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Diamond is studied by path-integral molecular dynamics simulations of the atomic nuclei in combination
with a tight-binding Hamiltonian to describe its electronic structure and total energy. This approach allows us
to quantify the influence of quantum zero-point vibrations and finite temperatures on both the electronic and
vibrational properties of diamond. The electron-phonon coupling mediated by the zero-point vibration reduces
the direct electronic gap of diamond by 10%. The calculated decrease of the direct gap with temperature shows
good agreement with the experimental data available up to 700 K. Anharmonic vibrational frequencies of the
crystal have been obtained from a linear-response approach based on the path integral formalism. In particular,
the temperature dependence of the zone-center optical phonon has been derived from the simulations. The
anharmonicity of the interatomic potential produces a red shift of this phonon frequency. At temperatures
above 500 K, this shift is overestimated in comparison to available experimental data. The predicted tempera-
ture shift of the elastic constant ¢, displays reasonable agreement with the available experimental results.
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I. INTRODUCTION

Tetrahedral semiconductors such as silicon, germanium,
or diamond, have served as model materials to study the
electronic and vibrational properties of crystals. In particular,
the effects of the lattice vibrations on the electronic proper-
ties, through the mechanism of electron-phonon coupling,
have been experimentally investigated by measuring the tem-
perature dependence of their optical excitation spectra.! Fur-
thermore, the observation of the dependence of such spectra
with isotopic mass has provided detailed information on the
electronic properties of these solids.> Besides the electron-
phonon interaction, the anharmonicity of lattice vibrations
has been observed by the dependence of the phonon frequen-
cies and linewidths with temperature and isotopic
composition.?

From a theoretical point of view, in spite of the impressive
progress of ab initio methods for the investigation of the
electronic structure of solids, the atomic nuclei are usually
considered either as fixed in their crystallographic positions
or by approximating their dynamics with classical
mechanics.? Thus, the effects of the electron-phonon interac-
tions on electronic properties and the effect of zero-point
anharmonicity in the vibrational properties of the lattice are
usually neglected in these calculations. As it has been
pointed out in Ref. 1, these effects may be even larger that
the error assumed in the electronic ab initio calculations.

The electron-phonon interaction in tetrahedral semicon-
ductors has been studied theoretically by the perturbation
theory.*> Within this approach, the reduction of the direct
electronic gap due to zero-point vibrations of the lattice
phonons is predicted to be of 0.62 eV in diamond and of
0.06 eV in germanium. Both energy shifts represent roughly
a 10% fraction of the corresponding energy gaps, i.e., they
are so large that a quantitative description of the electronic
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structure cannot be expected by a theory that neglects such
effects. Anharmonic shifts of the phonon modes of diamond
and silicon have been determined by combining the density-
functional perturbation theory with a frozen-phonon
approach,® and the results show good agreement with the
experimental data available from first-order Raman
spectra.”8 A review of the current status of lattice-dynamical
calculations using the density-functional perturbation theory
can be found in Ref. 9.

The path-integral (PI) formulation of statistical mechanics
offers an alternative way to study finite temperature proper-
ties that are related to the quantum nature of the atomic
nuclei.!®!! Thus, the combination of the path-integral formu-
lation with electronic structure methods is an interesting al-
ternative to perturbational approaches for the study of elec-
tronic and vibrational properties of solids. An advantage of
this approach is that both the electrons and the atomic nuclei
are treated quantum mechanically in the framework of the
Born-Oppenheimer (BO) approximation, so that anharmonic
and temperature effects can be evaluated for both vibrational
properties and the electronic structure. This unified scheme
has been applied so far to the study of solids and molecules
containing light atoms.'>"!°

In this paper we present a path integral molecular dynam-
ics study of diamond at temperatures between 100 and
1200 K. The electronic structure has been treated by a non-
orthogonal tight-binding (TB) Hamiltonian as a reasonable
compromise to reduce the computational cost of deriving the
BO surface for the nuclear dynamics. In particular, we are
interested in the investigation of electronic properties that are
determined by the electron-phonon coupling, as the depen-
dence of the electronic gap with temperature and isotopic
mass. Also vibrational properties that depend on the anhar-
monicity of the interatomic potential will be studied with the
help of a linear response approach recently developed within
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the path integral formalism.?° PI simulations of diamond us-
ing effective interaction potentials have been carried out ear-
lier to study structural and thermodynamic properties of this
material.”!

