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We show, by using a correlated Jastrow wave function and a mapping onto a classical model, that the
two-dimensional Mott transition in a simple half-filled one-band model can be unconventional and very similar
to the binding-unbinding Kosterlitz-Thouless transition of vortices and antivortices, here identified by empty
and doubly occupied sites. Within this framework, electrons strongly interact with collective plasmon excita-
tions that induce anomalous critical properties on both sides of the transition. In particular, the insulating phase
is characterized by a singular power-law behavior in the photoemission spectrum, which can be continuously
connected to the fully projected insulating state relevant to strongly correlated low-energy models.
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I. INTRODUCTION

The metal-insulator transition �MIT� driven by electron
interaction, the so-called Mott transition,1 is one of the most
challenging issues in modern solid state physics, especially
because of its possible connections with other phenomena,
like high-temperature superconductivity. The prototypical
model to study the MIT is the one-band Hubbard model,
where the transition shows up if the ratio between the band-
width W and the on-site Coulomb repulsion U is varied.2 In
a pioneering work, Brinkman and Rice3 argued that the MIT
could be continuous; however, their approach led to a Mott
insulator where charge fluctuations are completely frozen.
Recent developments, based on dynamical mean-field theory
calculations,4 are able to give a more realistic description of
the MIT where, at zero temperature, a wide gap in the exci-
tation spectrum opens immediately in the insulator. However,
within this approach, the role of the dimensionality is not
taken into account, whereas its relevance comes out from
recent experiments on Si metal-oxide-semiconductor field-
effect transistors5 and organic materials.6 Moreover, the situ-
ation can be radically different whenever the Hamiltonian
contains a true long-range Coulomb interaction, as pointed
out in the original Mott argument.1

In this work, we focus our attention on a correlated wave
function �WF�, which is expected to closely describe the
MIT in two-dimensional �2D� systems with long-range Cou-
lomb interactions. The important fact is that, in the strong-
coupling regime, we can adiabatically connect our WF with
the fully projected one, usually considered to describe sys-
tems in the limit of infinite Coulomb repulsion, e.g., the so-
called resonating-valence-bond state.7–10 Moreover, the me-
tallic phase has no quasiparticles defined, showing low-
energy properties similar to the one-dimensional Luttinger
liquid.

The paper is organized as follows. In Sec. II we show the
mapping between the quantum wave function and a classical
model at finite temperature and in Sec. III we show our nu-
merical results and draw the conclusions.

II. CLASSICAL MAPPING

Let us discuss how to construct a WF for correlated insu-
lators. In general, starting from the ground state ��0� of a

system with N electrons, with energy E0, it is possible to
construct simple variational states for the lowest-energy ex-
citations. For instance, in analogy with the Feynman con-
struction for liquid helium,11 the plasmon excitation with
momentum q is given by

��q� = nq��0� , �1�

where nq is the Fourier transform of the local electron den-
sity. Its variational energy is

Eq = E0 +
�− k�q2

2Nq
, �2�

where �k� is the ground-state kinetic energy per particle and

Nq =
��0�nqn−q��0�

��0��0�
�3�

is its static charge structure factor. When applied to an insu-
lator, with gapped charge excitations, this implies that, for
small momenta, Nq�q2. This argument has very general
consequences for the form of ��0� that do not depend on the
particular microscopic model. To this purpose, let us denote
an electronic configuration by the positions �x� of the par-
ticles. For all the operators � that depend only on such posi-
tions, e.g., the structure factor itself, the quantum average

��� =
��0����0�
��0��0�

�4�

can be written in terms of the classical distribution
��0�x��2= 	�x ��0�	2 /
x�	�x� ��0�	2 as

��� = 

x

�x���x���0�x��2. �5�

Since ��0�x��2 is a positive quantity, we can define an appro-
priate correspondence between the WF and an effective po-
tential V�x�:

��0�x��2 = e−V�x�. �6�

The size consistency of the WF implies that the potential
V�x� is extensive, namely, of order N for typical configura-
tions. In the limit of strong Coulomb interactions, there are
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small charge fluctuations and, therefore, we can safely as-
sume that only the two-body term is relevant and all multi-
particle interactions are negligible. This leads to the qua-
dratic potential

