
Dirac fermion confinement in graphene

N. M. R. Peres,1 A. H. Castro Neto,2 and F. Guinea3

1Center of Physics and Departamento de Física, Universidade do Minho, P-4710-057, Braga, Portugal
2Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

3Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco E28049 Madrid, Spain
�Received 4 April 2006; revised manuscript received 7 May 2006; published 15 June 2006�

We study the problem of Dirac fermion confinement in graphene in the presence of a perpendicular magnetic
field B. We show, analytically and numerically, that confinement leads to anomalies in the electronic spectrum
and to a magnetic-field-dependent crossover from �B, characteristic of Dirac-Landau-level behavior, to linear-
in-B behavior, characteristic of confinement. This crossover occurs when the radius of the Landau level
becomes of the order of the width of the system. As a result, we show that the Shubnikov–de Haas oscillations
also change as a function of field, and lead to a singular Landau plot.
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The production of two-dimensional �2D� graphene1,2 and
the confirmation, via an anomalous integer quantum Hall
effect,3,4 of the presence of Dirac particles in its electronic
spectrum have attracted a great deal of interest. Because of
the vanishing of the density of states at the Dirac point, these
semimetallic systems present properties that deviate consid-
erably from Landau’s Fermi liquid theory.5,6 In fact, these
systems show properties that are similar to models in particle
physics and, in particular, to relativistic quantum electrody-
namics but with an effective “speed of light” �the Fermi-
Dirac velocity vF� that is substantially smaller than the actual
speed of light c �vF�c /300�. In the most general case, the
electron dispersion in graphene can be written in the form of
Einstein’s equation E±�k�= ±�m2vF

4 +vF
2k2, where k is the

electron momentum �from now on we use units such that c
= � =1=kB� and m is the relativistic mass. In solids this mass
represents a gap �=2mvF

2 in the electronic spectrum. This
gap can be generated, for instance, by the spin-orbit
coupling.7

Furthermore, due to experimental constraints, graphene
samples are usually mesoscopic in size8,9 leading to a situa-
tion where Dirac fermions are confined by either zigzag or
armchair edges to a finite region in space.10 Confinement is
also particularly important for the production of electron
waveguides that are the main elements for the production of
electronic devices such as all-carbon transistors. Dirac fer-
mion confinement was a particularly enigmatic problem in
the early days of quantum mechanics since the formation of
wave packets in a region of the size of the Compton wave-
length, �1/m, requires the use of negative-energy solutions,
or antiparticles, the phenomenon called Zitterbewegung.11

Another manifestation of this confinement effect is Klein’s
paradox where a flux of particles incident on a square poten-
tial barrier produces a reflected current that is larger than the
incident one. All these effects can manifest themselves when
Dirac particles are confined in finite regions of space.

In this paper we show that confinement of Dirac fermions
can be studied directly in graphene with the application of a
transverse magnetic field. We show that the confinement,
generated by the finite size of the sample, shows up in a
rather nontrivial way in the electronic spectrum. In particu-
lar, we show that the so-called Landau plots �the dependence

of electronic spectrum on the magnetic field12� is rather non-
trivial when the cyclotron length becomes of the order of the
size of the sample. We address this problem analytically by
studying the Dirac equation in a magnetic field and also by
solving numerically the tight-binding model for graphene in
a finite geometry.

Graphene is a honeycomb lattice of carbon atoms �with
two sublattices A and B� with one electron per � orbital
�half-filled band� and can be described by a tight-binding
Hamiltonian of the form

Htb = − �
�i,j�,�

tij�ai,�
† bj,� + H.c.� , �1�

where ai,�
† �ai,�� creates �annihilates� an electron on site Ri,

with spin � ��= ↑ , ↓ �, on sublattice A, bi,�
† �bi,�� creates

�annihilates� an electron on site Ri, with spin �, on sub-
lattice B, tij = t exp�i�ij	 is the nearest-neighbor hopping en-
ergy �t�2.7 eV� in the presence of a magnetic field B=Bz
��ij =2�
i

jA ·dl /�0, with A=Bxy and �0=2� /e is the quan-
tum of magnetic flux�. In the absence of next-nearest-
neighbor hopping t� ��0.1t�, the Hamiltonian is particle-hole
symmetric5 �the Zeeman energy is disregarded�.

In a finite system, one has to add the confining potential
He=�iVini, where ni is the local electronic density. Vi van-
ishes in the bulk but becomes large at the edge of the sample.
We have studied different types of potentials �hard wall, ex-
ponential, and parabolic13� but in this paper we will focus on
a potential that decays exponentially away from the edges
into the bulk with a penetration depth �. In Fig. 1 we show
the electronic spectrum for a graphene ribbon of width L
=600a �a=1.42 Å is the carbon-carbon distance�, in the
presence of a confining potential V�x�=V0�e−�x−L/2�/�

+e−�L/2−x�/��, with strength V0=0.1t and a penetration depth
�=150a �we choose this large value of � just to illustrate the
effect of the confining potential in detail; in real samples we
expect ��a, which is the case discussed in the text�, as a
function of the momentum k along the ribbon. One can
clearly see that in the presence of the confining potential the
particle-hole symmetry is broken and, for Vi	0, the hole
part of the spectrum is strongly distorted. In particular, for k
close to the Dirac point, we see that the hole dispersion is
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given by En,
=−1�k��−�nk2−�nk4 where n is a positive inte-
ger, and �n0 ��n	0� for nN* �n	N*�. Hence, at n
=N* the hole effective mass diverges ��N* =0� and, by tuning
the chemical potential �, via a back gate, to the hole region
of the spectrum ��0� one should be able to observe an
anomaly in the Shubnikov–de Haas �SdH� magnetotransport
oscillations. This is how Zitterbewegung manifests itself in
magnetotransport.

