
From Mott insulator to band insulator: A dynamical mean-field theory study

Andreas Fuhrmann, David Heilmann, and Hartmut Monien
Physikalisches Institut, Universität Bonn, Nußallee 12, 53115 Bonn, Germany

�Received 17 October 2005; revised manuscript received 7 April 2006; published 28 June 2006�

The question if a Mott insulator and a band insulator are fundamentally different has been the matter of
intensive research recently. Here we consider a simple model which allows by tuning one parameter to go
continuously from a Mott insulator to band insulator. The model consists of two Hubbard systems connected by
single particle hopping. The Hubbard Hamiltonian is solved by the dynamical mean-field theory using Quan-
tum Monte Carlo to solve the resulting quantum impurity problem. The quasiparticle spectral function is
calculated. Here we focus on the optical conductivity and in particular on the Drude weight which can be
experimentally measured. From our calculation we conclude that there is a continuous crossover from the band
insulator to the Mott insulator phase at finite temperature.
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I. INTRODUCTION

Recently the question whether a Mott insulator and a band
insulator are fundamentally different has been raised.1–8 To
study this question, we consider the simplest model which
allows one, by tuning one parameter, to obtain a Mott insu-
lator as well as a band insulator phase. The model consists of
two Hubbard systems with strong on-site Coulomb repulsion
which are connected by single particle hopping. This model
can be viewed as a model for two planes of strongly corre-
lated electrons on a square lattice with on-site interaction and
hopping connecting corresponding sites of the two planes. At
half filling with no interaction the metal-to-band insulator
transition is driven by increasing the hopping between the
two subsystems, i.e., the splitting of the bonding and anti-
bonding bands produces a gap. In the case of no hopping
between the planes, a Mott transition is driven by increasing
the on-site Coulomb repulsion, which localizes the electrons
by suppressing the hopping between different sites. The
overall scale of the problem is set by the hopping matrix
element t within the plane �which we set to unity� and the
parameter differentiating between the Mott and band insula-
tor is the ratio of the hopping matrix element between the
planes, t�, and the on-site Coulomb repulsion U. The ap-
proximation used in this work consists of letting the coordi-
nation number of the sites in each plane �4� to go to infinity.
This model has been studied with dynamical mean-field
theory �DMFT� approximation using iterated perturbation
theory �IPT� at zero temperature.9,10 We study this model at
finite temperature using Quantum Monte Carlo �QMC�11,12

as impurity solver. Also, first successful attempts to apply a
more demanding continuous-time QMC algorithm to a sim-
plified two-impurity problem already exist.13 Here, the focus
is on the nature of the transition from the Mott insulator to
the band insulator phase. We calculate the optical conductiv-
ity for direct comparison with experimental data. For other
theoretical studies of low-dimensional coupled strongly cor-
related systems see, e.g., Essler and Tsvelik,1 Potthoff and
Nolting,14,15 Biermann et al.,16,17 Koga et al.18

The rest of this paper is organized as follows: First, we
introduce the Hamiltonian and present the solution method
using DMFT and the Quantum Monte Carlo algorithm. We

use these methods to determine the metal-to-insulator transi-
tion and calculate the phase diagram of the model at finite
temperature. Then we consider and analyze the numerical
results, in particular the analytic continuation of the
imaginary-time QMC data. We present detailed results for
the single-particle spectral function and the optical conduc-
tivity close to the transition and analyze the behavior of these
properties close to the transition. Finally, we state our con-
clusions.

II. FORMALISM

A. The model and solution method

The two-plane Hubbard model with interplane hopping t�

is described by the Hamiltonian

H = −
1
�z

�
�i,j���

ci��
+ cj�� − t��

i��

ci��
+ ci�,1−� + U�

i�

ni↑�ni↓�

�1�

with ci�� denoting the annihilation operator for an electron/
hole with spin component � on site i of the plane �=0,1,
and ni��=ci��

+ ci��. This means electrons can move inside the
planes as well as between corresponding sites on the two
planes. z denotes the coordination number of the lattice �z
=4 for two dimensions�, ensuring a constant bandwidth as
the coordination number is taken toward infinity.

