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Spins in quantum dots can act as qubits for quantum computation. In this context we point out that spins on
neighboring dots will experience an anisotropic form of the exchange coupling, called the Dzyaloshinskii-
Moriya �DM� interaction, which mixes the spin singlet and triplet states. This will have an important effect on
both qubit interactions and spin-dependent tunneling. We show that the interaction depends strongly on the
direction of the external field, which gives an unambiguous signature of this effect. We further propose an
experiment using coupled quantum dots to detect and characterize the DM interaction.
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Solid state devices show great promise for scalable quan-
tum information processing. Several well-known proposals
for quantum computing have been presented, including semi-
conducting quantum dots1 and superconducting Josephson
junctions.2 Quantum dots currently enable the confinement
and control of electrons on the scale of tens of nanometers,
even down to the limit of one electron.3,4 Detection tech-
niques allow the measurement of a single electron spin.5

The solid state matrix provides both opportunities and
challenges for quantum control and decoherence, due to the
complex environment of the qubits. In this paper, we focus
on a prominent issue for many solid state qubit implementa-
tions: the spin-orbit interaction, which couples spin and
charge fluctuations. As typical for qubit interactions, the
spin-orbit coupling can be both useful6,7 and detrimental.8,9

Here, we consider how the spin-orbit coupling affects the
time evolution of two-qubit interactions in spin-based quan-
tum dot qubits. We find that failure to account for spin-orbit
coupling can lead to serious control errors in the quantum
computation.

The main interaction between spin qubits is the exchange
coupling, which can be controlled with electronic gates, by
raising or lowering the electrostatic tunnel barrier between
neighboring quantum dots1 or by varying the relative depth
of the wells constituting the double dot.10 Ignoring the crys-
tal matrix, the exchange coupling would be of the Heisen-
berg type, with global SU�2� spin symmetry: HHeis=JS1 ·S2.
Here, Si are spin operators and J is the tunable exchange
coupling constant. The presence of spin-orbit interaction in-
troduces anisotropy into the exchange coupling, with an an-
tisymmetric component known as the Dzyaloshinskii-Moriya
�DM� interaction.11,12 Kavokin has shown that the DM ex-
change term also occurs in quantum dots, as a consequence
of tunneling coupling.13 Devitt et al. have proposed methods
to determine its magnitude.14 Several other authors have also
studied the importance of the DM interaction for quantum
dot quantum computing.6,15–18

For a single pair of dots, we can write the DM interaction
as HDM=�Jr̂ · �S1�S2�, where r̂ is the unit vector joining the
two spins. Thus, the presence of a DM interaction reduces
the spin symmetry to a global U�1� cylindrical symmetry,
where only rotations about r̂ remain as symmetry operations.
Kavokin has considered the magnitude of the coefficient �,

computing the exchange integral for the two electrons taking
into account the admixture of spin projections caused by the
spin-orbit interaction.13 This calculation applies to the case
when the energy levels of the individual dots are approxi-
mately equal ���1−�2��J� and the Heitler-London method is
valid. Here, we consider only this particular case. In GaAs,
the predominant spin-orbit coupling is of the Dresselhaus
type. For quantum dots in a 100 Å GaAs quantum well, Ka-
vokin finds ��0.1, not a particularly small value. In such a
case, we expect the DM contribution to the exchange cou-
pling will be readily apparent. For silicon dots, the Dressel-
haus interaction is not present, and the predominant spin-
orbit coupling arises from the Rashba interaction.

