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We calculate systematically the absolute volume deformation potential �AVDP� of the �8v valence band
maximum �VBM� and the �6c conduction band minimum �CBM� states for all group IV, III-V, and II-VI
semiconductors. Unlike previous calculations that involve various assumptions, the AVDPs are calculated
using a recently developed approach that is independent of the selection of the reference energy levels. We find
that although the volume deformation potentials of the CBM state are usually large and always negative, those
of the VBM state are usually small and always positive. The AVDP of the VBM state decreases as the p-d
coupling increases, e.g., in the II-VI compounds. The AVDP of CBM decreases as the ionicity increases. Our
calculated chemical trends of the AVDPs are explained in terms of the atomic orbital energy levels and
coupling between these orbitals.
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I. INTRODUCTION

The absolute volume deformation potential �AVDP� av
i

=dEi /d ln v for state i describes the shift of individual en-
ergy level Ei with respect to an absolute energy reference
�e.g., vacuum� in a crystal under a volume deformation.1,2 av

i

is an important physical parameter for semiconductors be-
cause in order to assess quantum confinement for holes, and
separately for electrons in strained heterostructure quantum
dots and quantum wells, it is necessary to know the natural
band offsets3 and the AVDPs for the valence band maximum
�VBM�, and separately for the conduction band minimum
�CBM� states.4–6 The AVDP is also an important fitting pa-
rameter in generating empirical pseudopotentials that has
good transferability in calculating the band structure of
lattice-mismatched semiconductor alloys and superlattices.7

Furthermore, study of the AVDP also provides important in-
formation on the individual wave function characters of the
energy levels.8 However, despite the importance, the exact
value of the AVDP is difficult to obtain either experi-
mentally9–11 or theoretically.12,14,15 Experimentally, the mea-
sured values are strongly influenced by the presence of sur-
faces or interfaces11 and in most cases empirical rules �e.g.,
the deep-defect level pinning rule9,10� are assumed. Theoreti-
cally, although it is easy to calculate the difference of the
AVDPs between two energy levels15 �e.g., between the CBM
and the VBM states, i.e., the band gap� using first-principles
band structure method, it is difficult to obtain the AVDP of a
single state. This is because modern band structure method
usually applies the periodic boundary condition, so that the
absolute position of an energy level in an infinity periodic
crystal is only defined within an unknown constant.16 To
overcome this problem, various approximations have been
assumed.12–15,17–20 For example, Van de Walle14 calculated
the AVDP using the model-solid pseudopotential, which as-
sumes that the crystal potential is a direct superposition of
the neutral atomic pseudopotentials. Cardona and
Christensen12 assumed that the dielectric midgap energy

level can be used as a constant reference. Wei and Zunger15

have calculated the AVDPs by assuming that the energy level
of the deep core state is not sensitive to the volume defor-
mation. However, these assumptions have not been rigor-
ously proved to be valid. The obtained values based on these
assumptions often contradict each other. For example, the
calculated AVDPs are all positive in Ref. 14, but are all nega-
tive in Ref. 12, whereas the values obtained in Ref. 15 are
both positive and negative.

Recently, we proposed a new approach to calculate the
hydrostatic AVDP using an ab initio all-electron method
without a priori assumption.21 We show that using this ap-
proach the calculated AVDP is a well-defined bulk property,
i.e., independent of the reference energy levels. In this paper,
we apply this new approach to calculate the AVDP of the �8v
VBM and �6c CBM states for all group IV, III-V, and II-VI
semiconductors. The general chemical trends of the calcu-
lated AVDPs are investigated. We find that �1� the core level
AVDP is not negligible; �2� the volume deformation poten-
tials for the VBM state, av

VBM, are small but all positive,
whereas �3� av

CBM are usually large and all negative. �4� av
VBM

decreases when the coupling between the occupied cation d
orbital and the anion p orbital increases, whereas �5� av

CBM

decreases when the ionicity of the compound increases. In
Sec. II, we discuss briefly our calculation method. In Sec. III,
we present our calculated results and discuss the general
chemical trends of the AVDP for the VBM and CBM states.
Finally, we summarize our results in Sec. IV.

