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Currents across thin insulators are commonly taken as single electrons moving across classically forbidden
regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining
quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we
evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal
junctions. We find maximizing the overlap of a Slater determinant composed of single-particle states to the
many-body current-carrying state is more important than energy minimization for defining single-particle
approximations in a system with open boundary conditions. Thus the most suitable single particle effective
potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham
approximations.
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Describing quantum transport from first principles has
proven to be a challenging task; debate continues as to
the proper theoretical approach for treating electron currents
across metal-molecule-metal junctions �MMJs�.1–7 Tunneling
is an archetype of quantum behavior with implications
for all branches of modern physics, as well as chemical
and biological processes dominated by electron transfer.
The ability to accurately describe tunneling currents on
the nanoscale is important from both fundamental science
and technology perspectives. The discussion focuses on
the suitability of various Kohn-Sham density functional
theory �KS DFT� implementations,1–4 or possibly the
Hartree-Fock �HF� method,2,6 to apply in combination
with the one-body nonequilibrium Green’s function �NEGF�
approach.4,8 In fact though, there is no established criterion
for selecting a single-particle Hamiltonian to be used in
transport calculations.

On the other hand, evidence has been mounting that elec-
tron transport can be sensitive to many-body exchange and
correlation.2,6,7 For example, applying the NEGF together
with static KS DFT leads to overestimation of the current in
MMJs, in some cases, up to orders of magnitude when com-
pared to experiments.4 Several reasons for discrepancies
have been suggested: DFT’s underestimation of the
occupied-unoccupied state separation results in too high
currents,3,9 conversely the overestimation of the gap in the
HF approximation yields currents too low2; DFT exchange-
correlation functionals do not accurately reflect potential
profiles10; other methods such as time-dependent current
�DFT Ref. 11� or density matrix functional theory are simply
better suited for the treatment of electronic currents. Irre-
spective of the proposals to explain or remedy single-particle
tunneling descriptions, it is necessary to understand the phys-
ics deriving from a genuine many-body formalism to identify
the source of the discrepancies.

In this Rapid Communication we investigate the extent of

correlations beyond the single-particle picture and identify
conditions for defining a “best” independent-particle model,
using a recently formulated many-body quantum transport
approach.5 We demonstrate a single-electron description of
tunneling deriving from maximizing the overlap of a single
Slater determinant with the true many-body current-carrying
state, and show that it remains a good approximation even
after conventional independent-particle models fail.

Most theoretical studies of quantum transport begin with
the use of a Slater determinant of single-particle states to
model a many-body current-carrying wave function.12 Our
recent work5 finds that this picture becomes markedly less
valid near or above a resonance. Here, we concentrate on
nonresonant tunnel models. Independent-particle models are
appealing because as the wave function can be represented as
a single Slater determinant, the resulting physical model can
readily be pictured and computed.4,13 Their limitation is ne-
glect of electron correlations; below we introduce a correla-
tion measure to quantify when an independent-particle model
holds.

For our study, MMJs are an ideal test case as the molecule
acts like an insulator when there is little charge transfer or
hybridization with the electrodes, there is a large set of ex-
perimental observations to validate the calculations, and
MMJs may be modeled with a relatively small number of
atoms, allowing their electronic structure to be accurately
calculated with many-body methods. We choose alkane
chains �C2H4�n �inset of Fig. 1� and for comparative pur-
poses also examine silicon hydride molecules �Si2H4�n �si-
lanes�, as replacing the carbon atoms with silicon reduces the
occupied–unoccupied state separation and increases the de-
gree of correlation.

Details of the transport method are given in Ref. 5. A
constraint Ansatz using the Wigner function is made to in-
corporate open-system boundary conditions for calculation
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of the reduced density matrix on a device region �typically
the molecule plus part of the electrodes� at several values of
applied voltage. The procedure results in the best approxima-
tion to the density matrix on a region subject to reproducing
known system observables in accord with the principle of
maximum entropy at the zero-temperature limit. The density
matrix is calculated from eigenfunctions of a constrained
many-electron Hamiltonian. A strength of our approach is
that it allows for the expansion of many-body states in terms
of a complete set of configurations

��� = c0��0� + �
i,a

ci
a��i

a� + �
i�j

�
a�b

cij
ab��ij

ab� + ¯ . �1�

��0� refers to a reference state composed of the N lowest
single-particle states, ��i

a� ���ij
ab� , . . . � denotes singly

�doubly,. . .� excited configurations generated by substituting
the ith �jth,. . .� occupied single-particle state with the ath
�bth,. . .� single-particle excitation. Indexed ��� are spin-
projected Slater determinants or configuration state functions
�CSFs�, and ��0� is the ground-state HF determinant in the
absence of an applied electric field. The symmetry group of
our contact-molecule-contact subsystem is C2h �inset of Fig.
1� whose ground-state eigenfunction at V=0 is a singlet with
Ag symmetry. The bias field polarizes the molecular sub-
system and mixes states of singlet Bu symmetry via dipole
terms. Due to the combinatorial nature of generating possible
configurations, there is a computationally prohibitive number
of excited-state determinants. To calculate the many-body
tunneling wave function ��MB� we approximate the full ex-
pansion �1� by taking the most significant CSFs, as computed
from a Monte Carlo sampling of the many-electron expan-
sion space14 with the addition of all singly excited CSFs.
Notably, this approximation is not excitation limited and al-
lows for a high degree of electron correlation.15