Petta et al. have recently performed a set of experiments
with coupled spins in a double quantum dot system in GaAs
that demonstrate control of the exchange coupling.10 In these
experiments, a qubit was defined by �S� and �T0�: the singlet,
and one component of the triplet states of the two-spin sys-
tem, respectively. Neglecting additional couplings, we would
expect the Heisenberg term term to split �S� and �T0�, thus
enabling exchange-based qubit rotations.10 However, inho-
mogeneous nuclear fields and the DM interaction also mix in
�T+� and �T−�, the two other components of the triplet. The
resulting loss of wave function probability from the qubit
subspace constitutes leakage and it can be interpreted as
dephasing or decoherence. However, the dynamics are actu-
ally coherent. It may therefore be possible to utilize the DM
dynamics in a beneficial way,6,19 or to undo them using time-
symmetric pulse shapes15–17 or spin echo techniques. Here,
we investigate in detail the DM dynamics of a double quan-
tum dot system, specifically considering the experiments of
Petta et al. We explore how the DM interaction modifies the
usual interpretation of such experiments, and we propose fur-
ther experiments to detect the presence of the DM interaction
and to measure its magnitude.

The Hamiltonian for our double dot system is

H = JS1 · S2 + �Jr̂ · �S1 � S2� − g*�B�B1 · S1 + B2 · S2� ,

�1�

where B1=Bext+Bn,1 and B2=Bext+Bn,2. Here, Bn,i is the
semiclassical field that is used to approximate the effective
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nuclear field for coupling of the electron spin to local nuclei
in dot i,20 given by

Bn,i =
Avo

− g*�B
�

k

��0
i �rk��2Ik, �2�

where Ik is the nuclear spin operator for a nucleus of total
spin I at the lattice site k, v0 is the volume of a unit cell
containing one nuclear spin, A is the hyperfine coupling
strength and �0

i �rk� is the single particle envelope function
for the orbital state i evaluated at site k. We assume that Bn,i
has a Gaussian distribution with mean zero, and a typical
variance of �=2.3 mT. In the calculations reported below,
our results are averaged over the distribution of the nuclear
fields,20 as consistent with the experimental procedure.10 For
example,

F̄ = �2��2�−3/2�
0

2�

d	�
0

�

d
 sin 
�
0

�

dBnBn
2e−Bn

2/2�2
F�Bn� .

�3�

High dimensional integrals are evaluated numerically using a
simple Monte Carlo integration code.

In Fig. 1, we show the appropriately averaged eigenvalues
of H, as a function of the applied field Bext. �Note that we use
�=0.5 in this figure. This large value of � is chosen only for
purposes of illustration. Elsewhere in the paper we use the
more physical value �=0.1.� We observe mixing of the un-
perturbed singlet and triplet states at special fields. Near

Bext=0, there is mixing of the triplet states, primarily due to
inhomogeneous nuclear fields.10 At nonzero fields, there is an
additional mixing of the singlet and triplet states, which
arises from both inhomogeneous nuclear fields and the DM
interaction. The mixing occurs near the resonance condition
g*�BBext� ±J, corresponding to Bext� ±0.04 T in the figure.
From the point of view of experimental detection, a crucial
point is that the mixing effect is anisotropic. This is seen
clearly in Fig. 1�b� where we plot the overlaps between the
eigenstates of Eq. �1� and the pure spin singlet.

We now compute the time evolution of the two coupled
spins for several experimental situations of interest. The
Hamiltonian in Eq. �1� has four eigenstates ��1,. . .,4�, with the
corresponding eigenvalues E1,. . .,4. For an arbitrary initial
state given by ���0��=�ai��i�, we can compute the probabil-
ity Ps�t�= �	S ���t���2 that this state will evolve to a spin sin-
glet after time t. We consider the initial state ���0��= �S�. The
probability that the spin system will remain in its singlet
state is then given by

Ps�t� = �
i=1

4

�ai�4 + 2�
ij

�ai�2�aj�2 cos
�Ei − Ej�t/�� . �4�

Leakage can occur due to both the DM interaction and the
inhomogeneous nuclear fields. When J is exponentially sup-
pressed, leakage is due entirely to the nuclear fields. For
nonvanishing J, the initial singlet state would remain station-
ary if not for the nuclear and DM mechanisms. Both mecha-
nisms then play a role in leakage. In Fig. 2, we plot Ps�t�
obtained after allowing the system to evolve over a “waiting
time’’ t=�s. At the resonance condition J=g*�BBext, Ps is
strongly suppressed compared to smaller and larger fields. A
similar suppression of Ps is expected in the absence of spin-
orbit coupling. However, the DM relaxation mechanism ex-
hibits a strong dependence on the orientation of Bext with
respect to r̂, which cannot be explained by nuclear fields.
This dependence on field orientation provides an important
signature of the DM interaction.