V�x� = 

q�0

vq
ef fnq�x�n−q�x� , �7�

nq�x� being the Fourier transform of the local density of the
configuration �x�. To obtain the expected behavior

Nq = 

x

nq�x�n−q�x�e−V�x� � q2, �8�

the effective potential must diverge as

vq
ef f =

�

Tef fq2 + �less singular terms� . �9�

Here Tef f can be considered as the effective temperature of
classical charges interacting through a potential � /q2. Within
this choice of vq

ef f, Nq�q2 is generally valid and can be
understood by considering nq as a complex continuous vari-
able, so that the classical average of nqn−q turns into a stan-
dard Gaussian integral, yielding

Nq �
1

vq
ef f =

Tef fq2

�
. �10�

It should be noted that the fully projected wave function with
no charge fluctuations, and therefore Nq=0 for �q��0, is re-
covered when Tef f →0.

III. RESULTS

Let us now consider a general one-band fermionic system
in 2D, in which every site of a square lattice can be either
empty, singly occupied, the electron having spin either up or
down, or doubly occupied. A true Mott insulator that does
not break any lattice symmetry cannot be represented by a
simple WF containing a single determinant, and, at this
stage, it is useful to define a state that is simple enough and
yet is compatible with the predicted form of vq

ef f in the insu-
lating phase. A straightforward way to modify the effective
potential determined by an uncorrelated determinant �D� is
obtained by taking into account an appropriate Jastrow factor
J:

��� = J�D�; �11�

here �D� is an electronic determinant that will be specified in
the following and J is a Jastrow term that depends upon the
electronic density:

J = exp�−
1

2 

q�0

vqnqn−q� , �12�

where vq is the Jastrow potential, whose small-q behavior is
given by

vq =
��

2
2 − �cos qx + cos qy��
�

��

q2 , �13�

� fixing its strength.

At half filling, in one-dimensional electronic systems, we
found12,13 that the singular Jastrow potential vq��� /q2 al-
ways leads to an insulator, for any positive �. In 2D the
situation is different and a much more interesting scenario is
obtained, with a phase transition as a function of the corre-
lation strength �. Indeed, given the behavior of the Jastrow
potential vq��� /q2, the potential V�x� of Eq. �7� turns out
to be the one of the classical Coulomb gas model �CGM�. In
this approach, particles with charge qi, corresponding to
empty �qi=1� and doubly �qi=−1� occupied sites, interact
through a Coulomb potential in a neutral background, repre-
sented by singly occupied sites �qi=0�. In the half-filled case,
there is an equal number of empty and doubly occupied sites,
implying the charge neutrality of the CGM. The fugacity z of
the CGM, which sets the average value of the charges, can
be identified with the on-site Gutzwiller term in the Jastrow
potential, i.e., z=exp�−g�, where g is the Gutzwiller param-
eter.

The classical CGM in 2D is particularly interesting be-
cause it shows a Kosterlitz-Thouless �KT� transition at a fi-
nite temperature Tc

CGM.14 This transition is transparent from
the classical dielectric function:

1

�
= lim

q→0
�1 −

2�

Tef fq2Nq� , �14�

where Tef f is the temperature of the classical model. The
charge structure factor is quadratic at small momenta, i.e.,
Nq��q2, for all temperatures, but the coefficient � changes
discontinuously at Tc

CGM. Above Tc
CGM, the CGM is in the

plasma phase, i.e., a metallic phase with infinite dielectric
function, perfect screening, and exponential correlation func-
tions. On the other hand, below Tc

CGM, the CGM is in the
confined phase, with a finite dielectric constant. In this phase
the charges are bound together, forming dipoles, that, be-
cause of their residual interaction, induce power-law correla-
tions. At the transition, the inverse of the dielectric function
has a finite jump, changing from zero, in the plasma phase,
to a finite value, in the confined phase.