Using dynamical mean-field theory,19–21 the two-plane
system is reduced to two impurities self-consistently embed-
ded in a bath: In order to calculate on-site �local� properties
of the sites �i ,��= �i ,0� , �i ,1� �site i of each of the planes�,
the self-energy ������ ,k� is replaced by the local self-
energy ������ ,0�, leading to a two-impurity �i=0, �=0,1�
problem given by the “effective” action

S��c0��
+ ,c0������ =	 d�d�� �

����

c0��
+ ���G�����,���−1c0�������

+ U	 d��
�

n0�↑���n0�↓��� . �2a�

The Weiss field G describes the dynamics of the site i=0
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without the interaction plus the rest of the lattice. G is a 2
�2 matrix; since the system is symmetric under exchange of
the planes, we use G00=G11¬G0, G01=G10¬G1; the proper-
ties of the system can be described by the symmetric/
antisymmetric �bonding/antibonding� combinations of the
two planes. This impurity problem is defined by the self-
consistency equation

GS/A�i�n�−1 = �S/A�i�n� + D̃�i�n + 	 
 t� − �S/A�i�n��−1,

�2b�

where D̃���=
d�D�����−��−1, D being the density of states
�DOS� for a free �U=0� single-plane system, GS/A=G0±G1,
�S/A=�0±�1, and � is the self-energy for the impurity prob-
lem, which can be calculated from the effective impurity
action via the impurity Green’s function �the mean-field ap-
proximation for the on-site lattice Green’s function�. The
self-consistency equation can be derived exactly following
the lines given in the work by Georges et al.21

Moreover, D is the only place where the detailed lattice
structure enters the calculations, so the results are essentially
independent of those details.

The DMFT equations are usually solved using an iteration
algorithm consisting of two parts: By solving an impurity-
like problem �2a�, the on-site Green’s function is determined,
then, using the DMFT self-consistency equation �2b�, a new
impurity problem is defined. This is repeated until conver-
gence has apparently been reached.

We solve the two impurity problem using the Quantum
Monte Carlo algorithm developed by Hirsch and Fye.12 In
order to use the Monte Carlo algorithm with the DMFT ef-
fective action which is nonlocal with respect to imaginary
time �, the action S has to be rewritten21 using a lattice
Hamiltonian consisting of auxiliary “bath” orbitals, replacing
the bath Green’s function G.

For initialization, we use a guess for the Weiss fields,
G0

guess�i�n� �diagonal, i.e., connecting one site to itself� and
G1

guess�i�n� �off-diagonal, i.e., connecting one site to the cor-
responding site on the other plane�, determining the Green’s
function of the lattice. Using the QMC algorithm, the local
imaginary-time Green’s functions G0��� and G1��� are calcu-
lated, G0 being the on-site Green’s function, whereas G1 is
again connecting two corresponding sites on different planes.
Use of the Dyson equation then yields the self-energies
�0�i�n� and �1�i�n�.

Now, in order to use the self-consistency equation, we
switch to the symmetric/antisymmetric �S/A� combinations
of the two planes, so the self-energy, the Green’s function,
and the Weiss field become diagonal 2�2 matrices. Since
the kinetic energy is then diagonal as well, the free Green’s
functions are the Hilbert transforms of the density of states
for the symmetric/antisymmetric combinations of the real-
space planes without interaction:

GS/A
0 �i�n� = D̃�i�n + 	 
 t�� . �3�

Therefore the self-energy can be easily calculated using

�S/A�i�n� = D̃�i�n + 	 
 t��−1 − GS/A�i�n�−1, �4�

where GS/A=G0±G1. Now we can calculate the new Weiss
fields for the next iteration using the self-consistency equa-
tion �2b�.

B. Optical conductivity

Using the electron spectral densities AS/A���, we calculate
the electron self-energy at real frequencies, �S/A���. The
spectral function for a nonvanishing momentum is then
given to be A�

S/A���=−Im GS/A��+ i0,�� /
=−Im�1/ ��
+ i0
 t�−�−�S/A����� /
, where � is the free-particle ki-
netic energy.

The optical conductivity is, up to a constant, defined by

���� =
i�0

� + i · 0
Gjj�� + i · 0� , �5�

where Gjj denotes the current-current correlation function.
As a function of the bosonic Matsubara frequencies �m, in
DMFT for a hypercubic lattice, it is21

Gjj�i�m� = �
�=S,A

	
−�

�

d�D���

�
1

�
�

n=−�

�

G��i�n,��G��i�n + i�m,�� . �6�

After continuation to real frequencies �, the real �nondissi-
pative� part of the optical conductivity is, up to the constant22

�0,

Re ���� = �0	 d�D��� �
�=S,A

	 d��

�A�
�����A�

��� + ���
f���� − f�� + ���

�
, �7�

f denoting the Fermi function, f���=1/ �exp����+1�, where
� denotes the inverse temperature. Finally, the weight of the
Drude peak was determined by fitting a Lorentz curve to the
central peak �the first five data points, corresponding to
��2/��.

