. The fastest electrons will then
emit optical phonons, becoming in this way very slow, and in

turn all perturbations 	F̃�0���s� will tend to level off. Later on,
as an effect of the scattering, fast electrons �those which have
not yet undergone scattering� separate from slow electrons
�which did undergo scattering� thus causing a decrease of all

perturbations 	F̃�0���s� after they achieved their maximum
value. Finally, due to the randomness of the scattering, both

	v and remaining functions 	F̃�0���s� �for s�1� reach their
steady-state value. As previously noted, the streaming char-
acter of the transport is also evidenced by the nonmonotonic
behavior of KW̃, which exhibits a maximum separating the
ballistic regime from the dissipation regime of hot carriers.
In fact, KW̃ is always positive with a maximum which is
reached at times t� shorter than that of the zero value of
K�0���s� �see circles in the insets of Fig. 6�. At increasing
fields, because of the increased efficiency of the scattering
mechanisms, the corresponding value K�0���s��t�� tends to ap-
proach the value K�0���s��t�=0 and analogously the corre-

sponding value of 	F̃�0���s��t�� /	E tends to approach its maxi-
mum value. Therefore, if initially the tensorial moments

F̃�0���s� receive an extra contribution gained by the field then,
due to scattering, at a later time the corresponding perturba-

tions 	F̃�0���s� /	E reach their maximum, decreases, and the

extra contributions for the moment F̃�0���s� disappear.

For the remaining tensorial moments F̃�p���s� �with p�1�,
even in the absence of the overshoot phenomena, we have
verified that a relaxation decay based on a single time scale
does not work, rather each function exhibits different time
scales. Consistently with the interpretation reported in Secs.
V A and V B, the evolutions exhibited by the response func-
tions and by the differential responses are the consequence of
the competition between the actions of electric field and of
scattering mechanisms. A general property common to all the
results is that, for larger values of the deviatoric part s, the
functions K�p���s� exhibit a more pronounced negative region
and analogously a more pronounced peak in the correspond-

ing differential responses 	F̃�p���s� /	E. Again, these behaviors
are mainly attributed to the prevailing importance of the scat-
tering mechanisms at increasing values of the deviatoric part
of the moments. By contrast, for increasing values of the
moment isotropic part �i.e., larger values of the index p�, the
negative regions of the response functions are reduced. In
many cases, for high electric fields the functions K�p���s� are
always positive and any overshoot phenomenon in the corre-

sponding perturbations 	F̃�p���s� /	E is washed out. Also in
these cases, near to the maximum of KW̃ the shape of the
curves exhibits an abrupt change in the temporal evolution of
both the response function and the differential response. This
behavior is mainly attributed to the prevailing importance of
the action of the electric field since, in this case, energy
dissipation is not sufficient to counteract the energy supplied
by field.

We conclude that, the shape of all the curves evidences
the streaming character of the transport exhibiting different
decay-time scales. In particular, the response function KW̃ in
Fig. 5 evidences the presence of hot carriers effects through
a nonmonotonic behavior with a maximum which separates
the different time scales. Finally, for increasing fields we
note that, while the introduction of a greater number of mo-
ments yields small differences in the HD numerical results,
the introduction of nonparabolicity leads to a remarkable
variation in the values of all the functions, with more pro-
nounced negative minima in the response functions.

D. Differential mobility

The previous section has shown that the structure of the
response functions provides much information on the physics
of the system. In general, however, the response functions
are not directly measurable quantities. Therefore, in this sec-
tion we present the implications of previous results for the
generalized differential mobilities, which for the case of ve-
locity mobility is directly accessible by measurements of
the differential mobility spectrum,28 while the remaining
quantities can be calculated by different numerical
approaches.30,39,40,45 Accordingly, Fig. 7 reports the low fre-
quency differential mobility ��v� ,�

W̃
� ,�

S̃
��, for the moments

�v ,W̃ , S̃�, as a function of the electric field at T0=300 K. We
note, that in the nonparabolic case the HD results are in good
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agreement with both MC calculations and experimental data
for the whole range of electric fields.

As further test of the HD model, we have also calculated
the differential velocity-mobility at high frequency for T0
=293 K. Accordingly, in Fig. 8 we compare the HD results
with the experimental data28 for the real part of the velocity-
mobility �v� obtained at 123.3 GHz as a function of the elec-
tric field. More precisely, the HD simulations have been per-
formed for the parabolic �P� and nonparabolic �NP� band
models with N=5 and M =1. We remark that the nonpara-
bolic HD results agree very well with experimental data.

In general we have verified that, if the curves K�p���s� for
different values of indices p and s show common features,
then also the ac differential mobility ��p���s�� show in corre-

spondence similar common features. Accordingly, if the
negative parts of the response functions K�p���s� are predomi-
nant in the time domain �see Fig. 6�, then at increasing fre-
quencies all curves Re
��p���s�� � exhibit a peak before falling

off to zero. Analogously, all the imaginary parts Im
��p���s�� �
increase through a positive maximum before decreasing to-
ward a negative minimum. Even in the absence of negative
parts in K�p���s�, the shape of the curves ��p���s�� are found to

evidence the existence of two different decay-time scales in
the response functions.