A similar mapping between a quantum state and a classi-
cal model has been emphasized also in the context of the
fractional quantum Hall effect: the Laughlin WF can be re-
lated to a classical system with particles interacting through a
logarithmic potential.15 However, in this case, all the par-
ticles have the same charge, forming a one-component
plasma, and by varying the strength of the potential, there is
a first-order transition between an incompressible fluid and a
Wigner crystal.16 The peculiarity of our approach is that, due
to the mapping onto the two-component CGM, it is possible
to connect continuously the plasma phase to the insulating
one.

In the following, we show that, in analogy with the clas-
sical CGM, also in the case of fermionic systems at zero
temperature, a KT-like transition is found by varying the cor-
relation strength that can be tuned by the Jastrow strength �.
However, the existence of the fermionic part induces non-
trivial properties for the two phases involved that are not
present in the classical problem. For example the uncorre-
lated part of the WF may contribute to the expression of the
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effective temperature Tef f, as shown below. Whenever the
square of the WF describes the plasma phase of the corre-
sponding classical model, we can safely assume that the
Gaussian fluctuations are exact for small q’s and the classical
temperature can be determined by imposing 1/�=0 in Eq.
�14�, namely, Tef f =2� limq→0Nq /q2. In the language of
quantum states, the Gaussian approximation leads to the
well-known expression

Nq =
Nq

0

1 + 2vqNq
0 , �15�

where Nq
0 is the charge structure factor of the uncorrelated

determinant �D�.17,18 The previous form of Nq allows us to
identify the effective temperature as:

1

Tef f = � +
�0

2�
�16�

where �0=limq→0q2 /Nq
0.

In order to show the general validity of our approach, we
consider the case of a free-electron determinant, obtained by
occupying the lowest-energy states in the tight-binding
model with dispersion Ek=−2t�cos kx+cos ky�, and a gapless
BCS state with a superconducting order parameter �k
=��cos kx−cos ky�. In these cases �0=0 and, therefore, the
effective temperature in Eq. �16� is determined only by the
Jastrow coefficient, namely, Tef f =1/�. In Fig. 1, we report
the inverse of the dielectric function for the free-electron
determinant and different sizes L of the system at half filling,
i.e., N=L. In order to have closed-shell states for �D�, we
used 2D square lattices tilted by 45° �i.e., with L=2lx

2 and lx
odd� and periodic boundary conditions. By increasing L, the
curves show a steeper and steeper shape in the vicinity of the
critical temperature Tc. This result is further confirmed by the
size scaling of 1 /�, which clearly supports the existence of a
finite jump in the thermodynamic limit: 1 /�→0 for Tef f

	Tc, whereas 1/�→const for Tef f 
Tc. Interestingly, Tc de-
pends slightly upon the choice of the uncorrelated determi-
nant �see for comparison Fig. 2 for the gapless BCS state�

and is quite close to the CGM critical temperature Tc
CGM

=1/4. These results give an important and transparent insight
into the strong-coupling limit described by the fully pro-
jected WF,7 which can be connected to our WF by letting
�→�, i.e., Tef f →0. Indeed, in the confined phase for Tef f


Tc, the classical KT scaling equations of the CGM flow to
fixed points with zero fugacity: this translates into the fact
that the fully projected state represents the fixed point of the
correlated WFs describing the 2D Mott insulating phase.
Therefore, in the confined regime, the ground-state proper-
ties are universal and represented by those of the fully pro-
jected WF. In this respect, total projection is not an unreal-
istic assumption and can accurately reproduce the low-
energy physical properties of a strongly correlated system.
On the other hand, for Tef f 	Tc the classical KT scaling
equations flow to strong coupling and are useful only close
to the transition point.

In Fig. 3 we show that in the plasma phase the Gaussian
approximation, given by Eq. �15�, is very accurate, not only
for small q’s �where it is exact� but also for large momenta.
In this case, the cusp singularity in Nq for Q= �� ,��, related
to the Friedel oscillations, is not removed, even though Nq
�q2 at low momenta. Thus, for Tef f 	Tc, the WF �11� de-
scribes a “Coulomb metal,” with Nq�q2 at small q’s but
with the sign of the Fermi surface at large momenta. As
shown previously in the limit of infinite Coulomb repulsion19

