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Inelastic lifetime of an electron quasiparticle in an electron liquid due to electron-electron interaction evalu-
ated in previous work is calculated in an alternative way. Both the contributions of the “direct” and “exchange”
processes are included. The results turn out to be exactly the same as those obtained previously, and hence
confirm the latter and consequently fully resolve the theoretical discrepancies existing in the literature. Deri-
vation in the two-dimensional case is presented in detail due to its intricacies. The effects of local field and
finite well width on the effective electron interaction in the two-dimensional case are also investigated in a
quantitive comparison of the electron relaxation rate between theory and experiment. These effects are shown
to make a rather small contribution to the quasiparticle lifetime.
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I. INTRODUCTION

Low-energy electron excitations in solids can be success-
fully described in terms of quasiparticles in the Landau
theory of Fermi liquids.1,2 An excited quasiparticle with defi-
nite momentum is not stable due to scattering by phonons,
disorders, and other electrons. Hence a quasiparticle has fi-
nite lifetime. Among this, the intrinsic inelastic scattering
lifetime �e, i.e., the lifetime that arises purely from the
electron-electron scattering processes, is a central quantity in
the Laudau theory of the electron liquid. It plays a key role in
our understanding of a broad variety of phenomena in solids
such as electron dephasing,3 tunneling,4,5 and localization,6

etc. It might also have an effect on electron transport.7

In fact, the electron tunneling techniques in semiconduc-
tor quantum wells4,5 have enabled experimentalists to di-
rectly determine �e in two-dimensional �2D� electron liquids.
For weakly coupled wells, the lifetime principally arises
from electron-electron scattering processes. On the other
side, huge progress has also been made, by the use of the
techniques of ultrafast laser, in measuring the lifetime of
photon-excited electrons in metals such as copper.8 These
advances have made it possible to carry out quantitive com-
parisons between theories and experiments. The theory of the
inelastic lifetime in three dimensions �3D� is rather well es-
tablished within random phase approximation.9,10 It was later
extended to include the exchange contribution �see Ref. 11
for a detailed discussion�.12,13 Several theoretical investiga-
tions had also been carried out in 2D, but with quantitive
disagreement.14–20 In an earlier paper,11 hereafter referred to
as I, we have managed to clarify the origin of the disagree-
ment that exists among these previous investigations. The
results in I are summarized as follows. The inverse lifetime
of a quasiparticle with low energy �p �relative to the chemi-
cal potential �� at temperature T in a 3D electron liquid is

1

�e
=

m3e4

�pks
3

�2kB
2T2 + �p

2

1 + e−��p
� �

�2 + 1
+ tan−1 � −

1
��2 + 2

���

2
− tan−1� 1

�
� 1

�2 + 2
��	 , �1�

where �=2kF /ks, and ks=� 4kF

�a0
is the 3D Thomas-Fermi

screening wave vector. kB, kF, and a0 are the Boltzmann
constant, the Fermi wave vector, and the Bohr radius, respec-
tively. For a 2D electron liquid, we found
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= −

m2�p
2

16�3EF
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�p

2EF
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for kBT	�p, and

1
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�mkBT�2

32�EF

3W2�0� + 2W2�2kF� − 2W�0�W�2kF��ln

kBT

2EF

�3�

for �p	kBT. Here EF=
2kF
2 /2m, and W�q� is the effective

interaction between quasiparticles.
The calculation of �e is quite a nontrivial task in many-

body theory, which helps explain the disagreement among
various previous theoretical results in 2D. Evidently, correct-
ness of the results in Eq. �1� and Eqs. �2� and �3� is crucial in
any meaningful comparisons with experiments. In fact, big
discrepancies remain between experiments and theories, and
call for explanations.4,5,8,11,14–20 In this paper, we calculate
1 /�e in an alternative way and confirm the above results.
Various theoretical discrepancies in the literature, as men-
tioned above, are fully resolved.