The reason for the summation over symmetric and anti-
symmetric planes in Eqs. �6� and �7� is the following: since
the optical conductivity is defined as a long-wavelength
limit, the momentum transferred by the optical conductivity
has to vanish, viz. the in-plane component as well as the
component perpendicular to the planes. The perpendicular
component can assume just two values, 0 and 
/�plane dis-
tance�, corresponding to symmetric and antisymmetric orbit-
als, respectively. Therefore, the optical conductivity at van-
ishing �also perpendicular� momentum is given by the
product of Green’s functions both symmetric or both anti-
symmetric.

In the limit of high dimension, interband transitions do
not contribute to the optical conductivity, as they may only
arise from interaction vertices. However, in that limit, the
interaction only contributes to the optical conductivity via
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self-energy insertions in the single-particle Green’s
function,21 quite regardless of the detailed band-index struc-
ture of the interaction vertex.

The replacement of the Gaussian free DOS of the hyper-
cubic lattice by a semicircular one �which is the exact DOS
for an infinite-coordination Bethe lattice� is an ad-hoc ap-
proximation, which may be justified by the low weight of the
Gaussian tails and their unphysicality. However, Eq. �6� was
derived for a hypercubic lattice with Gaussian DOS, so, al-
though we assume our results to be realistic, they still are
based on a substantial approximation. For a detailed discus-
sion of possible transport properties on a Bethe lattice, please
refer to Blümer and van Dongen.23,24

III. NUMERICAL RESULTS

A. Single particle density of states

We consider the half-filled model �n=1� at a temperature
T=0.025=1/�, using L=100 time slices of ��=� /L=0.4.
As the density of states of the free �U=0� uncoupled �t�

=0� lattice, we use a semicircular D���=�4−�2 / �2
�, which
becomes exact for electrons on a Bethe lattice.21 This is more
convenient than a Gaussian DOS for a hypercubic lattice,
because the extended unphysical tails of the Gauss distribu-
tion render it impossible to clearly define the metal-to-band
insulator transition.

From the imaginary-time Green’s functions produced by
the QMC algorithm, the corresponding spectral densities for
the symmetric/antisymmetric planes are extracted using the
maximum-entropy method.25,26 We use a default model con-
sisting of normalized semi-ellipses of half-width U /2+2
centered at 
t� for the symmetric and antisymmetric plane,
respectively, plus a small flat “background” in order to keep
the possibility to extract features outside this area. Alterna-
tively, a flat and a Gaussian default model were used; how-
ever, those produce unphysically large high-frequency tails
in the spectral density and, as well, artificial humps at �=0
even in the noninteracting case. Figure 1 shows the density
of states of the uncoupled system �t�=0� at U=1, 2, 3, 4.5,
4.75, and 6. The DOS at U=4.5 has a three-peak shape char-
acteristic for the metallic state close to the Mott transition.
The optical conductivity and the Drude weight yield a tran-
sition value U�4.7 �Fig. 4�. As the iteration was initialized
using an “insulating” Green’s function, the transition marks
the lower-U end of the coexistence region. The spectral den-
sity at U=4.75 represents the insulating state just after the
vanishing of the quasiparticle peak. The DOS at U=6 dis-
plays the lower and upper Hubbard bands at −U /2 and
+U /2, respectively.

At U=0, the metal-to-band insulator transition was found
at t�=2.0 �see also the phase diagram, Fig. 7�. This is the
point where the overlap of the spectral densities for the sym-
metric and the antisymmetric planes vanishes. The spectral
densities for the metallic and the band insulating phases are
given in Fig. 2. As can be seen, the spectral densities for the
symmetric/antisymmetric plane are shifted from their t�=0
position by exactly 
t�. The symmetric DOS at t�=2 cor-
responds to the state right at the band transition. The error

bars are of the order of magnitude of the linewidth.
For finite U, on increasing t�, for the symmetric plane,

the weight of the upper Hubbard band is reduced, whereas
the lower one increases, until, at t��2, the upper Hubbard
band has completely vanished. For the antisymmetric plane,
the upper band is increased at the expense of the lower one.
For intermediate values, this effect can be clearly seen from
Fig. 3.

Our results are compatible with earlier results for the
single-plane model found by different methods like QMC or
IPT21 or NRG27 �the upper boundary of the coexistence re-
gion is slightly higher in our case, due to very large time
slices�. As discussed in the following, our results are also
compatible to the quantities calculated for a two-plane model
by Moeller et al.,10 although those are zero-temperature data.