In contrast to the many-body wave function, a single
Slater determinant ��1-det� is sought in independent-particle
models. If this is initially built from a set of unperturbed
single-particle states, e.g., the Hartree-Fock ��0� as above,
and a perturbation such as an electric field is introduced, the
resulting many-body expansion of the perturbed single-

determinant state has the special feature that the coefficients
of the doubly �triply,. . .� excited configurations will be appro-
priate products of the coefficients of the singly excited
configurations

��1-det� � ��0� + �
i,a

ci
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That this is the most general determinant not orthogonal to
��0� is seen by expanding the Thouless expression ��1-det�
=exp��i,aci

aâa
†âi� ��0�, where ai

† �ai� creates �annihilates� the
ith orbital. From the many-body calculation we find that
there is a broad voltage range where linear response is valid;
then by taking terms up to second order in the ci

a in �2� and
applying the same Wigner function transport scheme to this
restricted form of the wave function, we deduce the HF re-
sults to linear response in the bias. This permits comparison
of the exact-exchange �but uncorrelated� and correlated de-
scriptions of tunneling within the same formalism.

In Fig. 1 both the correlated and uncorrelated tunnel re-
sistance of the alkane-based molecular junctions are shown.
The qualitative features are the exponential suppression
R=R0e�Nc of the current with respect to the number of car-
bon atoms Nc=2n �Fig. 1� and linear scaling with applied
voltage. As observed in numerous experiments, both results
are typical of a metal-insulator-metal system. Contact resis-
tances R0 and tunneling parameters � calculated by least-
square linear fits are relatively close in value with HF R0 and
� deviating from the many-body results by 32% and 14%,
respectively. The overestimation of � by the HF approxima-
tion can be interpreted in terms of the incorrect alignment of
the virtual orbitals, which leads to a larger highest occupied–
lowest unoccupied molecular orbital gap. In contrast, the
contact resistance R0 is underestimated as indicated by the
zero crossing in Fig. 1, suggesting a stronger molecule-
electrode coupling within the HF results. Similar behavior is
found for the silane chains, with �=0.18 per silicon and a
contact resistance of R0=900 K� from the many-body cal-
culation. As expected, these molecular junctions are much
more conducting, yielding a value of ��0.09 Å−1compared
to ��0.39 Å−1 for alkanes. But, as will be discussed in de-
tail, the silanes display a higher degree of electron correla-
tion and the HF deviations with respect to the many-body
results are substantially larger than for the alkanes, increas-
ing to 75% and 117% for R0 and �, respectively.

Quantitatively, the magnitudes of the low-bias resistance
for each alkane molecule compare well with those reported
in Ref. 16 apart from decane, which appears to be experi-
mentally poorly resolved, as the measured result for n=5
does not fit the extrapolated tunneling behaviour. Our esti-
mated inverse decay length � falls in the lower part of the
experimentally observed range of values scattered between
about 0.5 and 1.0 per carbon atom.17 In particular, Haiss et
al.18 have reported �=0.52±0.05 per carbon but with higher
resistance values �compare to values indicated in Fig. 1�.

We can state that the HF theory performs relatively well
compared to a full many-body calculation for nonresonant
transport in the alkanes, but eventually diverges from the
many-body result as the molecular length increases. Due to
the higher degree of correlation, the HF is a poorer approxi-

FIG. 1. �Color online� Tunnel resistance-increase exponential
law. Explanation of the standard basis set notations is given
in the text. Inset: Typical geometry of the studied
Autip-S-�C2H4�n-S-Autip molecular junctions �n=3�.
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mation for the silanes, and also diverges with chain length as
compared to the many-body calculation. In Fig. 1, the HF
results for the smaller but commonly used atomic orbital
split valence with polarization �SV�P�� basis set for the car-
bon atoms is included �the larger aug-cc-pvDZ set denotes a
valence double-� correlation-consistent basis set with polar-
ization, augmented with diffuse functions�. Within this ap-
proximation, the molecular gap becomes larger, yielding a
small increase in � and higher resistance. This result does
not compare as well to the many-body calculation and casts
doubts on results whose convergence has not been tested
with respect to the completeness of the single-particle basis.

We have examined the importance of electron correlation
by comparing separate calculations at the many-body and HF
levels; however, the level of correlation may be directly
quantified from the many-body calculation independently of
HF results by examining the one-body density matrix �1.
Lack of correlations is expressed by the condition that �1
may be derived from a single determinant if and only if it is
idempotent, Tr��̂1

2− �̂1�=0. For closed-shell systems such as
those studied here, the degree of correlation C�0—or
equivalently the deviation from idempotency—for the spin-
traced density matrix 	1 may be defined in terms of its ei-
genvalues or natural occupation numbers ni as

C =
1

N − 1�
i

ni�2 − ni�/2. �3�

As 0
ni
2, an upper bound can be deduced:

Cmax =
N

2�N − 1�
	2 −

N

NT

 . �4�

Here N is the total number of electrons in the device region
and NT is the size of the single-particle basis. The magnitude
of C is a direct measure of the deviation of the actual one-
body density matrix from an uncorrelated one deriving from
a determinantal wave function; C=0 for a single determinant
and C=Cmax when ni=N /NT.