or in the low-density regime,20 this WF has low-energy prop-
erties similar to those of one-dimensional Luttinger liquid
conductors, where the absence of a jump in the momentum
distribution is replaced by a weaker singularity, yielding to
2kF and 4kF power-law density correlations. It is important to
emphasize that, in the quantum case, the power-law correla-
tions come from the large momentum singularity, that are
absent in the classical CGM.14 Indeed, in the quantum state,
the subleading corrections in the classical potential of Eq. �6�
are very important and can actually turn the CGM exponen-
tial correlations to power laws in the plasma phase, and vice
versa in the confined phase. On the other hand, in the con-
fined phase the Gaussian approximation is not adequate both
at small and large momenta �see Fig. 3�. Indeed, at small q’s,
the coefficient of the quadratic term is not simply given by
the Gaussian approximation and, more importantly, the
strong Jastrow factor washes out completely the singularities
of Nq

0, leading to a smooth charge-structure factor, a genuine
fingerprint of an insulating phase.

FIG. 1. �Color online� Inverse of the dielectric function 1/� 
see
Eq. �14�� for the free-electron determinant. Left panel: 1 /� as a
function of the effective temperature 1/� and for different sizes L
of the cluster. The critical temperature of the classical Coulomb gas
model Tc

CGM is marked with a dashed line for a comparison. Right
panel: Size scaling of 1/� for various �.

FIG. 2. �Color online� The same as in Fig. 1 but for a gapless
BCS state with � / t=1.1 and dx2−y2 symmetry.
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In order to further characterize the two phases, we con-
sider the quasiparticle weight

Zk =
	��N−1�ck,���N�	2

��N��N���N−1��N−1�
, �17�

where ��N� and ��N−1� are the WFs with N and �N−1� par-
ticles, and ck,� is the destruction operator of a particle of
momentum k and spin �. In particular, the wave function
with N−1 particles is constructed from ��N�:

��N−1� = Jck,��D� . �18�

In a previous work,20 it was argued that the singular Jastrow
factor can induce non-Fermi-liquid properties, and in par-
ticular a vanishing Zk at the Fermi surface. In Fig. 4, we
report Zk for k= �� /2 ,� /2� and for different Jastrow
strengths �. We find that the quasiparticle weight vanishes
with a power-law behavior

Zk � L−� �19�

both in the confined and in the plasma phases, with an expo-
nent � that depends upon � and the type of the uncorrelated
state. In the plasma phase, � varies continuously with the
Jastrow strength � and there is no appreciable dependence on
the uncorrelated determinant. On the other hand, in the con-
fined phase, the exponent is constant, i.e., ��1/2 for the
BCS state and ��3/4 for the free-electron state, and equal
to the value found for the fully projected WF, as shown in
Fig. 5. It must be mentioned that, for the BCS state, � does
not depend upon the value of the superconducting order pa-

rameter � �see Fig. 4�, indicating the universal properties of
the confined phase.

Our results show that it is possible to describe a continu-
ous MIT in 2D electronic systems with a Jastrow correlated
WF. We characterized both the metallic region, with a zero
quasiparticle weight Zk=0, and the insulator, which can be
continuously connected to the totally projected Gutzwiller
WF. Of course, other scenarios are possible for the MIT, e.g.,
the one proposed in the infinite-dimensional limit. Indeed,
whenever the metallic phase has Nq�c�q�+dq2 with c	0,
the MIT is not described by the functional form �13� of the
Jastrow potential: By approaching the transition from the
metallic phase, we enter directly into the confined phase with
a quadratic charge structure factor at small momenta, i.e., c
→0 with a large finite d at the critical point. In this case, in
the metallic region, a less singular Jastrow factor vq�1/ �q�
is expected, leading to a finite quasiparticle weight.

Finally, we would like to comment on the possibility to
stabilize the “Coulomb metal” phase in a microscopic model.
For simplicity, let us consider the one-band Hubbard model
on the square lattice with nearest-neighbor hopping:

FIG. 3. �Color online� Equal-time density structure factor Nq for
the correlated wave function of Eq. �11� �full squares�, compared to
the same quantity calculated within the Gaussian approximation

indicated as GSA and given by Eq. �15�� �full triangles� for �
=4/� �upper panel� and �=12/� �lower panel; notice the different
scale of the GSA data�.

