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Analytical solution of electron spin decoherence through hyperfine interaction in a quantum dot
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We analytically solve the non-Markovian single-electron spin dynamics due to hyperfine interaction with
surrounding nuclei in a quantum dot. We use the equation-of-motion method assisted with a large field
expansion, and find that virtual nuclear spin flip-flops mediated by the electron contribute significantly to a
complete decoherence of the transverse electron spin correlation function. Our results show that a 90% nuclear
polarization can enhance the electron spin time 7, by almost two orders of magnitude. In the long time limit,
the electron spin correlation function has a nonexponential 1/¢> decay in the presence of both polarized and

unpolarized nuclei.
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Spins in semiconductor nanostructures are promising qu-
bit candidates for a solid state quantum computer because of
their long decoherence times and potential scalability.! To
demonstrate the feasibility of a spin qubit, electron spin de-
coherence in semiconductor quantum dots (QDs) has been
widely studied both theoretically and experimentally.'= The
level discretization in a QD ensures that spin-orbit-
interaction-induced spin relaxation is quite slow in QDs,®
which leaves the environmental nuclear spins, particularly
abundant in II-V semiconductors such as GaAs (10*—10°
depending on the actual size of the QD), as the main source
of decoherence for the electron spins.

It has been shown that static thermal polarization of
nuclear spins leads to inhomogeneous broadening of electron
spins (which can be corrected using the spin echo
technique’) at a time scale of 10 ns,*>® and nuclear magnetic
dipolar coupling leads to electron spin spectral diffusion and
dephasing at a time scale of 10 us.>!° For the intervening
period of time, the hyperfine interaction between the electron
and nuclear spins can also lead to electron spin decoherence,
which is in general non-Markovian because nuclear dynam-
ics is slower than the hyperfine dynamics.

The study of the non-Markovian electron spin dynamics
in the presence of hyperfine interaction is a complicated
problem due to its quantum many-body nature (one electron
spin and N nuclear spins), and has drawn widespread atten-
tion recently.''"'* Analytically, an exact solution has been
found in the case of a fully polarized nuclear reservoir,!!
while for the rest of the parameter regimes (in terms of
nuclear polarization and external field), perturbative theory'?
or effective Hamiltonians'*'* have been used to study the
problem. Numerically, only small systems with typically
fewer than 20 spins have been explored because of the ex-
tremely large Hilbert space.!31316

In this Rapid Communication we focus on the problem of
the spin decoherence of a single electron due to hyperfine
interaction with the surrounding nuclear spins. Although at a
finite magnetic field the direct electron-nuclear-spin flip-flop
is highly unlikely due to the Zeeman energy mismatch,
higher-order processes where electron spins do not flip are
possible. For example, conduction-electron-mediated nuclear
spin interaction [Ruderman-Kittel-Kasuya-Yosida (RKKY)]
has been studied for a long time in both metals and
semiconductors.”!” Here our focus is the backaction of the
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electron-mediated RKKY interaction between nuclear spins
on the single mediating electron spin. We start from the exact
electron-nuclear-spin Zeeman and hyperfine Hamiltonian
and use the equation-of-motion approach in the Heisenberg
picture. Helped by a systematic large field expansion, we
solve the full quantum mechanical problem analytically and
reveal the crucial importance of the electron-mediated
nuclear spin flip-flop processes in the decoherence of an
electron spin.

Calculating Green’s functions with the equations of mo-
tion is an old technique in solid state physics.'® In our current
study we use this venerable technique to attack the problem
of spin decoherence, which is generally studied using quan-
tum master equations for the density operator.!” This tradi-
tional approach originating from quantum optics is more
adapted to dealing with weak interactions between a system
and its reservoir. We demonstrate in this study that a properly
defined correlation function can be used to fully characterize
the decoherence properties of a two-level system, and the
equation-of-motion approach can be a powerful tool in
studying non-Markovian dynamics.

We model the coupled electron-nuclear-spin system by
the Hamiltonian’

1
H=wpS + > AJS + EE A(LS + LS, (1)
k k

where S and [ represent the electron and nuclear spin opera-
tors, respectively, wg is the external magnetic field, A; is the
hyperfine coupling constant with the kth nucleus, and A=1.
In this Rapid Communication we assume / =% for simplicity,
though all calculations can be generalized for arbitrary /. For
a two-dimensional QD with a Gaussian electron wave func-
tion, A; has the simple form A=Ay N with k e (0,).1?
For convenience we assume Ag=1 so that time is measured
in the unit of 1/A,.