This paper is organized as follows. In Sec. II, we describe
the computational method and the models employed in our
simulations. Our results are presented and discussed in Sec.
III, dealing with the direct electronic gap, the vibrational
energy of the solid, and the temperature dependence of the
frequency of the optical phonon at the center of the Brillouin
zone (BZ) and the elastic constant ¢4, of diamond. In Sec. 1V,
we present the main conclusions of the paper.

II. COMPUTATIONAL METHOD
A. Simulation details

The formalism employed here for the quantum treatment
of electrons and nuclei is based on the combination of the
path-integral formulation, to derive properties of the atomic
nuclei in thermal equilibrium, with an electronic Hamil-
tonian to derive the BO energy surface, Egz,(R), as a func-
tion of the nuclear configuration R. The path-integral and
electronic structure parts of the resulting algorithm appear as
independent blocks, since the only electronic result required
for the path-integral simulation is the value of the function
Epo(R), and possibly its derivatives with respect to ionic
positions. Thus, the combination of path integrals with any
chosen electronic Hamiltonian is straightforward. For the
present investigation of diamond we have chosen an efficient
tight-binding one-electron effective Hamiltonian, based on
density functional (DF) calculations.?? The use of a simpli-
fied electronic Hamiltonian is a reasonable compromise to
explore the efficiency and capability of this unified formal-
ism for the evaluation of electronic and vibrational properties
of solids at finite temperatures. The implementation of den-
sity functional or Hartree-Fock based self-consistent meth-
ods is left for future development. The capability of tight-
binding methods to simulate different properties of solids
and molecules has been reviewed by Goringe et al.”

The computational advantage of using the path-integral
formulation of statistical mechanics is formulated by the so-
called “quantum-classical” isomorphism. Thus, this method
exploits the fact that the partition function of a quantum
system is formally equivalent to that of a classical one, ob-
tained by replacing each quantum particle (here, atomic
nucleus) by a ring polymer consisting of L “beads,” con-
nected by harmonic springs.!®!!?42 In many-body prob-
lems, the configuration space of the classical isomorph is
usually sampled by Monte Carlo or molecular dynamics
(MD) techniques. Here, we have employed the PI MD
method, which has been found to require less computer time
resources in our problem. Effective algorithms to perform PI
MD simulations in the canonical NVT ensemble have been
described in detail by Martyna et al.?® and Tuckerman.?” All
calculations presented here were carried out in the canonical
ensemble, using originally developed MD software, which
enables efficient PI MD simulations on parallel supercom-
puters.
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FIG. 1. Vibrational energy of diamond as a function of the time
step, At, employed in the PI MD algorithm. The results are derived
at 300 K with a Trotter number L=20. The continuous line is a
quadratic fit to the simulation results.

Simulations were carried out on a 2 X2 X2 supercell of
the diamond face-centered-cubic cell with periodic boundary
conditions, containing N=64 C atoms. The atomic mass of
carbon was set to 12. The convergence of the internal energy
has been checked for some selected atomic configurations,
by considering sets of 1, 4, and 32 k points in the BZ of the
simulation supercell. The main effect of the k point sampling
is found to be a constant shift of the internal energy. This
systematic error is largely reduced in the calculation of prop-
erties obtained as energy differences (e.g., energy shifts as a
function of temperature). For this reason, we have chosen to
use only the I" point for the sampling of the BZ of the simu-
lation supercell. A set of 4 k points increases the computer
time by a factor of 10 with respect to the I" point sampling,
without significant changes of the results presented here.