The present calculation appears very different to the pre-
vious calculation in I. In I, we calculated 1/�e by expressing
it as the frequency convolution of the imaginary part of the
density-density response function. The present calculation is
technically straightforward, and somewhat in a textbook
fashion. But it is by no means much simpler than that in I. In
fact, the present approach seems rather clumsy for the case
of �p	kBT. Hence we shall restrict ourselves to the case of
zero temperature.

After giving the general formulas for 1 /�e in the next
section, we present our calculation for the 3D and 2D cases
separately in Secs. III and IV. In Sec. V, we shall discuss the
contribution to the inverse quasiparticle lifetime in 2D aris-
ing from the effects of local field and finite well width on the
effective electron interaction, and then briefly summarize the
paper.
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II. GENERAL FORMULAS

We start by rewriting Eqs. �4� and �5� in I as follows:

1

��
�D� = 2��

k,q
�
��

W���
2 �k − p�n̄k�nk+q−p��n̄q��

����p + �k+q−p�� − �k� − �q��� �4�

and

1

��
�ex� = − 2��

k,q
W���p − q�W���k − p�n̄k�nk+q−p�n̄q�

����p + �k+q−p� − �k� − �q�� , �5�

where W����q� is the effective interaction between quasipar-
ticles of spin � and spin ��. We have set 
=1. We consider
only the paramagnetic electron liquid, and hence the index �
of the 1/��

�D�,�ex� is unnecessary and will be dropped hereaf-
ter. The sum of 1/��D� and 1/��ex� yields the inverse inelastic
lifetime 1/�e,

1

�e
= 2��

k,q
�
��

�1 −
1

2
�����
W����k − p�

− ����W����p − q��2n̄k�nk+q−p��n̄q��

����p + �k+q−p�� − �k� − �q��� . �6�

We are only interested in the case of low excited energy
��p	EF�. In this case the contribution to the summations
over momenta in the above expression arises only from the
region of �k+q−p�, �k�, �q�	EF. Therefore

1

�e
= 2��

k,q
�
��

I�����k,�q�n̄k�nk+q−p��n̄q��

����p� + �k+q−p�� − �k� − �q��� , �7�

where �k= p̂ · k̂ and �q= p̂ · q̂, respectively, and the hats mean
unit vectors. We have defined formally

I����x,y� = �1 − 1
2�����
W�����2kF

�1 − x�

− ����W�����2kF
�1 − y��2. �8�

Below we present our calculation for the 3D and 2D cases
separately in Secs. III and IV. We set the volume of the 3D
system and the area of the 2D system, respectively, to be
units in this paper.

III. THE INVERSE LIFETIME IN 3D

The integrations over the azimuthal angles of k and q
with respect to p in Eq. �7� can be straightforwardly carried
out. After that, it becomes
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where Ep= p2 /2m. We have defined ��x�=1 for x�0, ��x�
=0 for x�0. Notice that Eq. �9� is essentially the same as
Eq. �4� in Ref. 13 except typos of � �

2�3 �3 and a missing factor
of 1− 1

2���� in Eq. �3b� in Ref. 13. The integrations over k
and q in Eq. �9� can be carried out analytically to the accu-
racy of the leading order of O��p

2� and yield
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where

A =
e2

a0
� 1

25/2�2�� kF
2

4�e2�2

. �11�

Notice that there seems to be an error of a factor of 1 /2 in
Eq. �6b� in Ref. 13. However, this does not effect the results
in Table II in Ref. 13 and the subsequent conculsions, since
the coefficient A cancels in the ratio p�� / p��̄ in the table.

The contributions from the “direct” and “exchange” pro-
cesses are, separately, given as

1
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where �̄=−� and

1
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2
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1
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�13�

The spin dependence of the effective interaction is
not crucial in determining the total inelastic lifetime.13 We
shall ignore this dependence and follow the usual practice of
characterizing the screening effects by the screening wave
vector ks:
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W�q� =
4�e2

q2 + ks
2 . �14�

The integrations over �q and �k can be analytically carried
out. After that, one finally has

1

��D� =
m3e4kF

�p2ks
3 �p

2� �

�2 + 1
+ tan−1 �� , �15�

and

1
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m3e4kF

�p2ks
3 �p

2 1
��2 + 2

��

2
− tan−1� 1

�
� 1

�2 + 2
�� .