VI. CONCLUSIONS

By introducing generalized kinetic fields we have devel-
oped an extended HD approach based on the maximum en-
tropy principle, which includes an arbitrary number of mo-
ments of the distribution function. Then, for the perturbation
of these moments a set of coupled balance equations is con-
structed and analytical expressions for all the small signal
coefficients are obtained in the time and frequency domains.
In particular, the generalized expressions for the response
matrix ���, the perturbing forces −e	E�t���

�E�, the response
functions K��t�, and the differential mobilities ����
�
=X��
�+ iY��
� are directly calculated for any moment of
interest. By generalizing previous results, the theory provides
also some relations in integral form and in asymptotic form
that are used to describe the small signal analysis. From the
knowledge of the quantities �K��0�, X��0�� and of the deriva-
tives 
dK� /dt�0+, 
d2K� /dt2�0+, 
dY� /d
�0, 
d2X� /d
2�0 the
anatomy of all response functions and differentials mobilities
is inferred in the time and frequency domains. The power of
the present approach stems from the construction of an alge-
braic �in place of an integral� formulation of the theory.

FIG. 7. Real parts of the ac differential mobility for velocity,
energy, and energy flux vs electric field E at low frequency
�108 Hz obtained with the present HD approach. Lines refer to
present parabolic and nonparabolic model calculations obtained,
with N=5 and M =1. Symbols refer to full-band MC simulations
�Ref. 57�, to experimental data �Refs. 32 and 58� measured with the
microwave time-of-flight �MTOF� method and to nonparabolic-
band MC simulations �Ref. 56� performed along the �111� crystal-
lographic direction for n-Si.

FIG. 8. Real parts of the ac differential mobility for velocity
(Re
�v��f��) at T=293 K evaluated at high frequency �123.3 GHz�,
as function of low electric fields E, with the present HD approach.
Lines refer to present parabolic and nonparabolic model calcula-
tions obtained for N=5, M =1. Symbols refer to the experimental
data �Ref. 28� measured with the microwave time-of-flight �MTOF�
technique along the �111� crystallographic direction for n-Si.
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Thus, from the explicit knowledge of ���� ,��
�E�� the small

signal coefficients are consistently obtained in algebraic
form.

The theory is formulated at a kinetic level, without the
need to introduce external parameters, and it has been carried
out within a total energy scheme, thus using an energy dis-
persion of general form �full-band approach�. The physical
plausibility of the theory has been confirmed by analysing
the high field transport in n-Si. To this purpose, as general-
ized kinetic fields we have taken the independent quantities
��= ��pu�i1

¯uis
� and as unique independent mean quantities

the traceless moments F�= �F�p���i1¯is�
�, where the indices p

and s are associated with the isotropic and deviatoric parts of
the tensors, respectively. The analysis of dc and ac numerical
results shows that the behavior of all moments is determined
essentially by the competition between the action of the elec-
tric field and that of the dissipative scattering processes. In
particular, the action of the electric field prevails on the mo-
ments which have an increasing isotropic part while the ac-
tion of dissipative processes are more evident in the mo-
ments with a large deviatoric part. By studying the
eigenvalues and eigenvectors of the response matrix we have
analyzed the coupling among the different macrovariables
�moments� and we have found that this coupling leads to a
nonexponential decay of the corresponding response func-
tions. In particular, by considering the moments F�0���s�, with
null isotropic part and increasing deviatoric part, the com-
bined action of the electric field and dissipative processes has
been quantitatively investigated. We have thus demonstrated
that, at high fields: �i� the vanishing dc differential mobility
of different moments, �ii� the presence of complex eigenval-
ues, �iii� the negative values taken by the response functions,
�iv� the positive overshoot of differentials responses, and �v�
the maximum of the real and imaginary parts of the ac dif-
ferentials mobility, are all related to the efficiency of dissi-
pative scattering processes. Analogously, by considering the
moments F�p���s� with increasing isotropic part �p�1� we
have established that a simple relaxation approach based on a
single time scale loses of validity, because both the response
functions and the corresponding differential responses evolve
with different time scales. In particular, the energy response
function KW̃ evidences the streaming character of hot carriers
through a nonmonotonic behavior with a maximum which
separates different time scales. The limits of the concept of a
single relaxation time are also evident in the shape of the
corresponding ac differential mobilities which show a non-
regular behavior at increasing frequencies before reaching
the cutoff. The theory has been validated by comparing the
present results with those obtained from MC simulations and
with available experiments for the standard quantities of di-

rect physical interpretation �v ,W̃ , S̃�. Therefore, we believe
that the present approach represents a useful standard to ob-
tain a generalized modeling of the relevant static macrovari-
ables of interest and of the small-signal �dynamics� coeffi-
cients in terms of rigorous analytical formulas associated
with microscopic peculiarities of the single carrier transport.
In addition to offering an approach complementary to exist-
ing kinetic method based on Monte Carlo simulations and/or
iterative solutions of the Boltzmann equation, the theory has

the advantages of providing a systematic framework to in-
vestigate transport phenomena under far from equilibrium
conditions and of operating within a contained computational
environment.
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APPENDIX