The simulation-cell parameter employed in our calcula-
tions is taken from experimental data, and ranged from
7.1330 A at 100K to 7.1552 A at 1200 K.2® For a given
temperature, a typical run consisted of 10* MD steps for
system equilibration, followed by 5X 10° steps for the cal-
culation of ensemble average properties. To have a nearly
constant precision in the path integral results at different
temperatures, we have taken a number of beads, L (Trotter
number), that scales with the inverse temperature such that
LT=6000 K. For comparison with the results of our PI MD
simulations, we have carried out some classical MD simula-
tions with the same interatomic interaction (setting L=1).
The quantum simulations were performed using a staging
transformation for the bead coordinates. Chains of four
Nosé-Hoover thermostats were coupled to each degree of
freedom to generate the canonical ensemble.”” To integrate
the equations of motion we have used the reversible refer-
ence system propagator algorithm (RESPA), which allows
one to define different time steps for the integration of the
fast and slow degrees of freedom.?® For the evolution of the
fast dynamical variables, that include the thermostats and
harmonic bead interactions, we used a time step St=At/4,
where At is the time step associated to the calculation of
DF-TB forces. The convergence of the total energy as a func-
tion of Ar is shown in Fig. 1. A value of Ar=0.5 fs is found
to provide adequate convergence. We have also explored the
convergence of the simulation as a function of the thermostat
mass, Q,
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FIG. 2. Standard deviation of the total energy of the diamond
supercell as a function of the scale factor f, used in Eq. (1) to define
the thermostat mass, Q. The results correspond to simulation
lengths of 10° MD steps at 300 K and 2 X 10°> MD steps at 1000 K.
The lines are guides to the eye.

h2
0= n

where 8=(kyzT)™! is the inverse temperature, and f is a scal-
ing factor. The standard deviation of the total energy, as de-
rived from a block analysis,* is displayed in Fig. 2 at two
different temperatures. We observe that at 300 K the stan-
dard deviation can be reduced by about 20% by changing the
f factor from a value of 1 to a value of 0.2. Taking into
account that the standard deviation varies with the number of
simulation steps, Mg, as Mgm, then, for a given threshold
accuracy, a simulation run using f=0.2 at 300 K requires
35% less simulation steps than a run using f=1. In the simu-
lations presented below, we have varied the parameter f lin-
early for temperatures between 300 and 1000 K. The f val-
ues changed from f=0.2 (for 7<300 K) to f=1 (for T
= 1000 K).

B. Calculation of anharmonic vibrational frequencies

To calculate vibrational frequencies we will employ a
method based on the linear response (LR) of the system to
vanishingly small forces applied on the atomic nuclei. With
this purpose, we consider a LR function, the static isothermal
susceptibility x’, that is readily derived from PI MD simula-
tions of the equilibrium solid, without having to explicitly
impose any external forces during the simulation. This ap-
proach represents a significant improvement as compared to
the standard harmonic (HA) approximation.?® A sketch of the
method is given in the following.

Let us call {R,}={x;,} the set of 3NL Cartesian coordi-
nates of the beads forming the ring polymers in the simula-
tion cell (i=1,...,3N;p=1,...,L). We consider the set {X,}
of centroid coordinates, with X; defined as the mean value of
coordinate i over the corresponding polymer

L
1
Xi = _E Xip- (2)
Lp=1

Then, the linear response of the quantum system to small
external forces on the atomic nuclei is given by the suscep-
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tibility tensor y’, which can be defined in terms of centroid
coordinates as?’

XiTj = BNmm;p;;, (3)

where 8 = (kzT)~!, m; is the mass of the nucleus associated
to coordinate i, u;=(X;X;)—(X;}X) is the covariance of the
centroid coordinates X; and X, and (--*) indicates an en-
semble average along an MD run.

The tensor x” allows us to derive a LR approximation to
the low-lying excitation energies of the vibrational system,
that is applicable even to highly anharmonic situations. The
LR approximation for the vibrational frequencies reads

Wy IR= ; > 4)
VA,

where A, (n=1,...,3N) are eigenvalues of x’, and the LR
approximation to the low-lying excitation energy of vibra-
tional mode 7 is given by fiw,, ; z. More details on the method
and illustrations of its ability for predicting vibrational fre-
quencies of solids and molecules can be found
elsewhere.?*31-33 In connection with the vibrational modes
that actually appear in our calculations, we note that the ap-
plication of periodic boundary conditions is physically
equivalent to the consideration of lattice vibrations only at
the center (k=0) of the BZ of the employed simulation cell.
Modes with k # 0 violate the periodic boundary conditions,
because all atomic images of an atom have distinct displace-
ments, whose amplitude is modulated by both the propaga-
tion vector k of the vibrational mode and the translational
vector of the image. However, periodic boundary conditions
implies that all atomic images must display a displacement
identical to that one of the atom located in the simulation
cell, a condition that is only met if the propagation vector is
k=0.%

C. Calculation of one-electron energies

For the sake of clarity, we use the Schrodinger formula-
tion to derive the expectation value of electronic observables.
However, the final result is obtained in a form appropriate to
the path integral formulation. Within the adiabatic Born-
Oppenheimer approximation,® the total wave function is
written as