�16�

Equations �15� and �16� are, to the leading order of O��p
2�,

exactly the same as the results for 1 /��D� and 1/��ex� obtained
in I for the 3D case.

IV. THE INVERSE LIFETIME IN 2D

The derivation in the 2D case is relatively intricate. We
shall present it in detail. We first rewrite Eq. �7� as

1

�e
= 2�m2�

��
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�
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where �k=cos �k, �q=cos �q, and �k and �q are the angles
of k and q relative to p, respectively. After some algebraic
manipulations, the preceding expression can be written as

1
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dqq
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We now define the following variables,

� =
p
�z

, �� =
p

�z�
, �19�

and function,

f�x,y� = �� − x�2��� − y�2 − 1 + x2 + y2 − x2y2, �20�

and write Eq. �18� in the following form:
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2
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1
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The contour of f�x ,y�=0 is illustrated in Fig. 1.
We further define

G���
A,B,D = 

kF
2

p2

dz
kF

2

p2+kF
2−z

dz�J���
A,B,D, �22�

where

J���
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0
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0

1
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0
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and

J���
D = 

0

1

dx
−1

0

dy�
f�x,y��I����x,y� , �25�

and express 1 /�e as follows:

1

�e
=

2�m

kF
2 � 1

�2��2�2

�
��

�G���
A + G���

B + G���
D � . �26�

Evidently, A, B, and D denote the contributions arising from
the first, second, and fourth quadrants, respectively, as shown
in Fig. 1. Notice that f�x ,y��0 in the third quadrant. In fact,
the leading order contributions only arise from the circled
regions in Fig. 1. By interchanging the integral variables x
and y in Eq. �25�, it is easy to see that the evaluation of G���

D

is totally analogous to that of G���
B . Hence we only present

the latter. The evaluation of G���
B turns out to be relatively

FIG. 1. The contour of f�x ,y�=0, defined in Eq. �20�, and its
two parts: y+�x� �solid line� and y−�x� �dotted line�, defined in Eq.
�28�.
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simpler than that of G���
A , and it is in the meanwhile instruc-

tive for the latter. We hence start with the former below.
We first evaluate the integrations over the variables x and

y in Eq. �24�. To this end, we rewrite Eq. �24� as

J���
B = 

−1

0

dx
0

1

dy
1

�� − x�2 + 1 − x2

���
y − y+�x��
y − y−�x���I����x,y� , �27�

where

y±�x� =
1

�� − x�2 + 1 − x2 
���� − x�2

± �1 − x2��1 − ��2��� − x�2 + 1 − x2� . �28�

The functions y+�x� and y−�x� are two components of the
contour of f�x ,y�=0, and they are illustrated in Fig. 1. The
integration over the variable y in Eq. �27� is now straightfor-
ward, which yields

J���
B =

1

2


−1

0

dx
��x − x1���x2 − x�

�1 − x2��1 − ��2��� − x�2 + 1 − x2

�
I���
„x,y+�x�… + I���

„x,y−�x�…� , �29�

or, more explicitly,
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1

��1 − x2��x2 − x��x − x1�

�
I���
„x,y+�x�… + I���

„x,y−�x�…� . �30�

Here we have defined

x1,2 = −
��1 − ��2� ± ��2 + ��2 − �2��2

��2 , �31�

which are also shown in Fig. 1. By using the fact that x1
=4���−1�−1 and y+�x1�=y−�x1�=1 for ��→1, we have, to
the leading order,

J���
B = −

1

2
I����− 1,1�ln��� − 1� . �32�

Substituting the preceding result into Eq. �22� and perform-
ing the integrations over z and z�, one obtains