In the experiments of Petta et al., an initial singlet state is
prepared with both electrons in a single quantum dot. The
electrons are subsequently separated into two dots while re-
taining their singlet correlations. A waiting time ensues, con-
sistent with the analysis presented above, after which the
singlet probability Ps is measured. The data can be fitted
using a semiclassical model,21 obtaining a dephasing time
of about T2

*�10 ns and effective static nuclear field
Bnuc=2.3 mT. This T2

* is an ensemble-averaged time for re-
laxation to the asymptotic value. More relevant for quantum
information is the short-time behavior, characterized by the
quantity Tq

*, defined by Ps����1− �� /Tq
*�2. In Fig. 2�c�, Tq

* is
plotted as a function of 
, the angle between Bext and r̂. For
Bext=40 mT, the results show a significant dependence on 
.
Note that the t2 dependence of Ps �as opposed to an expo-
nential decay� is due to an absence of dissipation in our
model.

The significance of the DM interaction becomes most ap-
parent during exchange gate operations, when the Heisen-
berg and DM couplings, J and �J, respectively, are nonvan-
ishing. We consider the “Rabi oscillation” experiment of

FIG. 1. �a� Energy eigenvalues of the spin Hamiltonian Eq. �1�
as a function of Bext, for the parameters J=1 �eV, �=0.5, and
�=2.3 mT. Here the solid line corresponds to Bext r̂ and the dashed
line corresponds to Bext� r̂. �b� The overlap �	S ��i��2 of the energy
eigenstates with the spin singlet as a function of field. Solid and
dashed lines have the same meaning as in �a�.
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Petta et al., in which the spins are initially prepared in the
state �n�, corresponding to the ground state determined by the
nuclear fields when J=0. The initial state is not an eigenstate
of HHeis, so when the Heisenberg interaction is initiated, co-
herent oscillations will occur between the singlet and triplet
manifolds. Thus, after an exchange period of �E=2�� /J, the
spins will return to their initial state. Both inhomogeneous
nuclear fields and the DM interaction affect this picture by
mixing in the different triplet states inhomogeneously, caus-
ing Pn�t�= �	n�U�t��n��2 to decay. Here, Pn is the probability
to return to the initial state �n�,22 and U�t� is the unitary
evolution operator for the spin Hamiltonian. If we define the
ai coefficients of the initial state as �n�=�ai��i�, then Pn�t� is
given by Eq. �4�.

We have computed Pn�t� for experimental parameters
consistent with Ref. 10. The results are shown in Fig. 3.
Here, the external field is much larger than the nuclear field,
so the initial state of the evolution is nearly spin polarized.
The exchange coupling is then switched suddenly to a value
slightly off from the resonant condition J=g*�BBext for a
period �E. We plot two cases with and without the DM inter-
action ��=0.1,0, respectively�. In both cases, the initial state
���0����T+� is very similar to the ground eigenstate. �Recall
that the nuclear fields and the DM interactions cause a hy-
bridization of the �S� and �T+� states near their level crossing.
But away from the crossing, the eigenstates retain their �S�

and �T+� character.� Therefore, in the long-time limit
�E��nuc, Pn does not deviate greatly from 1. Here,
�nuc�� /g*�BBnuc is the nuclear mixing time. We note that
the solution including the DM interaction is clearly distin-
guishable from the �=0 case. This is because the DM cou-
pling enhances the hybridization of �S� and �T+�, and thus the
difference between the initial and final states.