\I,i(r’R) = X,(R)(,D()(I',R) ) (5)

where (r,R) are the electronic and nuclear coordinates, y;
labels the nuclear wave function, and ¢, represents the elec-
tronic ground state configuration, which depends parametri-
cally on R. Let us call ¢; the energy of the state V,. Then, the
canonical partition function, Z, is defined as

Z= 2 ePei, (6)

We consider an electronic observable represented by the op-
erator £(r,R), that is a function of the electronic coordinates
and depends parametrically on R. Its canonical average, (E),
is defined as
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(EY=7"1D) ePei f dR f dr ¥ (r,R)E(r,R)¥,(r,R).

™)

Now, we write this equation in an alternative way, better
adapted to the path integral formulation. First, the function
E(R) is defined as the expectation value of the operator
E(r,R) over the electronic wave function

E(R)=fdl‘ @o(r, R)E(r,R) ¢o(r,R). (8)

The second definition is the funtion p(R,R), representing the
diagonal elements of the normalized canonical density ma-
trix for the nuclear coordinates

P(R.R) =73, e (R). )

Considering the factorization of W,(r,R) in Eq. (5), and us-
ing the last two definitions, we can rewrite the average (E) in
Eq. (7) as

(E) = f dR p(R,R)E(R). (10)

The last equation shows that electronic observables, (E), are
obtained as ensemble averages over the nuclear configura-
tions, R, accessible in thermal equilibrium. This equation can
be readily used in combination with the path integral sam-
pling of the density matrix p(R,R). We will apply it to cal-
culate the canonical average, (E,), of the nth energy eigen-
value of the electronic Hamiltonian. For convenience, let us
define the following probability density for the one-electron
state E,,,

pa(E) = f dR p(R,R)JE,(R) - E], (11)

where & is the Dirac delta function. p,(E) can be easily ac-
cumulated during a PI MD simulation. The expectation
value, (E,), as given by Eq. (10), can now be written as the
first moment of the distribution p,,,

(En>=de PAE)E. (12)

The direct electronic gap of diamond is derived as

Eg=<Ec>_<Ev>’ (13)

where E. and E, are the one-electron states associated with
the bottom of the conduction band and the top of the valence
band at the reciprocal point k=0.

III. RESULTS AND DISCUSSION

In this section we present the main results derived from
our PI MD simulations of diamond as a function of tempera-
ture. Whenever possible we will compare the simulation re-
sults to available experimental data. Results concerning the
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FIG. 3. Probability density functions for the valence band top of
diamond obtained by PI MD simulations at 100 and 1000 K. The
expectation value of the electronic level, (E,), is shown as a vertical
continuous line. The broken line shows the valence band top, E,,
for the nuclear configuration R,;,, with the atoms fixed at their
crystallographic positions and the cell parameter fixed at the equi-
librium value at 100 K.

electronic and vibrational properties are presented in the next
subsections.

A. Electronic properties
1. One-electron states

The top of the valence band, E,, for a diamond crystal
with the atoms fixed in their crystallographic positions, R,
is threefold degenerate. Each of these three one-electron lev-
els leads to identical probability densities, p,, as defined in
Eq. (11). The function p,(E), derived from our PI MD simu-
lations, is represented in Fig. 3 at two temperatures, 100 and
1000 K. The probability density shows three distinct maxima
reflecting that the underlying electronic state is threefold de-
generate. In each case, the continuous vertical line displays
the expectation value of the valence band top, (E,), defined
as the first moment of the distribution p, [see Eq. (12)]. The
temperature effect in (E,) is a shift of 0.03 eV toward higher
energies, when the temperature increases from 100 to
1000 K. This shift is a consequence of the different magni-
tude of the electron-phonon interaction at both temperatures
(longer atomic displacements at higher 7). The dotted line in
the figure represents the energy of the top of the valence
band, E,, for a crystal with atoms fixed at their equilibrium
positions and cell parameter set to the equilibrium value at
T=100 K (a=3.5665 A). The PI MD simulation predicts
that at 100 K the top of the valence band is shifted by
0.11 eV with respect to the result obtained for the R ,;, con-
figuration.