To describe the decoherence between electron spin |T) and
||} states, we introduce a retarded transverse spin correlation
function

G (1) =—i00)(Vo|S(1)S*(0)[¥y). (2)

Here 6(7) is the usual step function, and W) is the initial
wave function of the system where the electron and nuclear
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spins are assumed to be in a product state, with the electron
having spin down initially, i.e., |W)=|{ ;Ii],l;iz, ,I;ZN).ZO
This spin correlation function represents the phase fluctua-
tions between electron spin up and down states in the pres-
ence of the nuclear spin reservoir, which can be most clearly
seen in the Schrddinger picture,

G, () ==i6sL s ... 1 |e"7hs e SH(0)

< J2 Z4
x |1 peesli)
=—io){{ ;Izl, s iN|eiH’/ﬁ}S_
X {7 s - D)) (3)

The term in the first curly brackets represents the evolution
of the electron spin-down state in the presence of the hyper-
fine interaction, while the term in the second curly brackets
represents the evolution of the electron spin—up state in the
same environment. If no electron spin flip occurs, any decay
in the calculated average will be due solely to dephasing
between the electron spin—up and —down states. Obviously,
electron spin flip will also cause decay of the correlation
function. Therefore, G, (f) contains the complete decoher-
ence information for the electron spin in consideration.

An iterative equation of motion (EOM) for the spin cor-
relation function G () can be obtained by differentiating
G | (¢) with respect to time and then performing the Fourier
transform. In general, for two arbitrary operators A and B,

w((A;B)), = (Vo|A(0)B(0)|Wy) + (([A.H]:B)),,,  (4)

where  ((A;B)), is the Fourier transform  of
(Wo|A(1)B(0)|W,). For G, (1), we use G | (w) to represent its
Fourier transform, so that

oG, (w)=1+([S"H]:S)),- (5)

The second terms on the right-hand side of Egs. (4) and (5)
involves the calculation of higher-order correlation func-
tions. A cutoff or decoupling scheme has to be applied to
eventually close the set of EOMs.

After G | (w) is obtained, real time dynamics of G | (¢) can
be easily calculated by an inverse Fourier transform using
the spectral function defined as

p(w)=-Im G | (w)/7. (6)

In general there are two types of contribution to the spectral
function after performing analytical continuation (w— w
+i0%):1% a & function Z,0(w—w,), and a nonvanishing imagi-
nary part of the self-energy resulting from branch cuts, which
results from the integration of continuous poles. The & func-
tion leads to a coherent oscillation with a single frequency
w,,, while the continuous part leads to dephasing in the time
evolution of the spin correlation function G | ().

We consider the general case of partially polarized and
unpolarized nuclear spin reservoir where both the numbers
of spin—up and —down nuclei are of order N. The difference
in the numbers of the two spin species is characterized by an
effective polarization P=(N;—-N)/N, where N, (N)) are the
number of nuclear spins in the up (down) states. Now the
effective magnetic field takes the form Q=wy+2A(F5),
where (I}) represents time averaging of ;(¢). We consider the
physically relevant case of large effective fields (2~ N, re-
quiring that we have either a reasonably large external field,
or a nuclear reservoir with finite polarization), and focus on
the spectral broadening near w={), which leads to dephasing
of transverse electron spin magnetization.

Previous studies'’!? indicate that when only the direct
electron-nuclei spin flip-flop is considered, the decay ampli-
tude of the electron spin correlation function is of the order
O(1/N), and the correlation function has almost undamped
oscillations. Clearly, such direct processes are energetically
unfavorable in high effective magnetic fields. However, if the
higher-order virtual processes (electron-mediated nuclear
spin flip-flop) are included, we expect that nuclear field fluc-
tuation will give rise to complete decoherence in the electron
spin. In other words, the & function (indicating no damping)
in the spectral function would be broadened (decoherence)
after the virtual processes are included. The spectral weight
in the low-energy region where w~ O(1) has been found to
be negligible.?!

In the following calculation we treat the nuclear field
A7 within the adiabatic approximation, which is physical
since S7(¢) has an oscillation frequency ()~N while the
nuclear field varies in a much longer time scale, so that in the
Fourier transform of (Wo|=,ALi(1)S™(1)ST(0)|W,) we can

241303-2

RAPID COMMUNICATIONS



ANALYTICAL SOLUTION OF ELECTRON SPIN...

simply replace 2,AL;(1) by 2 AK5). G| (w) is related to the
higher-order correlation function ((FkIZ,S‘;ST»w through the

following equation:
1 e
20 > AAGILS TS,

N
(w—Q—-)GL(w)z 1+
k#k'

8Q)

()

Here <<FkIT,S‘;ST>>w represents nuclear spins k and k' flip-
flopping with each other while the electron spin returns to its
initial state (]).

Calculating this higher-order correlation function requires
a cutoff to terminate the iteration. The structure of the itera-
tive equations reveals that a natural cutoff does exist. The
correlation function with one flip-flopped nuclear spin pair
has two contributions to the self-energy, one of them propor-
tional to N?/(4€)?, the other to N°/(4Q)3. For two pairs of
flip-flopped nuclear spins the two contributions are propor-
tional to N*/(4Q)* and N°/(4Q)>, respectively. This geo-
metrical series converges quite fast when Q>N (large field
expansion). Physically, the expansion parameter N/ ap-
pears because the intermediate high-energy state where the
electron spin is flipped requires energy €}, and N comes from
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FIG. 2. T, determined from the halfwidth of the peak of spectral
functions for different nuclear polarizations (P) and effective fields
(Q). In all cases the spectral functions are calculated using both
3, (@) and 3,(&). We have chosen N=10> and A=3A4,=92 ueV.