FIG. 1. �Color online� Mott transition. Spectral densities of the
uncoupled �t�=0� two-plane Hubbard model. The DOS correspond
to the metallic state �U=1,2 ,3 ,4.5�, and to the insulating state
�U=4.75,6�. The DOS at U=4.75 corresponds to the insulating
state slightly above the Mott transition. The iteration was initialized
using an insulating Green’s function.

FIG. 2. �Color online� Band transition. Reconstructed spectral
densities of the symmetric plane of the free two-plane Hubbard
model at U=0, t�=0,1 ,2 ,3. The antisymmetric DOS is AA���
=AS�−��. AS and AA do not overlap in the band insulating state, the
band transition occurs at t�=2.
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B. Optical conductivity

At first, we consider the optical conductivity of the un-
coupled system �t�=0�. Using the spectral densities obtained
by maximum-entropy, we found the optical conductivity for
different values of U �Fig. 4� using Eq. �7�. Our results are
compatible with the single-plane data in Pruschke et al.22

The quasiparticle contribution to conduction is given by
the weight of the Drude peak located at �=0, thus, an insu-
lating system has vanishing Drude weight. With increasing
interaction parameter U, the Drude peak decreases for all
values of t�. As well, the growth of the incoherent peak at
��U is clearly visible. In the inset, the Drude weight is
shown as a function of U. Clearly, the system becomes a

Mott insulator at U�4.7, if the iteration is initialized with an
“insulating” Green’s function. Figure 5 depicts the optical
conductivity for different t� at U=2, again consisting of the
Drude peak of different weights and an “incoherent” part
which consists of two peaks, one of them located at ��U,
the other one, present only in the metallic phase, located at
��U /2. However, the latter one is usually smeared too
strongly to be seen clearly,22 only for low values of t�, some
traces of this peak might be recognized. With increasing t�,
the Drude peak vanishes at t��1.8 for U=2, indicating the
transition to a predominantly band insulating state. The tran-
sition value was found by linear extrapolation of the squared
Drude weight �see the inset of Fig. 5�.

C. Phase diagram

In Fig. 6, the Drude weights for the different values of
�t� ,U� are shown. In order to find the metal-to-insulator
transitions we used a linear interpolation of the quadratic
value of the Drude weight, obtaining the phase diagram
given in Fig. 7. The different regions of the phase diagram
could be clearly located: as expected, there is a metallic state
for low U and low t�, which is bounded by a metal-to-band
insulator transition at t�=2. For high U, the system is in a

FIG. 3. �Color online� Reconstructed symmetric �solid line� and
antisymmetric �broken line� spectral densities of the two-plane
Hubbard model at U=4 and t�=0.4, 1.4 using L=100 time slices.
The changes of the Hubbard bands due to t� can be clearly seen.
Due to particle-hole symmetry of the two-plane system at half fill-
ing, the overall spectral density is symmetric.

FIG. 4. �Color online� The evolution of the optical conductivity
as a function � at different U, t�=0. Inset: formation of the Drude
weight with increasing U. As can be seen, the Drude weight van-
ishes at U�4.7. Because the iteration was initialized using an “in-
sulating” Green’s function, this is the lower end of the coexistence
region.

FIG. 5. �Color online� The evolution of the optical conductivity
as a function � at different t�, U=2. Inset: formation of the Drude
weight with increasing t�. As can be seen, the Drude weight van-
ishes at t��1.8, where a metal-to-insulator transition takes place.

FIG. 6. Drude weight D at temperature T=0.025, the iteration
was initialized with an “insulating” Green’s function. The region
D�0 can thus be identified as the low-U, low-t� region, as also
depicted in Fig. 7.

FUHRMANN, HEILMANN, AND MONIEN PHYSICAL REVIEW B 73, 245118 �2006�

245118-4



Mott insulating state; the metallic and insulating solutions
are both locally stable within a coexistence region. As dis-
cussed in the following, no clear separation between the
Mott and the band insulating states was found.

In order to get some impression of the transition between
the band insulating and the Mott insulating phase, we calcu-
lated the weight of the lower Hubbard band �LHB� of the
symmetric plane which is defined as 
−�

0 d�AS���, at the
points given by the dotted line in Fig. 7. Some of the spectral
density functions can be seen in Fig. 8. The evolution of the
LHB weight along the dotted line is shown in the inset in
Fig. 7. For half filling, the weight of the LHB for a purely
band insulating phase is unity, for a purely Mott insulating
phase, it is close to 0.5. As can be seen the weight of the
LHB does not show either some distinct kink or vanish from

a well-defined point. Thus, this quantity does not yield any
evidence for a phase transition between the Mott-Hubbard
and the band insulating phase.