In Fig. 4 we present the results corresponding to the one-
electron state E., i.e., the conduction band bottom at the
reciprocal point k=0. The energy shifts found for E, as a
consequence of the electron-phonon interaction are larger
and of opposite sign as those encountered for the valence
band. At 100 K we observe a downwards shift of (E,) by
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FIG. 4. Probability density function for the conduction band
bottom at the reciprocal point k=0, obtained by PI MD simulations
at 100 and 1000 K. The expectation value for this electronic level,
(E.), is shown by a continuous vertical line. The broken line shows
the position of E, for the static nuclear configuration R ;.

about —0.59 eV with respect to the R,,;, configuration. The
temperature shift in (£.) amounts to —0.37 eV between 100
and 1000 K.

2. Direct electronic gap

The first direct gap, E,=(E.)—(E,), of diamond has been
portrayed in Fig. 5 as a function of temperature. The open
circles have been derived from PI MD simulations where the
thermal expansion of the crystal lattice has been taken into
account by varying the value of the cell parameter a. Open
squares are PI MD results derived at different temperatures
with a cell parameter fixed at the equilibrium value at 100 K.
We note that the effect of the thermal expansion on the elec-
tronic gap is a slight reduction of the gap. The temperature
dependence of the electronic gap predicted by our PI MD

— experiment (diamond ITa)
L o PIMD o
o PLMD (a=3.5665 A)

direct electronic gap (eV)

I 2

1
600 800

N 1 2 1
6. 80 200 400

temperature (K)

FIG. 5. Temperature dependence of the direct electronic gap of
diamond obtained by our PI MD simulations. Open circles were
derived from simulations that take into account the thermal expan-
sion of the lattice. Open squares correspond to simulations where
the cell parameter was fixed to the equilibrium value at 100 K. The
continuous line is the fit to the experimental data given in Ref. 35
for diamond IIa.
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FIG. 6. Relative shifts of the direct electronic gap of diamond.
Open circles are results from classical MD simulations, while open
squares correspond to quantum PI MD simulations. The solid circle
at T=0 and the continuous line are results presented in Ref. 5 based
on perturbation theory. For both PI MD simulations and perturba-
tion theory, shifts are given with respect to the corresponding quan-
tum limit at 7=0. The dotted line is a guide to the eye.

simulations is in reasonable agreement with the experimental
results reported in Ref. 35 for diamond Ila up to 700 K,
based on measurements of the complex dielectric function by
spectroscopic ellipsometry. The slope of the simulation re-
sults at temperatures above 500 K is larger than that of the
experimental data. A possible reason for this behavior is an
overestimation of anharmonic effects by the DF-TB potential
model. Although we expected a reasonable agreement be-
tween experimental and theoretical results at low 7, the co-
incidence shown in Fig. 5 for the absolute value of the first
direct gap is fortuitous. In fact, the displayed experimental
values, derived from first-derivative line shape analysis of
the complex dielectric function, are shifted by about 0.07 eV
toward higher energies, in case that they are obtained by
second-derivative line-shape analysis.®

To quantify the influence of nuclear quantum effects on
the value of the direct electronic gap of diamond we have
performed a series of classical MD simulations as a function
of temperature. The shifts of the energy gap obtained in the
classical simulations are compared to the PI MD results in
Fig. 6. The most prominent quantum effect appears in the
low temperature limit as a consequence of the zero-point
vibration. The renormalization of E, amounts to 0.7 eV at
T=0. This value agrees well with the perturbational treat-
ment of the electron-phonon coupling in Ref. 5, whose result
is represented by a closed circle in Fig. 6. We stress that the
zero-point renormalization of £, amounts to about 10% of its
value. The PI MD results show satisfactory agreement with
the perturbation theory data available up to 700 K.> The
main discrepancy found between both sets of results is that
the slope at temperatures above 500 K is larger for PI MD
than for the perturbation theory. The overestimation of an-
harmonic effects by the DF-TB model is a probable expla-
nation for this behavior. Differences between the quantum
and classical results for E, are significant in the whole stud-
ied temperature range. In particular, at room temperature the
classical result deviates from the PI MD data by about
0.45 eV.
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FIG. 7. The vibrational energy of the simulation cell of diamond
as a function of temperature is shown by open circles. The zero of
energy corresponds to the crystal with fixed atoms and cell param-
eter a=3.5665 A. The harmonic vibrational energy derived from
the set of harmonic and linear response frequencies is displayed as
open diamonds and squares, respectively. The lines are guides to the
eye.