the summation over all nuclear spins. In the limit of Q> N,
only the first-order term of the self-energy contributes sig-
nificantly. Neglecting N*/Q* and higher-order terms, the fi-
nal expression of the spin correlation function is

1

GJ_((D) =

with the lowest-order self-energy taking the form
20 -1
20+ 1

+o+1In

|

2
+i§(4|a|3—3|5| +1), 9)

(@)= %(5(45)2 -3)In

|- L
4&?

for |@|<1/2. Here @=w-Q-N/8Q. The exact form of
3,(@) is also found.?! Both self-energy terms have branch
cuts or nonvanishing imaginary parts when |@|<1/2, lead-
ing to dephasing when calculating G | (¢). Another significant
feature of G | (w) is that it does not have a S-function com-
ponent any longer, indicating that the decoherence of G | (¢)
will be complete. In addition, Eq. (8) indicates that the am-
plitude of G | (w) is ~O(1), in contrast to the fully polarized
case, where G | (w) ~ O(1/N).

Figure 1 shows the calculated electron spin spectral func-
tions for different effective fields. We compare the results of
including only 3,(®@) (solid lines) and those with both 2,,(®)
and X,(w) (dashed lines) for Q=2.5N and 4.5N. The two
panels clearly show the validity of the large field expansion
for 1 =2.5N. For smaller () more higher-order terms need to
be included to attain convergence. Indeed, even if Q<N
there is no divergence in our theory, since there could be at
most N| (N <N,) flip-flopped nuclear pairs in the system, so

@ —[(P* - 1N 1160213 (®) - [(1 = PP)N*/320°]2 (@)

(8)

that there is an upper limit to the number of EOMs and terms
in self-energy. The right panel of Fig. 1 (for 1=4.5N) shows
that the contribution of 3,(®) is now completely negligible.
Using hyperfine coupling constant of bulk GaAs,?> we esti-
mate that 1=2.5N corresponds to a magnetic field of 5 T.
Figure 1 also explicitly shows that the original ¢ function in
the spectral function is now broadened after taking into ac-
count the electron-mediated flip-flop of nuclear spins. Ac-
cording to Eq. (8), in the limit >N or P=1, both self-
energy terms go to zero, so that the S-function form of &(@)
of the spectral functions would have been recovered, and
there would have been no decoherence effect.

The decoherence time T, for the electron spin can be de-
termined from the halfwidth (A®@) of the spectral peak (T,
=1/A®). Figure 2 shows T, as functions of the nuclear spin
polarization P and the effective magnetic field (). It is clear
that 7, only increases slowly with the external magnetic
field, but is much more sensitive to the nuclear polarization.
If the nuclear polarization P is raised to 0.9 from 0, 7, in-
creases by almost two orders of magnitude. Physically this is
quite reasonable, as increasing polarization reduces the phase
space for nuclear spin flip-flops, while increasing external
field slowly reduces the cross section of these processes.

The real time dynamics of G (f) is obtained with the
inverse Fourier transform G, (1)=—i6(¢) [ p(w)e™”dw using
the spectral function calculated with both X,(@) and 2,(®).
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FIG. 3. Time evolution of the envelope of Re{G | (1)} for various
regimes of T,. G () is obtained from the spectral function by in-
verse Fourier transform. It should be noted that the real evolution is
modulated by the fast oscillation term ¢, We have assumed N
=10° and A=3A,=92 ueV in these calculations.

Figure 3 plots the time evolution of the envelope of
Re{G | (1)} for three different parameter regimes. The solid
line represents the case of fast decay with (1=2.5N and no
polarization. The dotted line shows that increasing the mag-
netic field can increase the coherence time moderately. If the
nuclei in the QD are polarized to 90%, the amplitude of the
fast oscillation in electron spin (with frequency {2) could be
maintained for a much longer time as indicated by the
dashed line. Notice that here the amplitude of G (1) does
decrease as quickly as in the previous two cases initially, but
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electron spin quantum coherence is only partially lost so that
clear revival phenomenon is visible even after several micro-
seconds in Fig. 3.

The long-time asymptotic behavior of G | (¢) can also be
extracted from p(w), which is nonzero only when |@|<1/2.
Calculating the inverse Fourier transform at > 1, we find

1440° 1

G PN

(10)

The 1/¢* power-law decay here can be compared to the 1/¢
power-law decay found in Refs. 11 and 12 for large magnetic
fields, where electron-mediated nuclear spin flip-flops are not
taken into account, and the exponential decay found in Ref.
14, where an effective Hamiltonian for the nuclear spin flip-
flop is considered.

In summary, we have presented a detailed analytical study
of transverse electron spin decoherence using large field ex-
pansion. We find that electron-mediated nuclear spin flip-
flops contribute significantly to electron spin dephasing by
generating fluctuations in the Overhauser field (the nuclear
field) for the electron spin. We find that 80-90 % nuclear
polarization can enhance the electron spin 7, time by two
orders of magnitude into the microsecond time scaleina 5 T
external field. We also show that the long-time asymptotic
behavior of the spin decoherence is 1/7°.
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