In Fig. 2, we plot the correlation measure C scaled to its
upper limit as a function of chain length for ��MB� �note that
it vanishes for ��1−det��. Remarkably, as a function of voltage

�not shown� the correlation measure is constant and close to
the uncorrelated limit for any given oligomer. In fact, C
monotonically decreases with increasing length possibly ap-
proaching a lower limit set by an infinite polymer for both
the alkanes and the silanes, the latter system displaying more
electronic correlation. Hence, in contrast to the HF predic-
tions, the density matrix reveals that there exists a single
Slater determinant description that is equally valid for all
chain lengths.

A formal measure of correlation for any expectation

value ��MB � Î ��MB� can be devised by using the fact that
the spin-traced two-body density matrix 	2 factorizes
in terms of 	1 only in the one-determinant �uncorrelated�
approximation. We write 	2�ij ;kl�= �1/2��	1�ik�	1�jl�
−	1�il�	1�jk� /2�+��ij ;kl�, where the first term is familiar
from HF theory and � denotes any deviations when 	1 is not
idempotent. Here i and k are indices of the first electron, j
and l that of the second, and �i,j	2�ij ; ij�=N�N−1� /2. Trac-

FIG. 2. Many-body correlations expressed via the one-body
density matrix. These are voltage independent with a standard de-
viation much smaller than the symbol size.

FIG. 3. �Left axis� Contribution of correlations to the current
measured via Eq. �5�. �Right axis� Current percentage not carried by
the leading determinant defined as the N-particle configuration with
highest natural occupancies. Residual noise voltage dependence is
indicated by error bars.

FIG. 4. �Color online� Comparison of the many-body, Hartree-
Fock, and leading natural orbital determinant currents.
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ing over the coordinates of the second electron, we deduce a
partition of 	1=1/ �N−1��N	1−	1�	1 /2�+� into uncorre-
lated and correlated pieces. This gives us a decomposition of

the current �Î�=Tr�	̂1Î� flowing in the many-body wave func-
tion as IMB= I1-det+ Icorr, where Icorr includes the contributions
from � and does not vanish when 	1 derives from a corre-
lated wave function. It follows that

Icorr =
1

N − 1
Tr��	̂1

2/2 − 	̂1�Î� . �5�
The percentage of current carried by the correlation terms is
indicated in Fig. 3 by the filled symbols. In line with our
previous observations, it is characterized by a single value
for each oligomer. The correlation contribution remains a
small fraction of the total current as a function of applied
voltage. These findings imply the existence of an approxi-
mate single-determinantal current-carrying wave function
that captures most of the contributions to electron flow even
when the HF approximation begins to fail.

The HF approximation determines the best orbitals for a
��1−det� that minimizes the energy. Since the current largely
reflects the form of the wave function, it is plausible that an
approximate state that maximizes overlap with the current-
carrying wave function may improve the orbital description
of an independent-particle model. Truncated configuration
expansions built from the eigenfunctions of the one-body
density matrix, the natural orbitals �NOs�, are known to
maximize overlap with ��MB�. Since there are only N /2 NOs
with large occupation numbers ni—in agreement with the
calculated small correlation measure C in our MMJs—we
use the single determinant made by doubly occupying the
orbitals with occupation numbers close to 2; note that an
exact treatment of maximizing the overlap for ��1-det� yields
the Brueckner determinant. We find that the current carried,
INO, is close to IMB as shown in Fig. 3 where the percentage
of the remaining differences is plotted versus molecular

length. Remarkably, these deviations are of the same order as
the correlation contributions determined by Eq. �5�. Indeed,
in Fig. 4 the current-voltage characteristics clearly demon-
strate that the “maximum overlap model” yields almost in-
distinguishable results from the many-body calculations in-
dependent of residual electron correlations; the HF single-
electron picture already shows significant deviation for
pentane �Fig. 4�a��, which grows much larger for the silanes
�Fig. 4�b��. The use of the natural orbitals in defining
��1-det�acquires a practical significance in view of recent ad-
vances allowing their construction from one-electron
equations with an effective potential.19

In summary, we have shown within a many-body scheme
how an independent-particle description emerges for elec-
trons tunneling across the barrier of insulating materials, due
to zero-bias correlations being such that a single-determinant
wave function is appropriate. Our main conclusion is that a
strong selection criterion for a single particle transport model
is to maximize the overlap with the many-body state; this
does not yield the Hartree-Fock determinant. Indeed, this
Slater determinant outperforms the HF one substantially. As
most KS DFT implementations to date have recently been
shown to be performed at essentially the Hartree level,1 the
independent-particle picture we have established here is bet-
ter than both present models and, hence, is valid beyond the
limits of conventional electronic structure methods for
quantum transport.
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