II. METHODS OF CALCULATION

The calculation is performed at the experimental lattice
constants15,22 using the local density approximation �LDA�23

as implemented in the WIEN2K linearized augmented plane
wave code.24 High cutoff energy for the basis functions and
large number of k-points sampling for the Brillouin zone
integration are used to ensure the convergence of the calcu-
lated results with respect to these parameters. To improve the
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flexibility of the basis functions, local orbitals25 are used for
Ge, Sn, Ga, In, Zn, Cd, and Hg valence or semicore d states.
To obtain the AVDP of the VBM state, we use the recently
developed approach described in detail in Ref. 21. Here, we
give a brief description of the procedures. First, we calculate
the volume deformation potential of the energy difference
between the VBM and a core level d�EVBM−Ecore� /d ln v
�similarly for CBM� by expanding and compressing the cu-
bic lattice constant separately by about 1%. Second, we cal-
culate the uniaxial core level absolute deformation potential
by constructing �n ,n� homojunction superlattices13,17,19

along three directions �100�, �110�, and �111�. One side of
these superlattices is compressed along the superlattice direc-
tion by 1%, and the other side is expanded by 1%. The atoms
at the interfaces between the expanded and compressed re-
gion are fixed at their ideal zinc-blende �ZB� position,
whereas the internal structural parameters are relaxed by the
valance force field �VFF� method.26 For the polar orienta-
tions such as �100� and �111�, both anion- and cation-
terminated superlattices are constructed, and the results are
averaged to remove the built-in electric field. The period of
the superlattice n is increased until all the calculated AVDPs
are converged to within 0.1 eV. We find that for the �110�
superlattice, n=10 is required, whereas for �100� and �111�
directions, we could use n=6. Finally, to obtain the hydro-
static AVDP for the core level, as well as the VBM and the
CBM states, we average the uniaxial deformation potentials
over all the directions. This average is facilitated by using
the cubic symmetry of the crystal, expanding the physical
property in terms of lattice harmonics.21,27 For lmax=4, we
have

p̄ = �4p110 + p100�/5, �1�

and for lmax=6, we have

p̄ = �10p100 + 16p110 + 9p111�/35. �2�

The convergence of the lattice harmonic expansion can be
checked by comparing the results obtained from Eq. �1� and
Eq. �2�. We find that for all the calculated values, the results
obtained from Eq. �1� are converged to within 0.2 eV. We
want to point out that this procedure can only be used to
calculate the AVDP of the core state, because they are local-
ized on the atomic site. We cannot use this procedure to
directly calculate the AVDP of the VBM or CBM state, be-
cause in a finite size superlattice calculation, the VBM or
CBM wave function is not localized in one side of the su-
perlattice, i.e., we cannot identify the VBM and CBM eigen-
state energies on each side of the superlattice.

It is well known that the LDA calculation underestimates
the band gap, which in turn also affects the calculated defor-
mation potentials.15,28 To correct the LDA error for the CBM
state, we have adopted a simple method proposed by
Christensen28 by adding an external potential15 to the LDA
potential in solving the self-consistent LDA Schrödinger
equations, so that the corrected band gaps are similar to ex-
perimental data.22 For InN and HgSe, whose band gap is
currently under debate, we have used this method to predict
their band gaps.15,29,30 This resulted in a band gap of about

0.7 eV for ZB InN and −0.24 eV for ZB HgSe; both are in
good agreement with recent experimental data.31–33