We find a phase diagram which is clearly compatible to
the zero-temperature phase diagram in Moeller et al.,10 keep-
ing in mind that UMoeller=U /2 and tabMoeller= t� /2. However,
some differences ought to be noticed: the coexistence region
is found at a lower U value due to the finite temperature �see,
for comparison, the phase diagram in Georges et al.,21 where
the same scale of U is used as by Moeller et al.10�; the
coexistence region has become smaller as well. A coexist-
ence region thus clearly exists at a temperature of T=0.025;
in contrast, at T=0.05, no coexistence region was found any-
more. This behavior suggests that the critical temperature of
the Mott transition decreases as t� is increasing, see the
sketch in Fig. 9.

The other clear difference is the slope of the transition
line at low interaction U, close to the band transition. We
find, for low U, the transition line to be at almost constant t�,
whereas Moeller et al. find a clear dependence on t�. We
assume this is due to the temperature: as a finite temperature
always smoothens a metal-to-band insulator transition, a
small interaction driving the system to an insulating state can
be compensated by thermal fluctuations.

The re-entrance behavior seen in the IPT10 cannot be re-
solved accurately in our calculation. The general shape of the
phase boundary however suggests that a re-entrance behavior
does not exist at the temperature considered. To resolve this
issue definitely, lower temperatures have to be considered
which are inaccessible to the Hirsch-Fye algorithm for the
large-U case.

The comparatively21 high upper bound of the coexistence
region may be due to the non-negligible Trotter error in this
region. The insulating solution will be much less sensitive to
an increase in the �U���2 term neglected by the Trotter de-
composition of the path integral than the metallic solution,
which is why the upper bound shifts due to the truncation
error, but not so much the lower bound, which is also at a
lower U value, so the second-order U term neglected by the
time discretization is smaller.

FIG. 7. Finite-temperature �T=0.025� phase diagram. The lines
are just a guide to the eye. Inset: the evolution of the weight of the
lower Hubbard band of the symmetric plane on the dotted line. By
comparing to Fig. 6, the metallic region is recognized as the region
with nonvanishing Drude weight.

FIG. 8. �Color online� Selection of reconstructed symmetric
spectral densities on the dotted line in Fig. 7, at temperature T
=0.025. A purely Mott insulating state is characterized by a spectral
density of the symmetric or antisymmetric plane, respectively, di-
vided by half into a lower and an upper Hubbard band, whereas a
purely band insulating state means the symmetric band is entirely
located below �=0, and the antisymmetric band entirely above.

FIG. 9. Three-dimensional phase diagram of the two-plane Hub-
bard model, composed of the data in Moeller et al. Ref. 10 �T=0�,
Georges et al. Ref. 21 �t�=0�, and this work. The dashed line
indicates the shape of the coexistence region suggested by the data,
which are indicated by the full lines; thin lines indicate the metal-
to-insulator transitions.
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IV. SUMMARY

In summary, we have calculated the spectral densities, the
optical conductivities, and the Drude weights of a two-plane
Hubbard model at low temperature for different values of the
interplane coupling. We have located the different metal-to-
insulator transitions; however, no clear transition between
the Mott insulating phase and the band insulating phase
could be found; as well, the corresponding spectral weights
show a continuous behavior. This observation is consistent
with the assumption that there exists only a crossover be-
tween those two insulating phases, but no clear phase transi-
tion. The phase diagram is slightly different from the one
found in Moeller et al.,10 which comes as no surprise as we
are considering finite temperature shifting transition values
and decreasing the coexistence region.

We have discussed in detail spectral properties like, e.g.,
the optical conductivity, which is of some use to experimen-
talists. Also, the use of a Quantum Monte Carlo method
means a serious technical improvement with respect to ear-

lier studies, as it is a numerically exact method without the
use of uncontrolled approximations.

Even though the use of a Quantum MC algorithm12 means
a technical advantage, the behavior of the system for very
low temperatures could not be considered in this work. We
plan to investigate lower temperatures using a very recently
developed continuous-time Quantum Monte Carlo
algorithm,28,29 yielding the phase diagram at much lower
temperatures and clarifying the evolution toward zero tem-
perature.
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