At low energies and long wavelengths, the energy spec-
trum of Hamiltonian �1� reduces to two Dirac cones centered
at the K and K� points in the Brillouin zone. Around each
Dirac point the Hamiltonian �1� can be written as

H0 = � · �vFp + eA� , �2�

where vF=3ta /2, � are Pauli matrices acting on the states
��r�= (�A�r� ,�B�r�) of the two sublattices, and p= �px , py�
=−i� is the 2D momentum operator. In the absence of con-
finement �V�x�=0� we can diagonalize �2� and one finds Lan-
dau levels given by

En,
 = 
�2vF
�n/�B = 
vF

�2eBn , �3�

where �B=1/�eB is the cyclotron length, n is a positive in-
teger �including zero�, and 
=1 �−1� labels the electron
�hole� levels.

As discussed in the context of neutrino billiards,14 the
problem in the continuum suffers from the difficulty that in
trying to confine massless Dirac particles in a region of size
L by including a large potential V at the edge, leads to a
situation where particles still exist even at energies higher
than V. This problem, of course, does not arise in the tight-
binding description. In order to avoid this problem in the
continuum description, we introduce a position-dependent
mass term Hc=vF

2 M�x�
z, where

M�x� = M , x  − L/2,

0, − L/2 � x � L/2,

M , x 	 L/2,

�4�

where L is the width of the graphene stripe. We are interested
in the hard wall case �M→ � � although other potentials can

be studied in an analogous way.13 Notice that in the absence
of an applied magnetic field, a mass term does not break
particle-hole symmetry, as in the case of a potential V�x�.14

Nevertheless, since both V�x� and M�x� are strongly local-
ized at the edge �in a distance of the order of the lattice
spacing�, they do not modify the states in the bulk. It is also
worth mentioning that although �2� is not time-reversal sym-
metric in the absence of a magnetic field,14 time reversal is
recovered by the inclusion of the second Dirac cone at the
opposite side of the Brillouin zone.

The Dirac equation H�=E�, where H=H0+Hc, can be
recast in terms of a wave function ansatz �= �H+E�� as
H2�=E2�. It is easy to show that this wave function has the
form ��x ,y��e−iky�
�x�, where k is the momentum along
the y direction, 
= ±1 are the eigenstates of 
z, and �
�x�
obeys the following equation:

�−
�2

��2 + �2 + V�����
��� = ��
��� �5�

where �=x /�B−k�B, V���= �vF�BM����2, and �= ��BE
 /vF�2

−
. Equation �5� is a dimensionless Schrödinger equation
for a nonrelativistic particle �of mass 1/2� in a parabolic
potential �of frequency �0=2� superimposed on a potential
well V���, whose position shifts with the momentum k �see
Fig. 2�. Hence, the Dirac fermion spectrum in the presence of
the magnetic field and confining potential is

E�,
 = 
vF
�� + 
/�B. �6�

At low energies �small �� the parabolic potential domi-
nates and the wave functions resemble the ones in the infinite
system �L→ � � in the presence of magnetic field.5 In this
limit, the spectrum of �5� is given by the 1D harmonic oscil-
lator: ���0�n+1/2�=2n+1. This result, together with �6�,
gives rise to Eq. �3�, with the energy proportional to �B. On
the other hand, at large energies, the confining potential be-
comes more important and the energy spectrum changes to
����n / �L /�B��2, leading to a Dirac fermion spectrum of the
form

FIG. 1. �Color online� Energy spectrum �in units of t� for a
graphene ribbon 600a wide, as a function of the momentum k along
the ribbon �in units of 1 / ��3a��, with a magnetic flux of 5
�10−4�0 per hexagon, in the presence of confining potential �see
text�.

FIG. 2. �Color online� Illustration of the potentials in the prob-
lem: k=0 �top� and k�0 �bottom�.
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En,
 � 
vF��n/L + 
LeB/�2�n�� , �7�

which leads to a spectrum proportional to B. These simple
arguments show that the SdH magnetoresistance oscillations
change behavior as a function of magnetic field. On the one
hand, for a given chemical potential �, Eq. �3� predicts that
the maxima of the SdH should happen at fields15–17

1/BF�N,L� = �2vF
2e/�2�N , �8�

where N is the Landau level index. On the other hand, Eq.
�7� shows that the maxima occur at fields

1/BF�N,L� = �L2e/�2�2N��/�Nc�L� − N� , �9�

where

Nc�L� = �L/��vF� . �10�

Hence, 1 /BF�N� diverges at a critical Landau level index
Nc�L�, which increases linearly with the width L of the
graphene stripe. The deviation from �8� to �9� is a clear sign
of the Dirac fermion confinement.