Another obvious feature in Fig. 3 is the initial rapid
oscillations of Pn. Since the initial spin state is not an
eigenstate of the exchange Hamiltonian, it can undergo co-
herent oscillations prior to nuclear mixing. In the figure, the
predominant oscillations occur between the S-like and
T+-like states, with an approximate energy splitting of
g*�BBext−J and a corresponding oscillation period of
2�� / �g*�BBext−J�. Note that without any true damping
mechanisms the curves are subject to Poincaré recurrence
and will return to 1.

We now propose an experiment to unambiguously detect
the presence of the DM interaction. In Fig. 3, the suppression

FIG. 2. �a�, �b� The probability Ps of an initial spin singlet to
remain in the singlet state as a function of the “waiting time” �s for
J=1 �eV, �=0.1, and �=2.3 mT. Solid lines correspond to the
field orientation Bext r̂ and dashed lines correspond to Bext� r̂.
Bext= �a� 100 and �b� 40 mT �resonance condition�. �c� Dephasing
time Tq

*, obtained from a fit to a parabolic equation as a function of
the orientation angle 
 between Bext and r̂. The fitting data corre-
spond to the curves Bext=40 mT in �b�.

FIG. 3. Coherent oscillations of Pn, corresponding to the “Rabi
oscillations” of Ref. 10 at B=100 mT and �=2.3 mT. Solid curves
include the effects of the DM interaction. The dotted curve corre-
sponds to DM interactions turned off ��=0�. Curve A,
J=2.5 �eV, �=0.1; curve B, J=3 �eV, �=0.1;curve C,
J=2 �eV, �=0.1; curve D, J=3 �eV, �=0.

FIG. 4. Proposed experiment to observe DM interactions. The
system is prepared in the initial state �T+� in a large field,
Bext=1 T. A strong exchange coupling �J=25.5 �eV� is initiated at
the resonance condition J=g*�BBext with �=2.3 mT, producing
fast oscillations dampened by nuclear mixing �solid curve�. In the
absence of the DM interaction, no fast oscillations are observed
�dashed curve�.
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of Pn was strongly enhanced by DM interactions near reso-
nance �2.5 �eV�. So we perform the previous experiment in
a large external field where we can tune the exchange cou-
pling to its resonant condition J=g*�BBext during the ex-
change evolution. Under these conditions, the hybridization
of �S� and �T+� is maximized, so that the initial and final
states will be quite different. Consequently, after nuclear
mixing, Pn approaches 0.5. The reason for choosing Bext �and
thus J� to be large is that this allows many coherent oscilla-
tions to occur before nuclear mixing.

Some typical results are shown in Fig. 4, with and without
the DM interaction. Because a large value of J has been
used, the hybridization of �S� and �T+� is completely domi-
nated by the DM interaction for the case �=0.1. Rapid os-
cillations occur between these two states, with an energy
splitting given by 2�	T+�HDM�S��=�J /�2, and an oscillation
period of ��8� /�J. To see the fast oscillations, the exchange
coupling should be turned on quickly compared to the oscil-
lation period, so that the initial state cannot evolve adiabati-
cally to the ground state. Similarly to Fig. 3, the oscillation
envelope is eventually suppressed by nuclear mixing. How-
ever in the large-Bext limit, the fast oscillation period is de-
termined only by DM interactions, not hyperfine effects. This

can be confirmed by plotting 
�fast oscillation period�
�Bext� vs Bext, which should remain a constant. The hyper-
fine effects can also be eliminated by polarizing the nuclear
spins or by employing a standard Hahn spin echo sequence.

Two-qubit operations require a very accurate knowledge
of the spin-spin interaction, and the DM interaction is ex-
pected to be about a 10% effect in GaAs. It is therefore very
important to develop methods to measure it in double quan-
tum dot systems. Because the interaction breaks spin rotation
invariance it can be detected: its effects depend strongly on
the direction of the applied field in ways that we have de-
scribed. By carefully choosing external parameters, it is also
possible to determine the magnitude of the DM coupling by
measuring the oscillation period for evolution between the
singlet and triplet states.
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