We have calculated the shift of the direct electronic gap of
diamond as a function of the isotopic mass at 300 K. The
calculated energy gap for '>C amounts to 7.054 eV. For 1°C,
this gap increases to 7.081 eV at the same temperature. The
isotopic effect of 27 meV at 300 K is in reasonable agree-
ment to the value reported in Ref. 5 of 22 meV, based on
perturbation theory in the zero temperature limit.

B. Vibrational properties
1. Vibrational energy

The vibrational energy of the simulation cell of diamond,
as derived by the PI MD simulations, is presented as a func-
tion of temperature in Fig. 7 (solid circles). The zero of the
energy scale corresponds to a diamond crystal with fixed
atoms and with the cell parameter fixed at the equilibrium
value at 100 K. The thermal occupation of excited vibra-
tional states is evident in Fig. 7 by the increase of the vibra-
tional energy with temperature. To quantify the anharmonic
effect on the vibrational energy of the crystal, we have plot-
ted in Fig. 7 the harmonic vibrational energy (solid dia-
monds). The set of harmonic frequencies has been derived by
diagonalizing the dynamic matrix in a simulation cell with
the experimental equilibrium lattice parameter at each tem-
perature. At the lowest studied temperature the harmonic re-
sult deviates from the PI MD value by about 0.1 eV, which
amounts to about 0.8% of the total vibrational energy. This
error of the harmonic approximation is a consequence of the
anharmonicity of the phonon vibrations.

The set of anharmonic vibrational frequencies, w, ;z, de-
rived by our linear response approach, are expected to rep-
resent an improved description of the vibrational problem.
Thus, we have recalculated the harmonic vibrational energy
by considering w, ;r as a set of renormalized phonon fre-
quencies. The result is shown as open squares in Fig. 7. Most
of the error of the harmonic approximation is corrected by
the LR frequencies. At low temperatures the absolute error of
the improved estimation of the vibrational energy amounts to

PHYSICAL REVIEW B 73, 245202 (2006)

L -
o O o O

)
=)

W
=)

LI B S B S B B B B S B
' S /S B T I

. -l
wavenumber shift (cm )

A
=

LR~

“a

M I P ST R R
0 200 400 600 800 1000 1200
temperature (K)

-50

FIG. 8. Temperature shift of the optical phonon at I (k=0) of
diamond. The results of the LR and harmonic approximations are
compared with a fit to the experimental data of Ref. 7. The extrapo-
lated LR value at 7=0 has been employed as zero of the vertical
axis for both the LR and HA results. The zero of the experimental
data corresponds to the extrapolated experimental wavenumber at
T=0.

0.03 eV, i.e., about 0.2% of the PI MD result. Our conclu-
sion from this comparison is that the set of LR frequencies
provides a consistent description of anharmonic effects in the
employed DF-TB model, in line with previous results of vi-
brational properties on molecular and solid state
systems.?%3233 In the following, we focus on the study of
two particular LR phonons that can be compared to available
experimental data.

2. Optical phonon at k=0

The highest energy phonon of the diamond crystal is the
optical phonon at the center of the BZ (k=0). At 200 K, the
LR wave number of this phonon amounts to 1396+5 cm™".
The harmonic result, obtained for the equilibrium cell param-
eter at this temperature, is 1407 cm™'. The difference be-
tween the LR and harmonic result is a consequence of the
anharmonicity of the interatomic potential that induces a
slight softening in the phonon frequency. The optical phonon
wavenumber of diamond in the zero temperature limit is
found in the first-order Raman spectrum at 1335 cm™'.7 The
DF-TB potential overestimates the experimental wave num-
ber by about 61 cm™!. This error is lower than that found in
other tight-binding parametrizations.3¢3’

The relative shift of the optical phonon in diamond is
presented as a function of temperature in Fig. 8. The com-
parison between the harmonic and LR results shows that
anharmonic effects lead to a softening of the phonon mode in
the studied temperature range up to 1200 K. The LR results
deviate from the experimental data at temperatures above
500 K. This deviation shows that the anharmonicity of the
optical phonon is overestimated by the DF-TB Hamiltonian
at those temperatures. We have previously commented on the
enhanced anharmonicity of the DF-TB model in relation to
the decrease of the direct electronic gap at temperatures
above 500 K.