III. RESULTS AND CHEMICAL TRENDS OF AVDP

Table I lists the calculated AVDPs of VBM ��8v� and
CBM ��6c� states for all group IV, III-V, and II-V semicon-
ductors, and the uniaxial absolute deformation potential of
VBM along �100�, �110�, and �111� directions. For the
uniaxial absolute deformation potential, the splitting at the
VBM is not included. The AVDPs are calculated using Eq.
�1�. From the values given in Table I, the volume deforma-
tion potential of the band gap can be obtained by taking the
difference between av

CBM and av
VBM. The pressure coeffi-

cients, ap=dE /dp of the energy levels and band gaps can be
obtained by using the relationship ap=−av /B, where B is the
bulk modulus at the equilibrium lattice constant aexp; both
are given in Table I.15,22 The values of av

VBM and av
CBM are

also plotted in Fig. 1. In the following, we will analyze in-
dividually the chemical trends of AVDPs of the VBM and
CBM states.

A. Absolute volume deformation potential of the �8v state

The change of av
VBM is due to the following three

effects:15,21 �a� The kinetic energy effect. Because the kinetic
energy is proportional to k2 or 1 / l2, where k is the reciprocal
lattice vector and l is the anion-cation bond length, it in-
creases as the volume decreases, therefore, the contribution
of the kinetic energy to AVDP is negative. �b� The anion-
cation p-p coupling effect. Because the VBM is a p-p bond-
ing state,34 the energy level decreases as the volume or bond
length decreases, so its contribution to the av

VBM is always
positive. The coupling is inversely proportional to the bond
length and the cation-anion p orbital energy differences. �c�
The p-d coupling effect. Due to symmetry, the anion p and
cation d states in the zinc-blende structure can couple
strongly with each other. If the cation d orbital is below the
VBM, the p-d coupling contribution to av

VBM is negative,
whereas it has a positive contribution if the level is unoccu-
pied in the conduction band. Similar to the p-p coupling, the
p-d coupling increases with decreasing bond length l and
decreasing energy difference between the cation d and anion
p orbital energies. Effects �a�, �b�, and �c� tend to cancel each
other, so av

VBM values are usually small and the chemical
trends are complex. However, we can still identify the fol-
lowing trends:

�1� We find that av
VBM are all positive, indicating that the

p-p coupling effect is dominant. Previous calculation by
some of us assumed that the core level AVDPs are zero.15

From that assumption, they find that some of the compounds
could have negative av

VBM. Our present calculations show
that the AVDPs for the core states are not negligible, e.g., it
is around 3 eV for GaAs. After including this core correc-
tion, we find that all av

VBM become positive and are indepen-
dent to the choice of the core levels.

�2� For group VI elements, av
VBM usually decreases as the

atomic number increases. This can be attributed to increased
bond lengths, which reduce the p-p coupling, and the in-
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creased negative contribution of p-d coupling for Ge and Sn.
It is interesting to note that av

VBM for C is slightly smaller
than Si, even though C-C has a much smaller bond length
than the Si-Si bond. This abnormal behavior could be con-
tributed to the much more localized C 2p wave function
compared to that of Si 3p wave functions, so the coupling
matrix element bpp for C is much smaller than for Si.

�3� For a common-anion system, the value of av
VBM de-

creases as the cation atomic number increases, mainly be-
cause of the reduced p-p coupling �due to increased bond
length� and increased negative p-d coupling contribution.

�4� For a common cation system, when the anion atomic
number increases, the cation-anion p orbital energy differ-
ence decreases,15 thus it tends to increase the p-p coupling.
On the other hand, the cation-anion bond length also in-
creases, so it tends to decrease the p-p coupling. The p-d
coupling also decreases when the anion atomic number in-
creases, except for Al compounds, where it increases. Be-
cause of these factors, no clear trends are present.