The components of the vector ��E�

��
�E� = ���q�

�E�,��p��1
�E� ,��p���2�

�E� , . . . ,��p���s�
�E� , . . . ,��p���M�

�E� �T,

are expressed in terms of relations

��q�
�E� = qF̃�q−1��1, �A1�

��p��1
�E� =

�2p + 3�
3

1

m* F̃�p� + pF̃�p−1���2�, . . . , �A2�

��p���s�
�E� =

s2

2s − 1
�2�s + p� + 1

2s + 1

1

m* F̃�p���s−1�� + pF̃�p−1���s+1�, . . . ,

�A3�

��p���M�
�E� =

M2

2M − 1
�2�M + p� + 1

2M + 1

1

m* F̃�p���M−1�� , �A4�

with q=1, . . . ,N and p=0, . . . ,N.
All the elements �w

�s� of the first column of the matrix �47�
are vectors

�w
�0� = ���1�,��2�, . . . ,��N��T,

�w
�1� = ���0��1,��1��1, . . . ,��N��1�T,

�w
�s� = ���0���s�,��1���s�, . . . ,��N���s��T, with s = 2, . . . ,M

of components

��q� = qeE
��q−1��1� + ��q−1��1

�w�
+ 	

l=2

N

�ql
�0�

��l��

�w�
, for q = 1, . . . ,N ,

�A5�

��0��1 = 	
r=0

N

�0r
�1�

��r��1� − ��r��1

�w�
, �A6�

��1��1 = 	
r=0

N

�1r
�1�

��r��1� − ��r��1

�w�
+ eE

��0���2��

�w�
, �A7�
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��n��1 = 	
r=0

N

�nr
�1�

��r��1� − ��r��1

�w�
+ eE�n

��n−1���2��

�w�

+
2n + 3

3

1

m*

��n��

�w�
� for n = 2, . . . ,N �A8�

��p���s� = eE�p
��p−1���s+1��

�w�

+
s2

2s − 1
�2�p + s� + 1

2s + 1
� 1

m*

��p���s−1��

�w�
�

+ 	
r=0

N

�pr
�s�

��r���s�� − ��r���s�

�w�

for p = 0, . . . ,N, s = 2, . . . ,M, and ��p���M+1�� = 0,

�A9�

where

��p��1 =
F̃�p��1

E
, . . . ,��p���s� =

F̃�p���s�

E
, . . . ,��p���M�

=
F̃�p���M�

E
, for p = 0, . . . ,N �A10�

are the moments generalized chord mobility and

�w� =
dW̃

dE
, ��l�� =

dF̃�l�

dE
,

��p��1� =
dF̃�p��1

dE
, . . . ,��p���s�� =

dF̃�p���s�

dE
,

for l = 2, . . . ,N, p = 0, . . . ,N, and s = 2, . . . ,M

�A11�

are the moments generalized differential mobility.

The submatrices �A�s� ,B�r� ,C�n�� contained in the re-
sponse matrix �47� are expressed in terms of coefficients �ql

�s�

and of electric field E. In particular we have for the N� �N
−1� matrix A�0� and for the �N+1�� �N+1� matrix A�s� �with
s=1, . . . ,M� the relations

A�0� = − �qr
�0� for q = 1, . . . ,N, r = 2, . . . ,N �A12�

A�s� = − �nm
�s� for n,m = 0, . . . ,N . �A13�

For the N� �N+1� matrix B�0� and for the �N+1�� �N+1�
matrix B�r� �with r=1, . . . ,M −1� the relations

B�0� = �
− eE 0 ¯ 0 0

0 − 2eE ¯ 0 0

� � ¯ � �
0 0 ¯ − NeE 0

� ,

B�r� = �
0 0 ¯ 0 0

− eE 0 ¯ 0 0

0 − 2eE ¯ 0 0

� � ¯ � �
0 0 ¯ − NeE 0

� . �A14�

For the �N+1�� �N−1� matrix C�1� and for the �N+1�� �N
+1� matrix C�s� �with s=2, . . . ,M� the relations

C�1� = �
0 0 ¯ 0

0 0 ¯ 0

−
7

3

eE

m* 0 ¯ 0

0 −
9

3

eE

m* ¯ 0

� � ¯ �

0 0 ¯ −
2N + 3

3

eE

m*

� , �A15�

C�s� = �
−

s2

2s − 1

eE

m* 0 ¯ 0

0 −
s2

2s − 1
�2�1 + s� + 1

2s + 1
� eE

m* ¯ 0

� � ¯ �

0 0 ¯ −
s2

2s − 1
�2�N + s� + 1

2s + 1
� eE

m*

� . �A16�
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