3. Elastic constant c 4y

The lowest energy phonon, w;, determined by either the
LR or HA approximations is 12-fold degenerated in the em-
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FIG. 9. Temperature shift of the elastic constant c,4 of diamond.
The results of the LR and harmonic approximations are compared
to a fit to the experimental data of Ref. 38. The extrapolated LR
value at 7=0 has been employed as zero of the vertical axis for both
the LR and HA results. The zero of the experimental data corre-
sponds to the extrapolated experimental constant at 7=0.

ployed simulation cell. The wave vector, k;, of this phonon
state has been identified as the midpoint between I" and X
points along the A[100] direction in reciprocal space, with
coordinates (77/a,0,0). This means that the phonon w; cor-
responds to the TA branch. The identification of the wave
vector of w; has been possible by solving the dynamical
matrix at some selected k points of the BZ of the primitive
unit cell of diamond. The phonon velocity, vy, along the TA
branch, wgy(kry), is defined as the slope of the dispersion
branch at the origin

1% lim %zcﬂ (14)
kpa—0 Kp ky

In this equation, ky=/a is the modulus of the wave vector
k, associated to the phonon w;. The constant c=1.037 cor-
rects, for the case of the HA approximation, the finite differ-
ence error encountered by using the finite vector k; to cal-
culate the slope at the origin. The elastic constant ¢4 can be
derived from vy by the relation

C44=PU%A’ (15)

where p is the density of the diamond crystal.

Using the harmonic value of w; g4 at 200 K we obtain
with Egs. (14) and (15) a value for ¢y of 551 GPa. The
estimation of the elastic constant using the LR wave number,
w; g, in Eq. (14) is of 545 GPa. The experimental result
derived from Brillouin scattering amounts to 576 GPa.*® The
shift of the elastic constant c,4 with temperature is plotted in
Fig. 9. The comparison of the LR and harmonic results
shows that anharmonic effects cause a reduction of the value
of the elastic constant c44 in the whole studied temperature
range. The comparison to the experimental data shows that
the DF-TB model gives a reasonable prediction of the tem-
perature shift of the ¢4y elastic constant, even though there
appears a systematic underestimation of this shift.
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IV. CONCLUSIONS

The simulations presented here for diamond are based on
the treatment of electrons and nuclei as quantum particles in
the framework of the Born-Oppenheimer approximation. The
use of the path integral formulation for the atomic nuclei
allows us to obtain the vibrational and electronic properties
of the solid at finite temperatures. We have chosen a simpli-
fied electronic Hamiltonian to develop the algorithms re-
quired for the simulation of solid state systems, but this limi-
tation should be eliminated in the future by the
implementation of improved electronic structure methods.

The temperature and isotopic dependence of the first di-
rect gap of diamond predicted by our PI MD simulation
shows good agreement with the available experimental re-
sults, based on spectroscopic ellipsometry,® and theoretical
results, based on perturbation theory.> Thus, the employed
simulation model has demonstrated its capability to realisti-
cally describe electronic properties that are determined by
electron-phonon interactions. The effect of the zero point vi-
brations of the lattice phonons of diamond in its first direct
gap is a reduction of the gap by about 0.7 eV. This effect is
so large that any theoretical approach aiming at a quantita-
tive determination of the electronic gap of diamond can not
be based only on an improved solution of the many-body
electronic problem, but it should also include the treatment
of the electron-phonon coupling.

Anharmonic effects in the lattice vibrations have been de-
rived by a linear response approach based on the path inte-
gral formulation. This approach allows us to derive anhar-
monic vibrational frequencies from the study of spatial
correlations in the displacements of the vibrating nuclei in
the simulation cell. Anharmonic effects are responsible for a
reduction of the vibrational energy of the solid of about 1%,
with respect to the result predicted by a harmonic approxi-
mation. The temperature shift of the optical phonon at k=0
is larger that the experimental result determined by Raman
spectroscopy.” We consider that this limitation is a conse-
quence of the parametrization of the employed DF-TB one-
electron Hamiltonian,?? that overestimates the anharmonicity
of the highest frequency phonon of the lattice. Better agree-
ment is found in the comparison of the elastic constant cyy
derived from the simulations with the experimental values
obtained by Brillouin scattering.3

We plan to extend our simulations to more complex sys-
tems like hydrogen impurities in diamond,* where the pres-
ence of light impurities should strengthen further the influ-
ence of quantum nuclear effects in the electronic and
vibrational properties of the lattice.
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