�5� For II-VI ZnX, CdX, and HgX �X=S, Se, and Te�,
av

VBM is significantly smaller than other compounds because
the negative p-d repulsion for these II-VI compounds is

large. Figure 2 plots the charge density distribution of the
VBM states for Si, GaAs, and ZnSe. We see that for ZnSe,
the VBM state has strong p-d antibonding character. Simi-
larly, av

VBM for GaX and InX are smaller than for AlY �Y
=N, P, As, and Sb� because Al has unoccupied d orbitals, so
for AlY, the p-d coupling contribution is positive.

B. Absolute volume deformation potential of the �6c state

The �6c state is the antibonding state of cation s and anion
s orbitals. It moves upward in energy when the volume de-
creases because of �a� the increase in the kinetic energy and
�b� the s-s level repulsion. The s-s coupling is inversely pro-
portional to the bond length and the cation-anion s orbital
energy differences. The two effects add up for this antibond-
ing state, so av

CBM is always negative and mostly large. Be-
cause the av

VBM is usually small, the chemical trends of the
band gap volume deformation potentials �av

CBM-av
VBM� are

similar to that of av
CBM. We have observed the following

trends for av
CBM.

�1� In the homopolar limit, where �s
c=�s

a, the magnitude
of av

CBM increases rapidly when the atomic number, and thus

TABLE I. Calculated uniaxial absolute deformation potentials �in eV� of VBM along �100�, �110�, and �111� directions, and the AVDPs
av

VBM for VBM ��8v� and av
CBM for CBM ��6c� states for all group IV, III-V, and II-VI, semiconductors. The experimental lattice constants

�aexp, in Å� and the bulk modulus �Bexp, in kbar� are also given.

Compounds aexp Bexp a100
VBM a110

VBM a111
VBM av

VBM av
CBM

C 3.5668 4420 1.52 2.32 2.58 2.16 −22.61

Si 5.4307 979 1.50 2.60 2.83 2.38 −10.06

Ge 5.6579 689 1.16 2.50 2.80 2.23 −7.83

Sn 6.4890 456 0.66 1.81 2.37 1.58 −6.00

BN 3.6150 3723 1.54 2.87 3.31 2.61 −15.12

AlN 4.3600 2158 2.66 4.59 5.21 4.20 −5.96

AlP 5.4635 860 1.62 2.84 3.24 2.60 −6.92

AlAs 5.6600 781 1.72 3.23 3.60 2.93 −6.00

AlSb 6.1355 551 1.44 2.97 3.63 2.65 −6.19

GaN 4.5000 2054 1.38 3.13 3.64 2.78 −4.59

GaP 5.4505 882 1.00 2.22 2.62 1.98 −6.85

GaAs 5.6533 756 1.20 2.50 3.06 2.24 −5.91

GaSb 6.0959 563 0.87 2.17 2.54 1.91 −6.10

InN 4.9800 1480 0.46 1.73 2.05 1.48 −2.18

InP 5.8687 710 0.79 2.09 2.54 1.83 −4.10

InAs 6.0583 579 0.67 2.07 2.47 1.79 −3.87

InSb 6.4794 483 0.63 1.85 2.39 1.61 −4.74

ZnO 4.6000 1520 −0.61 0.56 1.56 0.48 −1.22

ZnS 5.4102 771 −0.10 1.06 1.39 0.83 −4.33

ZnSe 5.6676 624 0.19 1.49 1.74 1.23 −3.76

ZnTe 6.0890 509 −0.07 1.25 1.53 0.99 −4.61

CdS 5.8180 620 −0.43 0.61 1.01 0.40 −2.54

CdSe 6.0520 530 0.02 1.12 1.43 0.90 −2.00

CdTe 6.4820 445 0.08 1.09 1.67 0.89 −2.81

HgS 5.8500 685 −0.62 0.44 0.79 0.23 −1.93

HgSe 6.0850 500 −0.47 0.57 0.67 0.36 −1.79

HgTe 6.4603 423 −0.43 0.66 0.97 0.44 −2.75
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the atomic size of the elements, decreases. For example,
−av

CBM�C�=22.61 eV is much larger than −av
CBM�Sn�

=6.00 eV. This is because the s-s level repulsion is inversely
proportional to 1/ l2.15

�2� For the common anion system, because the difference
of the valence s orbital energy of the cations is relatively
small,15 the magnitude of av

CBM is mostly decided by the
bond length of compounds. And because the bond length
increases as the cation atomic number increases, the magni-
tude of av

CBM decreases as the cation atomic number in-
creases.