G���
B = −

1

4
I����− 1,1��p2 − kF

2�2 ln
�p2 − kF
2�/2kF

2� . �33�

As pointed out previously, the evaluation of G���
D is simi-

lar to that of G���
B . Here we only quote the final result,

G���
D = −

1

4
I����1,− 1��p2 − kF

2�2 ln
�p2 − kF
2�/2kF

2� . �34�

Next we calculate G���
A . First of all, from the experience

in deriving J���
B in Eq. �32�, it is not difficult to see that the

leading order contribution to J���
A arises from the region of

x→1, y→1. Therefore, we may directly rewrite Eq. �23� as

J���
A = I����1,1�

0

1

dx
0

1

dy�
f�x,y�� . �35�

However, the following calculation is a little more delicate.
Due to the fact that y−�x� becomes ill-defined �actually be-
comes x=1� in the first quadrant as �, ��→1, a straightfor-
ward calculation like the preceding one for J���

B does not
work. To circumvent this difficulty, we make the following
variable transform,

x =
1
�2

�x� − y��, y =
1
�2

��

�
�x� + y�� , �36�

and rewrite Eq. �35� as

J���
A = I����1,1�

0

�1/�2��1+�/���
dx� dy�

���a�x��
y� − y1�x���
y� − y2�x���� . �37�

The Jacobian �� /� for the above integration variable trans-
form can be set to be one in the limit of �, ��→1. The limits
of the integration over y� are left unspecified because they
are not really relevant simply due to the � function in the
integrand, while the integration region of x� and y� corre-
sponds to the square of 0�x� ,y��1. In Eq. �37�, we have
defined

y1,2�x� =
− b�x� ± �b2�x� − 4a�x�c�x�

2a�x�
, �38�

where

a�x� =
1

2
�2�2x��2/� − 2��2 + ��2/�2 + 1� , �39�

b�x� = − �1 − ��2/�2�x , �40�

and

c�x� = �2��2 − 1 − 2�2���2x +
1

2
���2/�2 + 6��2 + 1�x2

− �2���2/��x3. �41�

The integration over y� yields

J���
A = I����1,1�

0

�1/�2��1+�/���
dx

�
b2�x� − 4a�x�c�x��
�b2�x� − 4a�x�c�x�

,

�42�

which can be rewritten as

J���
A = I����1,1�

−�1/�2��1+�/���

0

dx
���x2 + �x + ��
��x2 + �x + �

, �43�

where �, �, and �, in the limit of �→1,��→1, can be
shown as

� = 16, �44�

� = − 4�2���� + ��2 + � + �� + �2 + 3�2��2 − 4���2 − 4�2���

��� − 1���� − 1� , �45�
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� = − 8�� − 1�2��� − 1�2. �46�

The leading order contribution to J���
A in fact arises from the

limiting region of x→0 in the integral of Eq. �43�. Therefore
the higher order terms of O�x3� and O�x4� have been ignored
in the � function and the square root denominator in Eq. �43�.
The term �x can be further neglected since it also is higher
order smaller according to Eq. �45�. Therefore, one has

J���
A = I����1,1�

−�1/�2��1+�/���

0

dx
�
x2 − 1

2 �� − 1�2��� − 1�2�
4�x2 − 1

2 �� − 1�2��� − 1�2
,

�47�

or

J���
A =

1

4
I����1,1�

−�1/�2��1+�/���

−�1/�2���−1����−1�
dx

�
1

�x2 − 1
2 �� − 1�2��� − 1�2

. �48�

Equation �48� can be evaluated as

J���
A = −

1

4
I����1,1�ln
�� − 1���� − 1�� . �49�

Substituting the preceding result into Eq. �22� and carrying
out the remaining integrations over z and z�, one finally has