Notice that the crossover from �3� to �7� �or from �8� to
�9�� occurs when the Landau orbit fits into the confining
potential. Since each orbit must enclose exactly an integer
number of the flux quantum �0, the crossover occurs at a
magnetic field B* such that B*L2�N�0, that is,

B*�N,L� = N�0/L2. �11�

Let us now consider the numerical solution of the differ-
ential equation �5� written in terms of the above introduced
dimensionless variables in the case M→�. Because our
treatment of the Dirac equation leads to a second-order dif-
ferential equation, the appropriate boundary condition for a
sharp confining edge with a mass term is18 �
�−L / �2�B�
+k�B�=�
�L / �2�B�+k�B�=0. In Fig. 3 we show the energy
spectrum at B=1 T for two different system sizes as a func-
tion of k�2 /L. One can clearly see that the degeneracy of the
Landau levels is lifted for small enough system sizes or large

enough k.19,20 For small k the energy states are dispersionless
and degenerate.

In Fig. 4 we show the first two state eigenvalues of the
effective Schrödinger equation �5�, for k=0 and different val-
ues of the field �or, equivalently, different system sizes�. One
can clearly observe the change in the wave function from
cosine �sine� to Gaussian �first-order Hermite polynomial
times Gaussian� behavior as lB decreases. Clearly the system
evolves from a state where the boundaries introduced by the
confining potential are irrelevant �the wave functions and the
energy levels are essentially those of the 1D harmonic oscil-
lator at B=5 T and lB�12 nm�, passing to a state where the
Gaussian decay of the wave function in the classically for-
bidden regions is important, allowing the electrons to expe-
rience the presence of the confinement potential �the wave
functions and the energy levels cannot be described either by
the 1D harmonic oscillator or by the particle in a box for B
=0.1 T at lB�80 nm�. Finally, when the Landau orbit is of
the order of the size of the confinement potential, the eigen-
states are essentially those of the particle in a box �B
=0.01 T, lB�250 nm�.

In Fig. 5, we show the energy spectrum as a function of
the magnetic field for different system sizes together with
their respective Landau plots. Note that at small fields �when
L is large enough� the energy spectrum follows the �B de-
pendence of �3� while at larger fields it becomes linear in B
as predicted by �7�. The crossover from these two asymptotic
behaviors is indeed given by Eq. �11�, as one can see from
the size dependence. More striking, however, is that fact that
1 /BF indeed diverges at sufficiently high Landau level index
and that the size dependence is given by �10�.

In Fig. 6 we compare our tight-binding results with the
experimental data of Ref. 21. We choose a ribbon of size
295 nm �equivalent to Nc=1197 unit cells�, and Fermi en-
ergy 0.069t �equivalent to 0.22 eV�. Notice the excellent
agreement between theory and experiment for N16 �2
B10 T�. For N	16 there is shift of N by 1 �either plus
or minus 1� relative to the experiment. This discrepancy may
be associated to the experimental difficulty in assigning the
Landau indices at small magnetic fields.21,22

FIG. 3. �Color online� Energy spectrum E
�k� as function of
k�B

2 /L for two system sizes L=50 and 500 nm, at B=1 T, for ten
eigenstates. Each Landau level is subdivided into two sublevels,
distinguished by the quantum number 
.

FIG. 4. �Color online� Wave functions �
 for L=500 nm. The
values of the magnetic field are, from left to right and top to bottom,
B=5, 2.5, 1.25, 0.6, 0.3, 0.1, 0.05, 0.025, 0.01 T.
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In summary, we have studied the problem of Dirac con-
finement in mesoscopic graphene in the presence of a trans-
verse magnetic field. We show that the interplay between
size effects and magnetic field can be studied in the con-
tinuum limit using the Dirac equation coupled to a vector
potential. We present arguments that show that the spectrum
of the problem shows a crossover from magnetic field domi-
nated to confinement dominated as a function of magnetic
field or system size. The crossover occurs when the radius of
the Landau level becomes of the order of the width of the
system. In the crossover the spectrum changes from �B to

linear in B and that the Landau plots, which can be measured
in a SdH experiment, change from dramatically in a finite
system.
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FIG. 5. �Color online� Landau plots for two system sizes L
=500 and 50 nm. On the right-hand side, we depict the energy
levels �in K� as a function of magnetic field �in T� and the horizon-
tal line marks the position of the Fermi energy. On the left-hand
side we plot 1 /BF�T� as a function of the Landau index N.

FIG. 6. �Color online� On the left-hand side, we show the en-
ergy spectrum �in units of t� as a function of B−1 �in T−1�. The
horizontal line shows the position of the Fermi energy
��0.069t�. On the right-hand side, we show the theoretical Landau
plot �open circles� in comparison with the experiments of Ref. 21
�closed squares�.
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