�3� For the common-cation system, because the cation s
and anion s orbital energy difference usually decreases as
anion atomic number increases, the s-s coupling tends to
increase with anion atomic number. However, this effect is
partially cancelled by the increase in the bond length when
the anion atomic number increases. So the variation of av

CBM

with respect to the anion atomic number is not large. For
example, av

CBM=−5.96, −6.92, −6.00, and −6.19 eV for AlN,
AlP, AlAs, and AlSb, respectively. The decrease of magni-
tude of av

CBM �AlAs� compared to av
CBM �AlP� is partly due to

the fact that the As 4s atomic orbital energy level is lower
than the P 3s orbital energy.15

�4� The magnitude of av
CBM decreases when the ionicity of

the compound increases, because the s−s level repulsion is
inversely proportional to the energy difference between the
cation s and anion s orbital energies, which increases when

FIG. 1. �Color online� Calculated AVDPs of the VBM �av
VBM�

and the CBM �av
CBM� states for group IV, III-V, and II-V semicon-

ductors. For clarity, different scales are used for these systems.

FIG. 2. Calculated charge density of VBM state for �a� Si, �b�
GaAs, and �c� ZnSe. It shows that for ZnSe, the VBM has strong
antibonding p-d character.
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the ionicity increases. For example, in III-V compounds,
−av

CBM for nitrides is much smaller than for other III-V com-
pounds, which is due to the large electronegativity of N �i.e.,
much lower N 2s orbital energy�. This is especially true for
InN, which also has relatively large bond lengths compared
to AlN and GaN. Similarly, for II-VI compounds with large
ionicity, e.g., ZnO, av

CBM is very small �Table I�.
For most common-cation semiconductors, the direct

band gap at � increases as the anion atomic number
decreases. For example, the direct band gaps of the ZB
compounds GaSb, GaAs, GaP, and GaN increase from
0.81 to 1.52 to 2.86 to 3.30 eV. However, the order is
reversed between InN �Eg=0.7 eV� �Ref. 29� and InP �Eg

=1.4 eV�, and between ZnO �Eg=3.2 eV� and ZnS �Eg

=3.8 eV� �Ref. 22� in the ZB structure. To understand this
anomaly, it has been shown29 that the increase of the band
gap as the anion atomic number decreases is due to the vol-
ume deformation potential. As the anion atomic number de-
creases, the size of the anion also decreases. Because av

CBM

−av
VBM is always negative, the band gap increases. However,

if the magnitude of av
CBM is too small, such as for the ionic

InN and ZnO compounds, the volume deformation potential
will not be sufficient to overcome the potential effect, which
gives the opposite trend in the band gap.29 This explains
why InN has a smaller band gap than that of InP, and MO

in the ZB structure has a smaller band gap than that of MS
�M =Zn, Cd, and Hg�.30

IV. SUMMARY

In summary, we have calculated the VBM and CBM ab-
solute volume deformation potentials for all group IV, III-V,
and II-VI semiconductors in ZB structure using a recently
developed approach. General chemical trends of the AVDPs
are revealed and explained in terms of the energy levels of
the atomic orbitals and coupling between these orbitals. We
find that the volume deformation potentials av

VBM are small
but always positive, whereas av

CBM are all negative and
mostly large. av

VBM decreases when the coupling between the
occupied cation d orbital and the anion p orbital increases,
whereas av

CBM decreases when the ionicity of the compound
increases. Our results also explain the band gap anomaly
observed in some of the ionic compounds.
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