FIG. 4. �Color online� Quasiparticle weight Zk at k
= �� /2 ,� /2� for the gapless BCS state with � / t=1.1 and dx2−y2

symmetry as a function of L and for different Jastrow strengths �
�full circles�. The case of the fully projected wave function �empty
circles� is also reported for � / t=1.1 and 0.5.

FIG. 5. �Color online� The behavior of � 
the exponent of the
quasiparticle weight; see Eq. �19�� as a function of � for BCS state
�full circles� and the Fermi gas �FG� determinant �full squares�. The
values of the fully projected states are also reported �arrows�.
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H = − t 

�i,j�,�

ci,�
† cj,� + H.c. + U


i

ni,↑ni,↓, �20�

where ci,�
† creates an electron with spin � at the site i, and

ni,�=ci,�
† ci,� is the density operator at the site i. In the fol-

lowing, we will consider a paramagnetic state, by taking a
projected Fermi gas wave function, as described above, and
by minimizing the variational energy for the determination of
the Jastrow factor J. In particular, by using the method de-
scribed in Ref. 21, we are able to optimize all the indepen-
dent Jastrow parameters in the real space vi,j �i.e., the Fourier
transform of vq�. Within this approach, which neglects mag-
netic phases, we obtain a MIT for Uc / t=8.5±0.5. In the
weak-coupling regime, for U
Uc, we obtain a Fermi liquid
with a finite quasiparticle weight, whereas at strong cou-
plings, i.e., for U	Uc, we have an insulating phase with a
vanishing Zk; see Fig. 6.22 Moreover, the calculation of the
double occupancy D clearly indicates that the transition is
continuous and the insulating phase still possesses finite
charge fluctuations �see inset of Fig. 6�. As discussed above,
in the metallic region, we find that vq�1/ �q� �see Fig. 7�.
Unfortunately, as soon as we enter the insulating phase,
limq→0 vq�q�2 defines an effective � that is larger than the
critical value for the KT transition, and, therefore, no evi-
dence for the Coulomb metal is found.23 Indeed, we expect
that the optimized Jastrow factor vq, containing subleading
corrections with respect to Eq. �13�, will define a critical �
very close to the value of the classical CGM, i.e., �c

=1/Tc
CGM =4. Therefore, in light of the results of Fig. 7, the

stabilization of the Coulomb metal seems to be very un-
likely: Although there are large size effects around Uc, we
have clear evidence that limq→0 vq�q�2→0 for U
Uc and
limq→0 vq�q�2
4� for U	Uc �see Fig. 7�.

On the other hand, we can safely predict the occurrence of
the KT-like scenario described above in 2D systems with
long-range �logarithmic� interaction. In this case, the appli-
cation of the Gaussian approximation for small interaction
and our ansatz for the insulating phase imply the presence of
a transition of the type considered here. It is remarkable that
the proposed picture crucially depends on the long-range na-
ture of the Coulomb interaction, recalling Mott’s original
idea. In this regard, it should be mentioned that the original
Mott argument for a discontinuous metal-insulator transition,
driven by the long-range Coulomb interaction, cannot be ap-
plied in 2D. In such case there always exists a bound state
for two opposite charges interacting with the screened Cou-
lomb potential, so that, according to this argument, no me-
tallic phase with unbound charges is possible. However, this
is clearly an artifact of the mean-field argument, since for
small interaction the random-phase approximation leads to
an anomalous metallic state �see Ref. 20�.
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FIG. 6. �Color online� Quasiparticle weight Zk at k
= �� /2 ,� /2� of the optimized paramagnetic wave function contain-
ing a Jastrow factor applied to the Fermi gas as a function of the
interaction U / t in the Hubbard model, for three different sizes of
the system. Inset: The number of double occupancies D as a func-
tion of U / t.

FIG. 7. �Color online� Optimized Jastrow potential vq, multi-
plied by �q�2, for the Hubbard model as a function of �q� 
in the �1,1�
direction� for different sizes of the cluster and ratios U / t. The arrow
indicates � /Tc

CGM, the expected value of limq→0 vq�q�2 at the clas-
sical transition point.
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