G���
A = −

1

4
I����1,1��p2 − kF

2�2 ln
�p2 − kF
2�/2kF

2� . �50�

In view of the fact that G���
A in the preceding equation is

totally similar to G���
B,D in Eqs. �33� and �34�, it is curious that

there seems no simpler way to derive it.
Substituting the results for G���

A , G���
B , and G���

D in Eqs.
�50�, �33�, and �34� into Eq. �26� one finally obtains

1

�e
=

�m

2kF
2 � 1

�2��2�2

�p2 − kF
2�2 ln
�p2 − kF

2�/2kF
2�

��
��


I����1,1� + I����1,− 1� + I����− 1,1�� . �51�

The contributions from the “direct” and “exchange” pro-
cesses can be separately written as

1

��D� = −
m2�p

2

16�3EF
ln

�p

2EF
�
��

�2
W����0��2 + 
W����2kF��2� ,

�52�

and

1

��ex� =
m2�p

2

16�3EF
ln

�p

2EF
�
W���0��2 + 2W���0�W���2kF�� .

�53�

We emphasize that the above results are accurate only to the
leading order of O��p

2 ln �p�. In the case that the spin depen-
dence of the effective interaction can be neglected, one has
exactly the results shown in Eqs. �52� and �59� in I, respec-

tively. The sum of 1/��D� and 1/��ex� yields 1/�e as given in
Eq. �2� in the Introduction.

V. DISCUSSION AND SUMMARY

The results in Eqs. �15� and �16� have been obtained with
the approximation of the Thomas-Fermi screened Coulomb
potential of Eq. �14� to the effective electron interaction. One
can always resort to the more general expressions of Eqs.
�12� and �13� if necessary. On the other side, in the 2D case,
with which this paper is mainly concerned, no approximation
has been made in the effective electron interaction W�q� ex-
cept that it is assumed to be static. The local field effects and
the finite well width effects on the effective interaction can
be readily taken into account. We now estimate their contri-
bution to the inverse quasiparticle lifetime by using the form
factor of F�q�= 2

qb

1+ 1

qb �e−qb−1�� with b being the well
width,19,21 and the local field factor evaluated in Ref. 22.
These effects have been investigated earlier in Ref. 19. The
clarification of the theoretical disagreement now enables us
to definitely elucidate their contribution. Both of them are
shown to yield in effect quite small corrections to the results
calculated with random phase approximation �RPA� to W�q�.
This conclusion should hold in a more general sense regard-
less of the particular choice of the form factor and the local
field factor, since both of them mainly affect the short-range
behavior of the effective interaction while the inverse life-
time of a low-energy quasiparticle is mainly determined
by the long-range behavior of the effective interaction.
The comparison with the experimental values of the electron
relaxation rate � �Refs. 5, 11, and 18–20� from Ref. 5 is
illustrated in Fig. 2. The result calculated with the RPA to the
effective interaction is also plotted in Fig. 2 for
comparision.11

It seems that other factors must be taken into account in
order to explain the difference between theory and experi-
ment. One of the assumptions made in all previous work is
that the couplings between electrons in different wells are
weak and can be ignored. This assumption might require

FIG. 2. Electron relaxation rate � in 2D �Refs.5, 11, and 18–20�.
Dotted line: experimental data from Ref. 5; dashed line: calculated
one from Eq. �3� with RPA to the effective interaction W�q� Ref.
11�; solid line: calculated one from Eq. �3� with the effects of the
local field and the finite well width on W�q� included.
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further justication for a barrier width being about 250 Å,
with the width of each well being about 200 Å. Furthermore,
higher-order terms in electron interaction, usually not impor-
tant at a density of rs�1 where rs is the Wigner-Seitz radius,
might not be simply ignored in this case, for they have been
shown to contribute nontrivially higher-order logarithmic
factors.23 Other factors which might also play a role have
been mentioned in Ref. 11. Evidently, further theoretical ef-
fort is needed in order to fully understand the discrepancy
between theory and experiment.

In conclusion, we have calculated, in a rather different
manner, the inelastic lifetime of an electron quasiparticle in

an electron liquid. The results confirm those in Eq. �1�, and
Eqs. �2� and �3� obtained in our previous work, and conse-
quently finally resolve the theoretical discrepancies in the
literature.
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